/** @file Simple PC RTC Copyright (c) 2007, Intel Corporation. All rights reserved.<BR> Portions copyright (c) 2008 - 2009, Apple Inc. All rights reserved.<BR> Copyright (c) 2014, ARM Ltd. All rights reserved. This program and the accompanying materials are licensed and made available under the terms and conditions of the BSD License which accompanies this distribution. The full text of the license may be found at http://opensource.org/licenses/bsd-license.php THE PROGRAM IS DISTRIBUTED UNDER THE BSD LICENSE ON AN "AS IS" BASIS, WITHOUT WARRANTIES OR REPRESENTATIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED. **/ typedef struct { EFI_LOCK RtcLock; UINT16 SavedTimeZone; UINT8 Daylight; } PC_RTC_GLOBALS; #define PCAT_RTC_ADDRESS_REGISTER 0x70 #define PCAT_RTC_DATA_REGISTER 0x71 // // Dallas DS12C887 Real Time Clock // #define RTC_ADDRESS_SECONDS 0 // R/W Range 0..59 #define RTC_ADDRESS_SECONDS_ALARM 1 // R/W Range 0..59 #define RTC_ADDRESS_MINUTES 2 // R/W Range 0..59 #define RTC_ADDRESS_MINUTES_ALARM 3 // R/W Range 0..59 #define RTC_ADDRESS_HOURS 4 // R/W Range 1..12 or 0..23 Bit 7 is AM/PM #define RTC_ADDRESS_HOURS_ALARM 5 // R/W Range 1..12 or 0..23 Bit 7 is AM/PM #define RTC_ADDRESS_DAY_OF_THE_WEEK 6 // R/W Range 1..7 #define RTC_ADDRESS_DAY_OF_THE_MONTH 7 // R/W Range 1..31 #define RTC_ADDRESS_MONTH 8 // R/W Range 1..12 #define RTC_ADDRESS_YEAR 9 // R/W Range 0..99 #define RTC_ADDRESS_REGISTER_A 10 // R/W[0..6] R0[7] #define RTC_ADDRESS_REGISTER_B 11 // R/W #define RTC_ADDRESS_REGISTER_C 12 // RO #define RTC_ADDRESS_REGISTER_D 13 // RO #define RTC_ADDRESS_CENTURY 50 // R/W Range 19..20 Bit 8 is R/W // // Date and time initial values. // They are used if the RTC values are invalid during driver initialization // #define RTC_INIT_SECOND 0 #define RTC_INIT_MINUTE 0 #define RTC_INIT_HOUR 0 #define RTC_INIT_DAY 1 #define RTC_INIT_MONTH 1 #define RTC_INIT_YEAR 2001 // // Register initial values // #define RTC_INIT_REGISTER_A 0x26 #define RTC_INIT_REGISTER_B 0x02 #define RTC_INIT_REGISTER_D 0x0 #pragma pack(1) // // Register A // typedef struct { UINT8 RS : 4; // Rate Selection Bits UINT8 DV : 3; // Divisor UINT8 UIP : 1; // Update in progress } RTC_REGISTER_A_BITS; typedef union { RTC_REGISTER_A_BITS Bits; UINT8 Data; } RTC_REGISTER_A; // // Register B // typedef struct { UINT8 DSE : 1; // 0 - Daylight saving disabled 1 - Daylight savings enabled UINT8 MIL : 1; // 0 - 12 hour mode 1 - 24 hour mode UINT8 DM : 1; // 0 - BCD Format 1 - Binary Format UINT8 SQWE : 1; // 0 - Disable SQWE output 1 - Enable SQWE output UINT8 UIE : 1; // 0 - Update INT disabled 1 - Update INT enabled UINT8 AIE : 1; // 0 - Alarm INT disabled 1 - Alarm INT Enabled UINT8 PIE : 1; // 0 - Periodic INT disabled 1 - Periodic INT Enabled UINT8 SET : 1; // 0 - Normal operation. 1 - Updates inhibited } RTC_REGISTER_B_BITS; typedef union { RTC_REGISTER_B_BITS Bits; UINT8 Data; } RTC_REGISTER_B; // // Register C // typedef struct { UINT8 Reserved : 4; // Read as zero. Can not be written. UINT8 UF : 1; // Update End Interrupt Flag UINT8 AF : 1; // Alarm Interrupt Flag UINT8 PF : 1; // Periodic Interrupt Flag UINT8 IRQF : 1; // Iterrupt Request Flag = PF & PIE | AF & AIE | UF & UIE } RTC_REGISTER_C_BITS; typedef union { RTC_REGISTER_C_BITS Bits; UINT8 Data; } RTC_REGISTER_C; // // Register D // typedef struct { UINT8 Reserved : 7; // Read as zero. Can not be written. UINT8 VRT : 1; // Valid RAM and Time } RTC_REGISTER_D_BITS; typedef union { RTC_REGISTER_D_BITS Bits; UINT8 Data; } RTC_REGISTER_D; #pragma pack() PC_RTC_GLOBALS mRtc; BOOLEAN IsLeapYear ( IN EFI_TIME *Time ) { if (Time->Year % 4 == 0) { if (Time->Year % 100 == 0) { if (Time->Year % 400 == 0) { return TRUE; } else { return FALSE; } } else { return TRUE; } } else { return FALSE; } } const INTN mDayOfMonth[12] = { 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; BOOLEAN DayValid ( IN EFI_TIME *Time ) { if (Time->Day < 1 || Time->Day > mDayOfMonth[Time->Month - 1] || (Time->Month == 2 && (!IsLeapYear (Time) && Time->Day > 28)) ) { return FALSE; } return TRUE; } UINT8 DecimaltoBcd ( IN UINT8 DecValue ) { UINTN High; UINTN Low; High = DecValue / 10; Low = DecValue - (High * 10); return (UINT8) (Low + (High << 4)); } UINT8 BcdToDecimal ( IN UINT8 BcdValue ) { UINTN High; UINTN Low; High = BcdValue >> 4; Low = BcdValue - (High << 4); return (UINT8) (Low + (High * 10)); } VOID ConvertEfiTimeToRtcTime ( IN EFI_TIME *Time, IN RTC_REGISTER_B RegisterB, IN UINT8 *Century ) { BOOLEAN PM; PM = TRUE; // // Adjust hour field if RTC in in 12 hour mode // if (RegisterB.Bits.MIL == 0) { if (Time->Hour < 12) { PM = FALSE; } if (Time->Hour >= 13) { Time->Hour = (UINT8) (Time->Hour - 12); } else if (Time->Hour == 0) { Time->Hour = 12; } } // // Set the Time/Date/Daylight Savings values. // *Century = DecimaltoBcd ((UINT8) (Time->Year / 100)); Time->Year = (UINT16) (Time->Year % 100); if (RegisterB.Bits.DM == 0) { Time->Year = DecimaltoBcd ((UINT8) Time->Year); Time->Month = DecimaltoBcd (Time->Month); Time->Day = DecimaltoBcd (Time->Day); Time->Hour = DecimaltoBcd (Time->Hour); Time->Minute = DecimaltoBcd (Time->Minute); Time->Second = DecimaltoBcd (Time->Second); } // // If we are in 12 hour mode and PM is set, then set bit 7 of the Hour field. // if (RegisterB.Bits.MIL == 0 && PM) { Time->Hour = (UINT8) (Time->Hour | 0x80); } } /** Check the validity of all the fields of a data structure of type EFI_TIME @param[in] Time Pointer to a data structure of type EFI_TIME that defines a date and time @retval EFI_SUCCESS All date and time fields are valid @retval EFI_INVALID_PARAMETER At least one date or time field is not valid **/ EFI_STATUS RtcTimeFieldsValid ( IN EFI_TIME *Time ) { if ((Time->Year < 1998 ) || (Time->Year > 2099 ) || (Time->Month < 1 ) || (Time->Month > 12 ) || (!DayValid (Time)) || (Time->Hour > 23 ) || (Time->Minute > 59 ) || (Time->Second > 59 ) || (Time->Nanosecond > 999999999) || ((Time->TimeZone != EFI_UNSPECIFIED_TIMEZONE) && ((Time->TimeZone < -1440) || (Time->TimeZone > 1440 ) ) ) || (Time->Daylight & (~(EFI_TIME_ADJUST_DAYLIGHT | EFI_TIME_IN_DAYLIGHT ))) ) { return EFI_INVALID_PARAMETER; } return EFI_SUCCESS; } UINT8 RtcRead ( IN UINT8 Address ) { IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80))); return IoRead8 (PCAT_RTC_DATA_REGISTER); } VOID RtcWrite ( IN UINT8 Address, IN UINT8 Data ) { IoWrite8 (PCAT_RTC_ADDRESS_REGISTER, (UINT8) (Address | (UINT8) (IoRead8 (PCAT_RTC_ADDRESS_REGISTER) & 0x80))); IoWrite8 (PCAT_RTC_DATA_REGISTER, Data); } EFI_STATUS RtcTestCenturyRegister ( VOID ) { UINT8 Century; UINT8 Temp; Century = RtcRead (RTC_ADDRESS_CENTURY); // // RtcWrite (RTC_ADDRESS_CENTURY, 0x00); // Temp = (UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f); RtcWrite (RTC_ADDRESS_CENTURY, Century); if (Temp == 0x19 || Temp == 0x20) { return EFI_SUCCESS; } return EFI_DEVICE_ERROR; } VOID ConvertRtcTimeToEfiTime ( IN EFI_TIME *Time, IN RTC_REGISTER_B RegisterB ) { BOOLEAN PM; if ((Time->Hour) & 0x80) { PM = TRUE; } else { PM = FALSE; } Time->Hour = (UINT8) (Time->Hour & 0x7f); if (RegisterB.Bits.DM == 0) { Time->Year = BcdToDecimal ((UINT8) Time->Year); Time->Month = BcdToDecimal (Time->Month); Time->Day = BcdToDecimal (Time->Day); Time->Hour = BcdToDecimal (Time->Hour); Time->Minute = BcdToDecimal (Time->Minute); Time->Second = BcdToDecimal (Time->Second); } // // If time is in 12 hour format, convert it to 24 hour format // if (RegisterB.Bits.MIL == 0) { if (PM && Time->Hour < 12) { Time->Hour = (UINT8) (Time->Hour + 12); } if (!PM && Time->Hour == 12) { Time->Hour = 0; } } Time->Nanosecond = 0; Time->TimeZone = EFI_UNSPECIFIED_TIMEZONE; Time->Daylight = 0; } EFI_STATUS RtcWaitToUpdate ( UINTN Timeout ) { RTC_REGISTER_A RegisterA; RTC_REGISTER_D RegisterD; // // See if the RTC is functioning correctly // RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D); if (RegisterD.Bits.VRT == 0) { return EFI_DEVICE_ERROR; } // // Wait for up to 0.1 seconds for the RTC to be ready. // Timeout = (Timeout / 10) + 1; RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A); while (RegisterA.Bits.UIP == 1 && Timeout > 0) { MicroSecondDelay (10); RegisterA.Data = RtcRead (RTC_ADDRESS_REGISTER_A); Timeout--; } RegisterD.Data = RtcRead (RTC_ADDRESS_REGISTER_D); if (Timeout == 0 || RegisterD.Bits.VRT == 0) { return EFI_DEVICE_ERROR; } return EFI_SUCCESS; } EFI_STATUS LibGetTime ( OUT EFI_TIME *Time, OUT EFI_TIME_CAPABILITIES *Capabilities ) { EFI_STATUS Status; RTC_REGISTER_B RegisterB; UINT8 Century; UINTN BufferSize; // // Check parameters for null pointer // if (Time == NULL) { return EFI_INVALID_PARAMETER; } // // Acquire RTC Lock to make access to RTC atomic // EfiAcquireLock (&mRtc.RtcLock); // // Wait for up to 0.1 seconds for the RTC to be updated // Status = RtcWaitToUpdate (100000); if (EFI_ERROR (Status)) { EfiReleaseLock (&mRtc.RtcLock); return Status; } // // Read Register B // RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); // // Get the Time/Date/Daylight Savings values. // Time->Second = RtcRead (RTC_ADDRESS_SECONDS); Time->Minute = RtcRead (RTC_ADDRESS_MINUTES); Time->Hour = RtcRead (RTC_ADDRESS_HOURS); Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH); Time->Month = RtcRead (RTC_ADDRESS_MONTH); Time->Year = RtcRead (RTC_ADDRESS_YEAR); ConvertRtcTimeToEfiTime (Time, RegisterB); if (RtcTestCenturyRegister () == EFI_SUCCESS) { Century = BcdToDecimal ((UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f)); } else { Century = BcdToDecimal (RtcRead (RTC_ADDRESS_CENTURY)); } Time->Year = (UINT16) (Century * 100 + Time->Year); // // Release RTC Lock. // EfiReleaseLock (&mRtc.RtcLock); // // Get the variable that containts the TimeZone and Daylight fields // Time->TimeZone = mRtc.SavedTimeZone; Time->Daylight = mRtc.Daylight; BufferSize = sizeof (INT16) + sizeof (UINT8); // // Make sure all field values are in correct range // Status = RtcTimeFieldsValid (Time); if (EFI_ERROR (Status)) { return EFI_DEVICE_ERROR; } // // Fill in Capabilities if it was passed in // if (Capabilities) { Capabilities->Resolution = 1; // // 1 hertz // Capabilities->Accuracy = 50000000; // // 50 ppm // Capabilities->SetsToZero = FALSE; } return EFI_SUCCESS; } EFI_STATUS LibSetTime ( IN EFI_TIME *Time ) { EFI_STATUS Status; EFI_TIME RtcTime; RTC_REGISTER_B RegisterB; UINT8 Century; if (Time == NULL) { return EFI_INVALID_PARAMETER; } // // Make sure that the time fields are valid // Status = RtcTimeFieldsValid (Time); if (EFI_ERROR (Status)) { return Status; } CopyMem (&RtcTime, Time, sizeof (EFI_TIME)); // // Acquire RTC Lock to make access to RTC atomic // EfiAcquireLock (&mRtc.RtcLock); // // Wait for up to 0.1 seconds for the RTC to be updated // Status = RtcWaitToUpdate (100000); if (EFI_ERROR (Status)) { EfiReleaseLock (&mRtc.RtcLock); return Status; } // // Read Register B, and inhibit updates of the RTC // RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); RegisterB.Bits.SET = 1; RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); ConvertEfiTimeToRtcTime (&RtcTime, RegisterB, &Century); RtcWrite (RTC_ADDRESS_SECONDS, RtcTime.Second); RtcWrite (RTC_ADDRESS_MINUTES, RtcTime.Minute); RtcWrite (RTC_ADDRESS_HOURS, RtcTime.Hour); RtcWrite (RTC_ADDRESS_DAY_OF_THE_MONTH, RtcTime.Day); RtcWrite (RTC_ADDRESS_MONTH, RtcTime.Month); RtcWrite (RTC_ADDRESS_YEAR, (UINT8) RtcTime.Year); if (RtcTestCenturyRegister () == EFI_SUCCESS) { Century = (UINT8) ((Century & 0x7f) | (RtcRead (RTC_ADDRESS_CENTURY) & 0x80)); } RtcWrite (RTC_ADDRESS_CENTURY, Century); // // Allow updates of the RTC registers // RegisterB.Bits.SET = 0; RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); // // Release RTC Lock. // EfiReleaseLock (&mRtc.RtcLock); // // Set the variable that containts the TimeZone and Daylight fields // mRtc.SavedTimeZone = Time->TimeZone; mRtc.Daylight = Time->Daylight; return Status; } EFI_STATUS libGetWakeupTime ( OUT BOOLEAN *Enabled, OUT BOOLEAN *Pending, OUT EFI_TIME *Time ) { EFI_STATUS Status; RTC_REGISTER_B RegisterB; RTC_REGISTER_C RegisterC; UINT8 Century; // // Check parameters for null pointers // if ((Enabled == NULL) || (Pending == NULL) || (Time == NULL)) { return EFI_INVALID_PARAMETER; } // // Acquire RTC Lock to make access to RTC atomic // EfiAcquireLock (&mRtc.RtcLock); // // Wait for up to 0.1 seconds for the RTC to be updated // Status = RtcWaitToUpdate (100000); if (EFI_ERROR (Status)) { EfiReleaseLock (&mRtc.RtcLock); return EFI_DEVICE_ERROR; } // // Read Register B and Register C // RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); RegisterC.Data = RtcRead (RTC_ADDRESS_REGISTER_C); // // Get the Time/Date/Daylight Savings values. // *Enabled = RegisterB.Bits.AIE; if (*Enabled) { Time->Second = RtcRead (RTC_ADDRESS_SECONDS_ALARM); Time->Minute = RtcRead (RTC_ADDRESS_MINUTES_ALARM); Time->Hour = RtcRead (RTC_ADDRESS_HOURS_ALARM); Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH); Time->Month = RtcRead (RTC_ADDRESS_MONTH); Time->Year = RtcRead (RTC_ADDRESS_YEAR); } else { Time->Second = 0; Time->Minute = 0; Time->Hour = 0; Time->Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH); Time->Month = RtcRead (RTC_ADDRESS_MONTH); Time->Year = RtcRead (RTC_ADDRESS_YEAR); } ConvertRtcTimeToEfiTime (Time, RegisterB); if (RtcTestCenturyRegister () == EFI_SUCCESS) { Century = BcdToDecimal ((UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f)); } else { Century = BcdToDecimal (RtcRead (RTC_ADDRESS_CENTURY)); } Time->Year = (UINT16) (Century * 100 + Time->Year); // // Release RTC Lock. // EfiReleaseLock (&mRtc.RtcLock); // // Make sure all field values are in correct range // Status = RtcTimeFieldsValid (Time); if (EFI_ERROR (Status)) { return EFI_DEVICE_ERROR; } *Pending = RegisterC.Bits.AF; return EFI_SUCCESS; } EFI_STATUS LibSetWakeupTime ( IN BOOLEAN Enabled, OUT EFI_TIME *Time ) { EFI_STATUS Status; EFI_TIME RtcTime; RTC_REGISTER_B RegisterB; UINT8 Century; EFI_TIME_CAPABILITIES Capabilities; if (Enabled) { if (Time == NULL) { return EFI_INVALID_PARAMETER; } // // Make sure that the time fields are valid // Status = RtcTimeFieldsValid (Time); if (EFI_ERROR (Status)) { return EFI_INVALID_PARAMETER; } // // Just support set alarm time within 24 hours // LibGetTime (&RtcTime, &Capabilities); if (Time->Year != RtcTime.Year || Time->Month != RtcTime.Month || (Time->Day != RtcTime.Day && Time->Day != (RtcTime.Day + 1)) ) { return EFI_UNSUPPORTED; } // // Make a local copy of the time and date // CopyMem (&RtcTime, Time, sizeof (EFI_TIME)); } // // Acquire RTC Lock to make access to RTC atomic // EfiAcquireLock (&mRtc.RtcLock); // // Wait for up to 0.1 seconds for the RTC to be updated // Status = RtcWaitToUpdate (100000); if (EFI_ERROR (Status)) { EfiReleaseLock (&mRtc.RtcLock); return EFI_DEVICE_ERROR; } // // Read Register B, and inhibit updates of the RTC // RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); RegisterB.Bits.SET = 1; RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); if (Enabled) { ConvertEfiTimeToRtcTime (&RtcTime, RegisterB, &Century); // // Set RTC alarm time // RtcWrite (RTC_ADDRESS_SECONDS_ALARM, RtcTime.Second); RtcWrite (RTC_ADDRESS_MINUTES_ALARM, RtcTime.Minute); RtcWrite (RTC_ADDRESS_HOURS_ALARM, RtcTime.Hour); RegisterB.Bits.AIE = 1; } else { RegisterB.Bits.AIE = 0; } // // Allow updates of the RTC registers // RegisterB.Bits.SET = 0; RtcWrite (RTC_ADDRESS_REGISTER_B, RegisterB.Data); // // Release RTC Lock. // EfiReleaseLock (&mRtc.RtcLock); return EFI_SUCCESS; } VOID LibRtcVirtualAddressChangeEvent ( VOID ) { } VOID LibRtcInitialize ( VOID ) { EFI_STATUS Status; RTC_REGISTER_A RegisterA; RTC_REGISTER_B RegisterB; RTC_REGISTER_C RegisterC; RTC_REGISTER_D RegisterD; UINT8 Century; EFI_TIME Time; // // Acquire RTC Lock to make access to RTC atomic // EfiAcquireLock (&mRtc.RtcLock); // // Initialize RTC Register // // Make sure Division Chain is properly configured, // or RTC clock won't "tick" -- time won't increment // RegisterA.Data = RTC_INIT_REGISTER_A; RtcWrite (RTC_ADDRESS_REGISTER_A, RegisterA.Data); // // Read Register B // RegisterB.Data = RtcRead (RTC_ADDRESS_REGISTER_B); // // Clear RTC flag register // RegisterC.Data = RtcRead (RTC_ADDRESS_REGISTER_C); // // Clear RTC register D // RegisterD.Data = RTC_INIT_REGISTER_D; RtcWrite (RTC_ADDRESS_REGISTER_D, RegisterD.Data); // // Wait for up to 0.1 seconds for the RTC to be updated // Status = RtcWaitToUpdate (100000); if (EFI_ERROR (Status)) { EfiReleaseLock (&mRtc.RtcLock); return; } // // Get the Time/Date/Daylight Savings values. // Time.Second = RtcRead (RTC_ADDRESS_SECONDS); Time.Minute = RtcRead (RTC_ADDRESS_MINUTES); Time.Hour = RtcRead (RTC_ADDRESS_HOURS); Time.Day = RtcRead (RTC_ADDRESS_DAY_OF_THE_MONTH); Time.Month = RtcRead (RTC_ADDRESS_MONTH); Time.Year = RtcRead (RTC_ADDRESS_YEAR); ConvertRtcTimeToEfiTime (&Time, RegisterB); if (RtcTestCenturyRegister () == EFI_SUCCESS) { Century = BcdToDecimal ((UINT8) (RtcRead (RTC_ADDRESS_CENTURY) & 0x7f)); } else { Century = BcdToDecimal (RtcRead (RTC_ADDRESS_CENTURY)); } Time.Year = (UINT16) (Century * 100 + Time.Year); // // Set RTC configuration after get original time // RtcWrite (RTC_ADDRESS_REGISTER_B, RTC_INIT_REGISTER_B); // // Release RTC Lock. // EfiReleaseLock (&mRtc.RtcLock); // // Validate time fields // Status = RtcTimeFieldsValid (&Time); if (EFI_ERROR (Status)) { Time.Second = RTC_INIT_SECOND; Time.Minute = RTC_INIT_MINUTE; Time.Hour = RTC_INIT_HOUR; Time.Day = RTC_INIT_DAY; Time.Month = RTC_INIT_MONTH; Time.Year = RTC_INIT_YEAR; } // // Reset time value according to new RTC configuration // LibSetTime (&Time); return; }