/* * Copyright (c) 2013-2016, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include <arch_helpers.h> #include <assert.h> #include <bl_common.h> #include <context_mgmt.h> #include <debug.h> #include <platform.h> #include <tsp.h> #include "tspd_private.h" /******************************************************************************* * The target cpu is being turned on. Allow the TSPD/TSP to perform any actions * needed. Nothing at the moment. ******************************************************************************/ static void tspd_cpu_on_handler(uint64_t target_cpu) { } /******************************************************************************* * This cpu is being turned off. Allow the TSPD/TSP to perform any actions * needed ******************************************************************************/ static int32_t tspd_cpu_off_handler(uint64_t unused) { int32_t rc = 0; uint32_t linear_id = plat_my_core_pos(); tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; assert(tsp_vectors); assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_ON); /* * Abort any preempted SMC request before overwriting the SECURE * context. */ tspd_abort_preempted_smc(tsp_ctx); /* Program the entry point and enter the TSP */ cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->cpu_off_entry); rc = tspd_synchronous_sp_entry(tsp_ctx); /* * Read the response from the TSP. A non-zero return means that * something went wrong while communicating with the TSP. */ if (rc != 0) panic(); /* * Reset TSP's context for a fresh start when this cpu is turned on * subsequently. */ set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_OFF); return 0; } /******************************************************************************* * This cpu is being suspended. S-EL1 state must have been saved in the * resident cpu (mpidr format) if it is a UP/UP migratable TSP. ******************************************************************************/ static void tspd_cpu_suspend_handler(uint64_t max_off_pwrlvl) { int32_t rc = 0; uint32_t linear_id = plat_my_core_pos(); tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; assert(tsp_vectors); assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_ON); /* * Abort any preempted SMC request before overwriting the SECURE * context. */ tspd_abort_preempted_smc(tsp_ctx); /* Program the entry point and enter the TSP */ cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->cpu_suspend_entry); rc = tspd_synchronous_sp_entry(tsp_ctx); /* * Read the response from the TSP. A non-zero return means that * something went wrong while communicating with the TSP. */ if (rc) panic(); /* Update its context to reflect the state the TSP is in */ set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_SUSPEND); } /******************************************************************************* * This cpu has been turned on. Enter the TSP to initialise S-EL1 and other bits * before passing control back to the Secure Monitor. Entry in S-EL1 is done * after initialising minimal architectural state that guarantees safe * execution. ******************************************************************************/ static void tspd_cpu_on_finish_handler(uint64_t unused) { int32_t rc = 0; uint32_t linear_id = plat_my_core_pos(); tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; entry_point_info_t tsp_on_entrypoint; assert(tsp_vectors); assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_OFF); tspd_init_tsp_ep_state(&tsp_on_entrypoint, TSP_AARCH64, (uint64_t) &tsp_vectors->cpu_on_entry, tsp_ctx); /* Initialise this cpu's secure context */ cm_init_my_context(&tsp_on_entrypoint); #if TSP_NS_INTR_ASYNC_PREEMPT /* * Disable the NS interrupt locally since it will be enabled globally * within cm_init_my_context. */ disable_intr_rm_local(INTR_TYPE_NS, SECURE); #endif /* Enter the TSP */ rc = tspd_synchronous_sp_entry(tsp_ctx); /* * Read the response from the TSP. A non-zero return means that * something went wrong while communicating with the SP. */ if (rc != 0) panic(); /* Update its context to reflect the state the SP is in */ set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON); } /******************************************************************************* * This cpu has resumed from suspend. The SPD saved the TSP context when it * completed the preceding suspend call. Use that context to program an entry * into the TSP to allow it to do any remaining book keeping ******************************************************************************/ static void tspd_cpu_suspend_finish_handler(uint64_t max_off_pwrlvl) { int32_t rc = 0; uint32_t linear_id = plat_my_core_pos(); tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; assert(tsp_vectors); assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_SUSPEND); /* Program the entry point, max_off_pwrlvl and enter the SP */ write_ctx_reg(get_gpregs_ctx(&tsp_ctx->cpu_ctx), CTX_GPREG_X0, max_off_pwrlvl); cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->cpu_resume_entry); rc = tspd_synchronous_sp_entry(tsp_ctx); /* * Read the response from the TSP. A non-zero return means that * something went wrong while communicating with the TSP. */ if (rc != 0) panic(); /* Update its context to reflect the state the SP is in */ set_tsp_pstate(tsp_ctx->state, TSP_PSTATE_ON); } /******************************************************************************* * Return the type of TSP the TSPD is dealing with. Report the current resident * cpu (mpidr format) if it is a UP/UP migratable TSP. ******************************************************************************/ static int32_t tspd_cpu_migrate_info(uint64_t *resident_cpu) { return TSP_MIGRATE_INFO; } /******************************************************************************* * System is about to be switched off. Allow the TSPD/TSP to perform * any actions needed. ******************************************************************************/ static void tspd_system_off(void) { uint32_t linear_id = plat_my_core_pos(); tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; assert(tsp_vectors); assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_ON); /* * Abort any preempted SMC request before overwriting the SECURE * context. */ tspd_abort_preempted_smc(tsp_ctx); /* Program the entry point */ cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->system_off_entry); /* Enter the TSP. We do not care about the return value because we * must continue the shutdown anyway */ tspd_synchronous_sp_entry(tsp_ctx); } /******************************************************************************* * System is about to be reset. Allow the TSPD/TSP to perform * any actions needed. ******************************************************************************/ static void tspd_system_reset(void) { uint32_t linear_id = plat_my_core_pos(); tsp_context_t *tsp_ctx = &tspd_sp_context[linear_id]; assert(tsp_vectors); assert(get_tsp_pstate(tsp_ctx->state) == TSP_PSTATE_ON); /* * Abort any preempted SMC request before overwriting the SECURE * context. */ tspd_abort_preempted_smc(tsp_ctx); /* Program the entry point */ cm_set_elr_el3(SECURE, (uint64_t) &tsp_vectors->system_reset_entry); /* * Enter the TSP. We do not care about the return value because we * must continue the reset anyway */ tspd_synchronous_sp_entry(tsp_ctx); } /******************************************************************************* * Structure populated by the TSP Dispatcher to be given a chance to perform any * TSP bookkeeping before PSCI executes a power mgmt. operation. ******************************************************************************/ const spd_pm_ops_t tspd_pm = { .svc_on = tspd_cpu_on_handler, .svc_off = tspd_cpu_off_handler, .svc_suspend = tspd_cpu_suspend_handler, .svc_on_finish = tspd_cpu_on_finish_handler, .svc_suspend_finish = tspd_cpu_suspend_finish_handler, .svc_migrate = NULL, .svc_migrate_info = tspd_cpu_migrate_info, .svc_system_off = tspd_system_off, .svc_system_reset = tspd_system_reset };