/* * Copyright (c) 2015-2017, ARM Limited and Contributors. All rights reserved. * * SPDX-License-Identifier: BSD-3-Clause */ #include <arch.h> #include <assert.h> #include <bakery_lock.h> #include <ccn.h> #include <debug.h> #include <errno.h> #include <mmio.h> #include "ccn_private.h" static const ccn_desc_t *ccn_plat_desc; #if defined(IMAGE_BL31) || (defined(AARCH32) && defined(IMAGE_BL32)) DEFINE_BAKERY_LOCK(ccn_lock); #endif /******************************************************************************* * This function takes the base address of the CCN's programmer's view (PV), a * region ID of one of the 256 regions (0-255) and a register offset within the * region. It converts the first two parameters into a base address and uses it * to read the register at the offset. ******************************************************************************/ static inline unsigned long long ccn_reg_read(uintptr_t periphbase, unsigned int region_id, unsigned int register_offset) { uintptr_t region_base; assert(periphbase); assert(region_id < REGION_ID_LIMIT); region_base = periphbase + region_id_to_base(region_id); return mmio_read_64(region_base + register_offset); } /******************************************************************************* * This function takes the base address of the CCN's programmer's view (PV), a * region ID of one of the 256 regions (0-255), a register offset within the * region and a value. It converts the first two parameters into a base address * and uses it to write the value in the register at the offset. ******************************************************************************/ static inline void ccn_reg_write(uintptr_t periphbase, unsigned int region_id, unsigned int register_offset, unsigned long long value) { uintptr_t region_base; assert(periphbase); assert(region_id < REGION_ID_LIMIT); region_base = periphbase + region_id_to_base(region_id); mmio_write_64(region_base + register_offset, value); } #if ENABLE_ASSERTIONS typedef struct rn_info { unsigned char node_desc[MAX_RN_NODES]; } rn_info_t; /******************************************************************************* * This function takes the base address of the CCN's programmer's view (PV) and * the node ID of a Request Node (RN-D or RN-I). It returns the maximum number * of master interfaces resident on that node. This number is equal to the least * significant two bits of the node type ID + 1. ******************************************************************************/ static unsigned int ccn_get_rni_mcount(uintptr_t periphbase, unsigned int rn_id) { unsigned int rn_type_id; /* Use the node id to find the type of RN-I/D node */ rn_type_id = get_node_type(ccn_reg_read(periphbase, rn_id + RNI_REGION_ID_START, REGION_ID_OFFSET)); /* Return the number master interfaces based on node type */ return rn_type_id_to_master_cnt(rn_type_id); } /******************************************************************************* * This function reads the CCN registers to find the following information about * the ACE/ACELite/ACELite+DVM/CHI interfaces resident on the various types of * Request Nodes (RN-Fs, RN-Is and RN-Ds) in the system: * * 1. The total number of such interfaces that this CCN IP supports. This is the * cumulative number of interfaces across all Request node types. It is * passed back as the return value of this function. * * 2. The maximum number of interfaces of a type resident on a Request node of * one of the three types. This information is populated in the 'info' * array provided by the caller as described next. * * The array has 64 entries. Each entry corresponds to a Request node. The * Miscellaneous node's programmer's view has RN-F, RN-I and RN-D ID * registers. For each RN-I and RN-D ID indicated as being present in these * registers, its identification register (offset 0xFF00) is read. This * register specifies the maximum number of master interfaces the node * supports. For RN-Fs it is assumed that there can be only a single fully * coherent master resident on each node. The counts for each type of node * are use to populate the array entry at the index corresponding to the node * ID i.e. rn_info[node ID] = <number of master interfaces> ******************************************************************************/ static unsigned int ccn_get_rn_master_info(uintptr_t periphbase, rn_info_t *info) { unsigned int num_masters = 0; rn_types_t rn_type; assert (info); for (rn_type = RN_TYPE_RNF; rn_type < NUM_RN_TYPES; rn_type++) { unsigned int mn_reg_off, node_id; unsigned long long rn_bitmap; /* * RN-F, RN-I, RN-D node registers in the MN region occupy * contiguous 16 byte apart offsets. */ mn_reg_off = MN_RNF_NODEID_OFFSET + (rn_type << 4); rn_bitmap = ccn_reg_read(periphbase, MN_REGION_ID, mn_reg_off); FOR_EACH_PRESENT_NODE_ID(node_id, rn_bitmap) { unsigned int node_mcount; /* * A RN-F does not have a node type since it does not * export a programmer's interface. It can only have a * single fully coherent master residing on it. If the * offset of the MN(Miscellaneous Node) register points * to a RN-I/D node then the master count is set to the * maximum number of master interfaces that can possibly * reside on the node. */ node_mcount = (mn_reg_off == MN_RNF_NODEID_OFFSET ? 1 : ccn_get_rni_mcount(periphbase, node_id)); /* * Use this value to increment the maximum possible * master interfaces in the system. */ num_masters += node_mcount; /* * Update the entry in 'info' for this node ID with * the maximum number of masters than can sit on * it. This information will be used to validate the * node information passed by the platform later. */ info->node_desc[node_id] = node_mcount; } } return num_masters; } /******************************************************************************* * This function validates parameters passed by the platform (in a debug build). * It collects information about the maximum number of master interfaces that: * a) the CCN IP can accommodate and * b) can exist on each Request node. * It compares this with the information provided by the platform to determine * the validity of the latter. ******************************************************************************/ static void ccn_validate_plat_params(const ccn_desc_t *plat_desc) { unsigned int master_id, num_rn_masters; rn_info_t info = { {0} }; assert(plat_desc); assert(plat_desc->periphbase); assert(plat_desc->master_to_rn_id_map); assert(plat_desc->num_masters); assert(plat_desc->num_masters < CCN_MAX_RN_MASTERS); /* * Find the number and properties of fully coherent, IO coherent and IO * coherent + DVM master interfaces */ num_rn_masters = ccn_get_rn_master_info(plat_desc->periphbase, &info); assert(plat_desc->num_masters < num_rn_masters); /* * Iterate through the Request nodes specified by the platform. * Decrement the count of the masters in the 'info' array for each * Request node encountered. If the count would drop below 0 then the * platform's view of this aspect of CCN configuration is incorrect. */ for (master_id = 0; master_id < plat_desc->num_masters; master_id++) { unsigned int node_id; node_id = plat_desc->master_to_rn_id_map[master_id]; assert(node_id < MAX_RN_NODES); assert(info.node_desc[node_id]); info.node_desc[node_id]--; } } #endif /* ENABLE_ASSERTIONS */ /******************************************************************************* * This function validates parameters passed by the platform (in a debug build) * and initialises its internal data structures. A lock is required to prevent * simultaneous CCN operations at runtime (only BL31) to add and remove Request * nodes from coherency. ******************************************************************************/ void ccn_init(const ccn_desc_t *plat_desc) { #if ENABLE_ASSERTIONS ccn_validate_plat_params(plat_desc); #endif ccn_plat_desc = plat_desc; } /******************************************************************************* * This function converts a bit map of master interface IDs to a bit map of the * Request node IDs that they reside on. ******************************************************************************/ static unsigned long long ccn_master_to_rn_id_map(unsigned long long master_map) { unsigned long long rn_id_map = 0; unsigned int node_id, iface_id; assert(master_map); assert(ccn_plat_desc); FOR_EACH_PRESENT_MASTER_INTERFACE(iface_id, master_map) { assert(iface_id < ccn_plat_desc->num_masters); /* Convert the master ID into the node ID */ node_id = ccn_plat_desc->master_to_rn_id_map[iface_id]; /* Set the bit corresponding to this node ID */ rn_id_map |= (1ULL << node_id); } return rn_id_map; } /******************************************************************************* * This function executes the necessary operations to add or remove Request node * IDs specified in the 'rn_id_map' bitmap from the snoop/DVM domains specified * in the 'hn_id_map'. The 'region_id' specifies the ID of the first HN-F/MN * on which the operation should be performed. 'op_reg_offset' specifies the * type of operation (add/remove). 'stat_reg_offset' specifies the register * which should be polled to determine if the operation has completed or not. ******************************************************************************/ static void ccn_snoop_dvm_do_op(unsigned long long rn_id_map, unsigned long long hn_id_map, unsigned int region_id, unsigned int op_reg_offset, unsigned int stat_reg_offset) { unsigned int start_region_id; assert(ccn_plat_desc); assert(ccn_plat_desc->periphbase); #if defined(IMAGE_BL31) || (defined(AARCH32) && defined(IMAGE_BL32)) bakery_lock_get(&ccn_lock); #endif start_region_id = region_id; FOR_EACH_PRESENT_REGION_ID(start_region_id, hn_id_map) { ccn_reg_write(ccn_plat_desc->periphbase, start_region_id, op_reg_offset, rn_id_map); } start_region_id = region_id; FOR_EACH_PRESENT_REGION_ID(start_region_id, hn_id_map) { WAIT_FOR_DOMAIN_CTRL_OP_COMPLETION(start_region_id, stat_reg_offset, op_reg_offset, rn_id_map); } #if defined(IMAGE_BL31) || (defined(AARCH32) && defined(IMAGE_BL32)) bakery_lock_release(&ccn_lock); #endif } /******************************************************************************* * The following functions provide the boot and runtime API to the platform for * adding and removing master interfaces from the snoop/DVM domains. A bitmap of * master interfaces IDs is passed as a parameter. It is converted into a bitmap * of Request node IDs using the mapping provided by the platform while * initialising the driver. * For example, consider a dual cluster system where the clusters have values 0 * & 1 in the affinity level 1 field of their respective MPIDRs. While * initialising this driver, the platform provides the mapping between each * cluster and the corresponding Request node. To add or remove a cluster from * the snoop and dvm domain, the bit position corresponding to the cluster ID * should be set in the 'master_iface_map' i.e. to remove both clusters the * bitmap would equal 0x11. ******************************************************************************/ void ccn_enter_snoop_dvm_domain(unsigned long long master_iface_map) { unsigned long long rn_id_map; rn_id_map = ccn_master_to_rn_id_map(master_iface_map); ccn_snoop_dvm_do_op(rn_id_map, CCN_GET_HN_NODEID_MAP(ccn_plat_desc->periphbase, MN_HNF_NODEID_OFFSET), HNF_REGION_ID_START, HNF_SDC_SET_OFFSET, HNF_SDC_STAT_OFFSET); ccn_snoop_dvm_do_op(rn_id_map, CCN_GET_MN_NODEID_MAP(ccn_plat_desc->periphbase), MN_REGION_ID, MN_DDC_SET_OFFSET, MN_DDC_STAT_OFFSET); } void ccn_exit_snoop_dvm_domain(unsigned long long master_iface_map) { unsigned long long rn_id_map; rn_id_map = ccn_master_to_rn_id_map(master_iface_map); ccn_snoop_dvm_do_op(rn_id_map, CCN_GET_HN_NODEID_MAP(ccn_plat_desc->periphbase, MN_HNF_NODEID_OFFSET), HNF_REGION_ID_START, HNF_SDC_CLR_OFFSET, HNF_SDC_STAT_OFFSET); ccn_snoop_dvm_do_op(rn_id_map, CCN_GET_MN_NODEID_MAP(ccn_plat_desc->periphbase), MN_REGION_ID, MN_DDC_CLR_OFFSET, MN_DDC_STAT_OFFSET); } void ccn_enter_dvm_domain(unsigned long long master_iface_map) { unsigned long long rn_id_map; rn_id_map = ccn_master_to_rn_id_map(master_iface_map); ccn_snoop_dvm_do_op(rn_id_map, CCN_GET_MN_NODEID_MAP(ccn_plat_desc->periphbase), MN_REGION_ID, MN_DDC_SET_OFFSET, MN_DDC_STAT_OFFSET); } void ccn_exit_dvm_domain(unsigned long long master_iface_map) { unsigned long long rn_id_map; rn_id_map = ccn_master_to_rn_id_map(master_iface_map); ccn_snoop_dvm_do_op(rn_id_map, CCN_GET_MN_NODEID_MAP(ccn_plat_desc->periphbase), MN_REGION_ID, MN_DDC_CLR_OFFSET, MN_DDC_STAT_OFFSET); } /******************************************************************************* * This function returns the run mode of all the L3 cache partitions in the * system. The state is expected to be one of NO_L3, SF_ONLY, L3_HAM or * L3_FAM. Instead of comparing the states reported by all HN-Fs, the state of * the first present HN-F node is reported. Since the driver does not export an * interface to program them seperately, there is no reason to perform this * check. An HN-F could report that the L3 cache is transitioning from one mode * to another e.g. HNF_PM_NOL3_2_SFONLY. In this case, the function waits for * the transition to complete and reports the final state. ******************************************************************************/ unsigned int ccn_get_l3_run_mode(void) { unsigned long long hnf_pstate_stat; assert(ccn_plat_desc); assert(ccn_plat_desc->periphbase); /* * Wait for a L3 cache paritition to enter any run mode. The pstate * parameter is read from an HN-F P-state status register. A non-zero * value in bits[1:0] means that the cache is transitioning to a run * mode. */ do { hnf_pstate_stat = ccn_reg_read(ccn_plat_desc->periphbase, HNF_REGION_ID_START, HNF_PSTATE_STAT_OFFSET); } while (hnf_pstate_stat & 0x3); return PSTATE_TO_RUN_MODE(hnf_pstate_stat); } /******************************************************************************* * This function sets the run mode of all the L3 cache partitions in the * system to one of NO_L3, SF_ONLY, L3_HAM or L3_FAM depending upon the state * specified by the 'mode' argument. ******************************************************************************/ void ccn_set_l3_run_mode(unsigned int mode) { unsigned long long mn_hnf_id_map, hnf_pstate_stat; unsigned int region_id; assert(ccn_plat_desc); assert(ccn_plat_desc->periphbase); assert(mode <= CCN_L3_RUN_MODE_FAM); mn_hnf_id_map = ccn_reg_read(ccn_plat_desc->periphbase, MN_REGION_ID, MN_HNF_NODEID_OFFSET); region_id = HNF_REGION_ID_START; /* Program the desired run mode */ FOR_EACH_PRESENT_REGION_ID(region_id, mn_hnf_id_map) { ccn_reg_write(ccn_plat_desc->periphbase, region_id, HNF_PSTATE_REQ_OFFSET, mode); } /* Wait for the caches to transition to the run mode */ region_id = HNF_REGION_ID_START; FOR_EACH_PRESENT_REGION_ID(region_id, mn_hnf_id_map) { /* * Wait for a L3 cache paritition to enter a target run * mode. The pstate parameter is read from an HN-F P-state * status register. */ do { hnf_pstate_stat = ccn_reg_read(ccn_plat_desc->periphbase, region_id, HNF_PSTATE_STAT_OFFSET); } while (((hnf_pstate_stat & HNF_PSTATE_MASK) >> 2) != mode); } } /******************************************************************************* * This function configures system address map and provides option to enable the * 3SN striping mode of Slave node operation. The Slave node IDs and the Top * Address bit1 and bit0 are provided as parameters to this function. This * configuration is needed only if network contains a single SN-F or 3 SN-F and * must be completed before the first request by the system to normal memory. ******************************************************************************/ void ccn_program_sys_addrmap(unsigned int sn0_id, unsigned int sn1_id, unsigned int sn2_id, unsigned int top_addr_bit0, unsigned int top_addr_bit1, unsigned char three_sn_en) { unsigned long long mn_hnf_id_map, hnf_sam_ctrl_value; unsigned int region_id; assert(ccn_plat_desc); assert(ccn_plat_desc->periphbase); mn_hnf_id_map = ccn_reg_read(ccn_plat_desc->periphbase, MN_REGION_ID, MN_HNF_NODEID_OFFSET); region_id = HNF_REGION_ID_START; hnf_sam_ctrl_value = MAKE_HNF_SAM_CTRL_VALUE(sn0_id, sn1_id, sn2_id, top_addr_bit0, top_addr_bit1, three_sn_en); FOR_EACH_PRESENT_REGION_ID(region_id, mn_hnf_id_map) { /* Program the SAM control register */ ccn_reg_write(ccn_plat_desc->periphbase, region_id, HNF_SAM_CTRL_OFFSET, hnf_sam_ctrl_value); } } /******************************************************************************* * This function returns the part0 id from the peripheralID 0 register * in CCN. This id can be used to distinguish the CCN variant present in the * system. ******************************************************************************/ int ccn_get_part0_id(uintptr_t periphbase) { assert(periphbase); return (int)(mmio_read_64(periphbase + MN_PERIPH_ID_0_1_OFFSET) & 0xFF); }