/* * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #ifndef __EL3_COMMON_MACROS_S__ #define __EL3_COMMON_MACROS_S__ #include <arch.h> #include <asm_macros.S> /* * Helper macro to initialise EL3 registers we care about. */ .macro el3_arch_init_common _exception_vectors /* --------------------------------------------------------------------- * SCTLR_EL3 has already been initialised - read current value before * modifying. * * SCTLR_EL3.I: Enable the instruction cache. * * SCTLR_EL3.SA: Enable Stack Aligment check. A SP alignment fault * exception is generated if a load or store instruction executed at * EL3 uses the SP as the base address and the SP is not aligned to a * 16-byte boundary. * * SCTLR_EL3.A: Enable Alignment fault checking. All instructions that * load or store one or more registers have an alignment check that the * address being accessed is aligned to the size of the data element(s) * being accessed. * --------------------------------------------------------------------- */ mov x1, #(SCTLR_I_BIT | SCTLR_A_BIT | SCTLR_SA_BIT) mrs x0, sctlr_el3 orr x0, x0, x1 msr sctlr_el3, x0 isb #ifdef IMAGE_BL31 /* --------------------------------------------------------------------- * Initialise the per-cpu cache pointer to the CPU. * This is done early to enable crash reporting to have access to crash * stack. Since crash reporting depends on cpu_data to report the * unhandled exception, not doing so can lead to recursive exceptions * due to a NULL TPIDR_EL3. * --------------------------------------------------------------------- */ bl init_cpu_data_ptr #endif /* IMAGE_BL31 */ /* --------------------------------------------------------------------- * Set the exception vectors. * --------------------------------------------------------------------- */ adr x0, \_exception_vectors msr vbar_el3, x0 isb /* --------------------------------------------------------------------- * Initialise SCR_EL3, setting all fields rather than relying on hw. * All fields are architecturally UNKNOWN on reset. The following fields * do not change during the TF lifetime. The remaining fields are set to * zero here but are updated ahead of transitioning to a lower EL in the * function cm_init_context_common(). * * SCR_EL3.TWE: Set to zero so that execution of WFE instructions at * EL2, EL1 and EL0 are not trapped to EL3. * * SCR_EL3.TWI: Set to zero so that execution of WFI instructions at * EL2, EL1 and EL0 are not trapped to EL3. * * SCR_EL3.SIF: Set to one to disable instruction fetches from * Non-secure memory. * * SCR_EL3.SMD: Set to zero to enable SMC calls at EL1 and above, from * both Security states and both Execution states. * * SCR_EL3.EA: Set to one to route External Aborts and SError Interrupts * to EL3 when executing at any EL. * --------------------------------------------------------------------- */ mov x0, #((SCR_RESET_VAL | SCR_EA_BIT | SCR_SIF_BIT) \ & ~(SCR_TWE_BIT | SCR_TWI_BIT | SCR_SMD_BIT)) msr scr_el3, x0 /* --------------------------------------------------------------------- * Initialise MDCR_EL3, setting all fields rather than relying on hw. * Some fields are architecturally UNKNOWN on reset. * * MDCR_EL3.SDD: Set to one to disable AArch64 Secure self-hosted debug. * Debug exceptions, other than Breakpoint Instruction exceptions, are * disabled from all ELs in Secure state. * * MDCR_EL3.SPD32: Set to 0b10 to disable AArch32 Secure self-hosted * privileged debug from S-EL1. * * MDCR_EL3.NSPB (ARM v8.2): SPE enabled in non-secure state and * disabled in secure state. Accesses to SPE registers at SEL1 generate * trap exceptions to EL3. * * MDCR_EL3.TDOSA: Set to zero so that EL2 and EL2 System register * access to the powerdown debug registers do not trap to EL3. * * MDCR_EL3.TDA: Set to zero to allow EL0, EL1 and EL2 access to the * debug registers, other than those registers that are controlled by * MDCR_EL3.TDOSA. * * MDCR_EL3.TPM: Set to zero so that EL0, EL1, and EL2 System register * accesses to all Performance Monitors registers do not trap to EL3. * --------------------------------------------------------------------- */ mov_imm x0, ((MDCR_EL3_RESET_VAL | MDCR_SDD_BIT | MDCR_SPD32(MDCR_SPD32_DISABLE)) \ & ~(MDCR_TDOSA_BIT | MDCR_TDA_BIT | MDCR_TPM_BIT)) #if ENABLE_SPE_FOR_LOWER_ELS /* Detect if SPE is implemented */ mrs x1, id_aa64dfr0_el1 ubfx x1, x1, #ID_AA64DFR0_PMS_SHIFT, #ID_AA64DFR0_PMS_LENGTH cmp x1, #0x1 b.ne 1f /* Enable SPE for use by normal world */ orr x0, x0, #MDCR_NSPB(MDCR_NSPB_EL1) 1: #endif msr mdcr_el3, x0 /* --------------------------------------------------------------------- * Enable External Aborts and SError Interrupts now that the exception * vectors have been setup. * --------------------------------------------------------------------- */ msr daifclr, #DAIF_ABT_BIT /* --------------------------------------------------------------------- * Initialise CPTR_EL3, setting all fields rather than relying on hw. * All fields are architecturally UNKNOWN on reset. * * CPTR_EL3.TCPAC: Set to zero so that any accesses to CPACR_EL1, * CPTR_EL2, CPACR, or HCPTR do not trap to EL3. * * CPTR_EL3.TTA: Set to zero so that System register accesses to the * trace registers do not trap to EL3. * * CPTR_EL3.TFP: Set to zero so that accesses to Advanced SIMD and * floating-point functionality do not trap to EL3. * --------------------------------------------------------------------- */ mov_imm x0, (CPTR_EL3_RESET_VAL & ~(TCPAC_BIT | TTA_BIT | TFP_BIT)) msr cptr_el3, x0 .endm /* ----------------------------------------------------------------------------- * This is the super set of actions that need to be performed during a cold boot * or a warm boot in EL3. This code is shared by BL1 and BL31. * * This macro will always perform reset handling, architectural initialisations * and stack setup. The rest of the actions are optional because they might not * be needed, depending on the context in which this macro is called. This is * why this macro is parameterised ; each parameter allows to enable/disable * some actions. * * _init_sctlr: * Whether the macro needs to initialise SCTLR_EL3, including configuring * the endianness of data accesses. * * _warm_boot_mailbox: * Whether the macro needs to detect the type of boot (cold/warm). The * detection is based on the platform entrypoint address : if it is zero * then it is a cold boot, otherwise it is a warm boot. In the latter case, * this macro jumps on the platform entrypoint address. * * _secondary_cold_boot: * Whether the macro needs to identify the CPU that is calling it: primary * CPU or secondary CPU. The primary CPU will be allowed to carry on with * the platform initialisations, while the secondaries will be put in a * platform-specific state in the meantime. * * If the caller knows this macro will only be called by the primary CPU * then this parameter can be defined to 0 to skip this step. * * _init_memory: * Whether the macro needs to initialise the memory. * * _init_c_runtime: * Whether the macro needs to initialise the C runtime environment. * * _exception_vectors: * Address of the exception vectors to program in the VBAR_EL3 register. * ----------------------------------------------------------------------------- */ .macro el3_entrypoint_common \ _init_sctlr, _warm_boot_mailbox, _secondary_cold_boot, \ _init_memory, _init_c_runtime, _exception_vectors .if \_init_sctlr /* ------------------------------------------------------------- * This is the initialisation of SCTLR_EL3 and so must ensure * that all fields are explicitly set rather than relying on hw. * Some fields reset to an IMPLEMENTATION DEFINED value and * others are architecturally UNKNOWN on reset. * * SCTLR.EE: Set the CPU endianness before doing anything that * might involve memory reads or writes. Set to zero to select * Little Endian. * * SCTLR_EL3.WXN: For the EL3 translation regime, this field can * force all memory regions that are writeable to be treated as * XN (Execute-never). Set to zero so that this control has no * effect on memory access permissions. * * SCTLR_EL3.SA: Set to zero to disable Stack Aligment check. * * SCTLR_EL3.A: Set to zero to disable Alignment fault checking. * ------------------------------------------------------------- */ mov_imm x0, (SCTLR_RESET_VAL & ~(SCTLR_EE_BIT | SCTLR_WXN_BIT \ | SCTLR_SA_BIT | SCTLR_A_BIT)) msr sctlr_el3, x0 isb .endif /* _init_sctlr */ .if \_warm_boot_mailbox /* ------------------------------------------------------------- * This code will be executed for both warm and cold resets. * Now is the time to distinguish between the two. * Query the platform entrypoint address and if it is not zero * then it means it is a warm boot so jump to this address. * ------------------------------------------------------------- */ bl plat_get_my_entrypoint cbz x0, do_cold_boot br x0 do_cold_boot: .endif /* _warm_boot_mailbox */ /* --------------------------------------------------------------------- * It is a cold boot. * Perform any processor specific actions upon reset e.g. cache, TLB * invalidations etc. * --------------------------------------------------------------------- */ bl reset_handler el3_arch_init_common \_exception_vectors .if \_secondary_cold_boot /* ------------------------------------------------------------- * Check if this is a primary or secondary CPU cold boot. * The primary CPU will set up the platform while the * secondaries are placed in a platform-specific state until the * primary CPU performs the necessary actions to bring them out * of that state and allows entry into the OS. * ------------------------------------------------------------- */ bl plat_is_my_cpu_primary cbnz w0, do_primary_cold_boot /* This is a cold boot on a secondary CPU */ bl plat_secondary_cold_boot_setup /* plat_secondary_cold_boot_setup() is not supposed to return */ bl el3_panic do_primary_cold_boot: .endif /* _secondary_cold_boot */ /* --------------------------------------------------------------------- * Initialize memory now. Secondary CPU initialization won't get to this * point. * --------------------------------------------------------------------- */ .if \_init_memory bl platform_mem_init .endif /* _init_memory */ /* --------------------------------------------------------------------- * Init C runtime environment: * - Zero-initialise the NOBITS sections. There are 2 of them: * - the .bss section; * - the coherent memory section (if any). * - Relocate the data section from ROM to RAM, if required. * --------------------------------------------------------------------- */ .if \_init_c_runtime #ifdef IMAGE_BL31 /* ------------------------------------------------------------- * Invalidate the RW memory used by the BL31 image. This * includes the data and NOBITS sections. This is done to * safeguard against possible corruption of this memory by * dirty cache lines in a system cache as a result of use by * an earlier boot loader stage. * ------------------------------------------------------------- */ adr x0, __RW_START__ adr x1, __RW_END__ sub x1, x1, x0 bl inv_dcache_range #endif /* IMAGE_BL31 */ ldr x0, =__BSS_START__ ldr x1, =__BSS_SIZE__ bl zeromem #if USE_COHERENT_MEM ldr x0, =__COHERENT_RAM_START__ ldr x1, =__COHERENT_RAM_UNALIGNED_SIZE__ bl zeromem #endif #ifdef IMAGE_BL1 ldr x0, =__DATA_RAM_START__ ldr x1, =__DATA_ROM_START__ ldr x2, =__DATA_SIZE__ bl memcpy16 #endif .endif /* _init_c_runtime */ /* --------------------------------------------------------------------- * Use SP_EL0 for the C runtime stack. * --------------------------------------------------------------------- */ msr spsel, #0 /* --------------------------------------------------------------------- * Allocate a stack whose memory will be marked as Normal-IS-WBWA when * the MMU is enabled. There is no risk of reading stale stack memory * after enabling the MMU as only the primary CPU is running at the * moment. * --------------------------------------------------------------------- */ bl plat_set_my_stack #if STACK_PROTECTOR_ENABLED .if \_init_c_runtime bl update_stack_protector_canary .endif /* _init_c_runtime */ #endif .endm #endif /* __EL3_COMMON_MACROS_S__ */