/* * Copyright (C) 2009 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "updater/install.h" #include <ctype.h> #include <errno.h> #include <fcntl.h> #include <ftw.h> #include <inttypes.h> #include <stdarg.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <sys/capability.h> #include <sys/mount.h> #include <sys/stat.h> #include <sys/types.h> #include <sys/wait.h> #include <sys/xattr.h> #include <time.h> #include <unistd.h> #include <utime.h> #include <memory> #include <string> #include <vector> #include <android-base/file.h> #include <android-base/logging.h> #include <android-base/parsedouble.h> #include <android-base/parseint.h> #include <android-base/properties.h> #include <android-base/stringprintf.h> #include <android-base/strings.h> #include <android-base/unique_fd.h> #include <applypatch/applypatch.h> #include <bootloader_message/bootloader_message.h> #include <ext4_utils/wipe.h> #include <openssl/sha.h> #include <selinux/label.h> #include <selinux/selinux.h> #include <tune2fs.h> #include <ziparchive/zip_archive.h> #include "edify/expr.h" #include "otautil/dirutil.h" #include "otautil/error_code.h" #include "otautil/mounts.h" #include "otautil/print_sha1.h" #include "otautil/sysutil.h" #include "updater/updater.h" // Send over the buffer to recovery though the command pipe. static void uiPrint(State* state, const std::string& buffer) { UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie); // "line1\nline2\n" will be split into 3 tokens: "line1", "line2" and "". // So skip sending empty strings to UI. std::vector<std::string> lines = android::base::Split(buffer, "\n"); for (auto& line : lines) { if (!line.empty()) { fprintf(ui->cmd_pipe, "ui_print %s\n", line.c_str()); } } // On the updater side, we need to dump the contents to stderr (which has // been redirected to the log file). Because the recovery will only print // the contents to screen when processing pipe command ui_print. LOG(INFO) << buffer; } void uiPrintf(State* _Nonnull state, const char* _Nonnull format, ...) { std::string error_msg; va_list ap; va_start(ap, format); android::base::StringAppendV(&error_msg, format, ap); va_end(ap); uiPrint(state, error_msg); } // This is the updater side handler for ui_print() in edify script. Contents will be sent over to // the recovery side for on-screen display. Value* UIPrintFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); } std::string buffer = android::base::Join(args, ""); uiPrint(state, buffer); return StringValue(buffer); } // package_extract_file(package_file[, dest_file]) // Extracts a single package_file from the update package and writes it to dest_file, // overwriting existing files if necessary. Without the dest_file argument, returns the // contents of the package file as a binary blob. Value* PackageExtractFileFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() < 1 || argv.size() > 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 or 2 args, got %zu", name, argv.size()); } if (argv.size() == 2) { // The two-argument version extracts to a file. std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %zu args", name, argv.size()); } const std::string& zip_path = args[0]; const std::string& dest_path = args[1]; ZipArchiveHandle za = static_cast<UpdaterInfo*>(state->cookie)->package_zip; ZipString zip_string_path(zip_path.c_str()); ZipEntry entry; if (FindEntry(za, zip_string_path, &entry) != 0) { LOG(ERROR) << name << ": no " << zip_path << " in package"; return StringValue(""); } android::base::unique_fd fd(TEMP_FAILURE_RETRY( open(dest_path.c_str(), O_WRONLY | O_CREAT | O_TRUNC, S_IRUSR | S_IWUSR))); if (fd == -1) { PLOG(ERROR) << name << ": can't open " << dest_path << " for write"; return StringValue(""); } bool success = true; int32_t ret = ExtractEntryToFile(za, &entry, fd); if (ret != 0) { LOG(ERROR) << name << ": Failed to extract entry \"" << zip_path << "\" (" << entry.uncompressed_length << " bytes) to \"" << dest_path << "\": " << ErrorCodeString(ret); success = false; } if (fsync(fd) == -1) { PLOG(ERROR) << "fsync of \"" << dest_path << "\" failed"; success = false; } if (close(fd.release()) != 0) { PLOG(ERROR) << "close of \"" << dest_path << "\" failed"; success = false; } return StringValue(success ? "t" : ""); } else { // The one-argument version returns the contents of the file as the result. std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse %zu args", name, argv.size()); } const std::string& zip_path = args[0]; ZipArchiveHandle za = static_cast<UpdaterInfo*>(state->cookie)->package_zip; ZipString zip_string_path(zip_path.c_str()); ZipEntry entry; if (FindEntry(za, zip_string_path, &entry) != 0) { return ErrorAbort(state, kPackageExtractFileFailure, "%s(): no %s in package", name, zip_path.c_str()); } std::string buffer; buffer.resize(entry.uncompressed_length); int32_t ret = ExtractToMemory(za, &entry, reinterpret_cast<uint8_t*>(&buffer[0]), buffer.size()); if (ret != 0) { return ErrorAbort(state, kPackageExtractFileFailure, "%s: Failed to extract entry \"%s\" (%zu bytes) to memory: %s", name, zip_path.c_str(), buffer.size(), ErrorCodeString(ret)); } return new Value(Value::Type::BLOB, buffer); } } // patch_partition_check(target_partition, source_partition) // Checks if the target and source partitions have the desired checksums to be patched. It returns // directly, if the target partition already has the expected checksum. Otherwise it in turn // checks the integrity of the source partition and the backup file on /cache. // // For example, patch_partition_check( // "EMMC:/dev/block/boot:12342568:8aaacf187a6929d0e9c3e9e46ea7ff495b43424d", // "EMMC:/dev/block/boot:12363048:06b0b16299dcefc94900efed01e0763ff644ffa4") Value* PatchPartitionCheckFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Invalid number of args (expected 2, got %zu)", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args, 0, 2)) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); } std::string err; auto target = Partition::Parse(args[0], &err); if (!target) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse target \"%s\": %s", name, args[0].c_str(), err.c_str()); } auto source = Partition::Parse(args[1], &err); if (!source) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse source \"%s\": %s", name, args[1].c_str(), err.c_str()); } bool result = PatchPartitionCheck(target, source); return StringValue(result ? "t" : ""); } // patch_partition(target, source, patch) // Applies the given patch to the source partition, and writes the result to the target partition. // // For example, patch_partition( // "EMMC:/dev/block/boot:12342568:8aaacf187a6929d0e9c3e9e46ea7ff495b43424d", // "EMMC:/dev/block/boot:12363048:06b0b16299dcefc94900efed01e0763ff644ffa4", // package_extract_file("boot.img.p")) Value* PatchPartitionFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 3) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Invalid number of args (expected 3, got %zu)", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args, 0, 2)) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); } std::string err; auto target = Partition::Parse(args[0], &err); if (!target) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse target \"%s\": %s", name, args[0].c_str(), err.c_str()); } auto source = Partition::Parse(args[1], &err); if (!source) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse source \"%s\": %s", name, args[1].c_str(), err.c_str()); } std::vector<std::unique_ptr<Value>> values; if (!ReadValueArgs(state, argv, &values, 2, 1) || values[0]->type != Value::Type::BLOB) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Invalid patch arg", name); } bool result = PatchPartition(target, source, *values[0], nullptr); return StringValue(result ? "t" : ""); } // mount(fs_type, partition_type, location, mount_point) // mount(fs_type, partition_type, location, mount_point, mount_options) // fs_type="ext4" partition_type="EMMC" location=device Value* MountFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 4 && argv.size() != 5) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 4-5 args, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& fs_type = args[0]; const std::string& partition_type = args[1]; const std::string& location = args[2]; const std::string& mount_point = args[3]; std::string mount_options; if (argv.size() == 5) { mount_options = args[4]; } if (fs_type.empty()) { return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name); } if (partition_type.empty()) { return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty", name); } if (location.empty()) { return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name); } if (mount_point.empty()) { return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty", name); } { char* secontext = nullptr; if (sehandle) { selabel_lookup(sehandle, &secontext, mount_point.c_str(), 0755); setfscreatecon(secontext); } mkdir(mount_point.c_str(), 0755); if (secontext) { freecon(secontext); setfscreatecon(nullptr); } } if (mount(location.c_str(), mount_point.c_str(), fs_type.c_str(), MS_NOATIME | MS_NODEV | MS_NODIRATIME, mount_options.c_str()) < 0) { uiPrintf(state, "%s: Failed to mount %s at %s: %s", name, location.c_str(), mount_point.c_str(), strerror(errno)); return StringValue(""); } return StringValue(mount_point); } // is_mounted(mount_point) Value* IsMountedFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& mount_point = args[0]; if (mount_point.empty()) { return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to unmount() can't be empty"); } scan_mounted_volumes(); MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point.c_str()); if (vol == nullptr) { return StringValue(""); } return StringValue(mount_point); } Value* UnmountFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& mount_point = args[0]; if (mount_point.empty()) { return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to unmount() can't be empty"); } scan_mounted_volumes(); MountedVolume* vol = find_mounted_volume_by_mount_point(mount_point.c_str()); if (vol == nullptr) { uiPrintf(state, "Failed to unmount %s: No such volume", mount_point.c_str()); return nullptr; } else { int ret = unmount_mounted_volume(vol); if (ret != 0) { uiPrintf(state, "Failed to unmount %s: %s", mount_point.c_str(), strerror(errno)); } } return StringValue(mount_point); } static int exec_cmd(const std::vector<std::string>& args) { CHECK(!args.empty()); auto argv = StringVectorToNullTerminatedArray(args); pid_t child; if ((child = vfork()) == 0) { execv(argv[0], argv.data()); _exit(EXIT_FAILURE); } int status; waitpid(child, &status, 0); if (!WIFEXITED(status) || WEXITSTATUS(status) != 0) { LOG(ERROR) << args[0] << " failed with status " << WEXITSTATUS(status); } return WEXITSTATUS(status); } // format(fs_type, partition_type, location, fs_size, mount_point) // // fs_type="ext4" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location> // fs_type="f2fs" partition_type="EMMC" location=device fs_size=<bytes> mount_point=<location> // if fs_size == 0, then make fs uses the entire partition. // if fs_size > 0, that is the size to use // if fs_size < 0, then reserve that many bytes at the end of the partition (not for "f2fs") Value* FormatFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 5) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 5 args, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& fs_type = args[0]; const std::string& partition_type = args[1]; const std::string& location = args[2]; const std::string& fs_size = args[3]; const std::string& mount_point = args[4]; if (fs_type.empty()) { return ErrorAbort(state, kArgsParsingFailure, "fs_type argument to %s() can't be empty", name); } if (partition_type.empty()) { return ErrorAbort(state, kArgsParsingFailure, "partition_type argument to %s() can't be empty", name); } if (location.empty()) { return ErrorAbort(state, kArgsParsingFailure, "location argument to %s() can't be empty", name); } if (mount_point.empty()) { return ErrorAbort(state, kArgsParsingFailure, "mount_point argument to %s() can't be empty", name); } int64_t size; if (!android::base::ParseInt(fs_size, &size)) { return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse int in %s", name, fs_size.c_str()); } if (fs_type == "ext4") { std::vector<std::string> mke2fs_args = { "/system/bin/mke2fs", "-t", "ext4", "-b", "4096", location }; if (size != 0) { mke2fs_args.push_back(std::to_string(size / 4096LL)); } if (auto status = exec_cmd(mke2fs_args); status != 0) { LOG(ERROR) << name << ": mke2fs failed (" << status << ") on " << location; return StringValue(""); } if (auto status = exec_cmd({ "/system/bin/e2fsdroid", "-e", "-a", mount_point, location }); status != 0) { LOG(ERROR) << name << ": e2fsdroid failed (" << status << ") on " << location; return StringValue(""); } return StringValue(location); } if (fs_type == "f2fs") { if (size < 0) { LOG(ERROR) << name << ": fs_size can't be negative for f2fs: " << fs_size; return StringValue(""); } std::vector<std::string> f2fs_args = { "/system/bin/make_f2fs", "-g", "android", "-w", "512", location }; if (size >= 512) { f2fs_args.push_back(std::to_string(size / 512)); } if (auto status = exec_cmd(f2fs_args); status != 0) { LOG(ERROR) << name << ": make_f2fs failed (" << status << ") on " << location; return StringValue(""); } if (auto status = exec_cmd({ "/system/bin/sload_f2fs", "-t", mount_point, location }); status != 0) { LOG(ERROR) << name << ": sload_f2fs failed (" << status << ") on " << location; return StringValue(""); } return StringValue(location); } LOG(ERROR) << name << ": unsupported fs_type \"" << fs_type << "\" partition_type \"" << partition_type << "\""; return nullptr; } Value* ShowProgressFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& frac_str = args[0]; const std::string& sec_str = args[1]; double frac; if (!android::base::ParseDouble(frac_str.c_str(), &frac)) { return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse double in %s", name, frac_str.c_str()); } int sec; if (!android::base::ParseInt(sec_str.c_str(), &sec)) { return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse int in %s", name, sec_str.c_str()); } UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie); fprintf(ui->cmd_pipe, "progress %f %d\n", frac, sec); return StringValue(frac_str); } Value* SetProgressFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& frac_str = args[0]; double frac; if (!android::base::ParseDouble(frac_str.c_str(), &frac)) { return ErrorAbort(state, kArgsParsingFailure, "%s: failed to parse double in %s", name, frac_str.c_str()); } UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie); fprintf(ui->cmd_pipe, "set_progress %f\n", frac); return StringValue(frac_str); } Value* GetPropFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); } std::string key; if (!Evaluate(state, argv[0], &key)) { return nullptr; } std::string value = android::base::GetProperty(key, ""); return StringValue(value); } // file_getprop(file, key) // // interprets 'file' as a getprop-style file (key=value pairs, one // per line. # comment lines, blank lines, lines without '=' ignored), // and returns the value for 'key' (or "" if it isn't defined). Value* FileGetPropFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& filename = args[0]; const std::string& key = args[1]; std::string buffer; if (!android::base::ReadFileToString(filename, &buffer)) { ErrorAbort(state, kFreadFailure, "%s: failed to read %s", name, filename.c_str()); return nullptr; } std::vector<std::string> lines = android::base::Split(buffer, "\n"); for (size_t i = 0; i < lines.size(); i++) { std::string line = android::base::Trim(lines[i]); // comment or blank line: skip to next line if (line.empty() || line[0] == '#') { continue; } size_t equal_pos = line.find('='); if (equal_pos == std::string::npos) { continue; } // trim whitespace between key and '=' std::string str = android::base::Trim(line.substr(0, equal_pos)); // not the key we're looking for if (key != str) continue; return StringValue(android::base::Trim(line.substr(equal_pos + 1))); } return StringValue(""); } // apply_patch_space(bytes) Value* ApplyPatchSpaceFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 args, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& bytes_str = args[0]; size_t bytes; if (!android::base::ParseUint(bytes_str.c_str(), &bytes)) { return ErrorAbort(state, kArgsParsingFailure, "%s(): can't parse \"%s\" as byte count", name, bytes_str.c_str()); } // Skip the cache size check if the update is a retry. if (state->is_retry || CheckAndFreeSpaceOnCache(bytes)) { return StringValue("t"); } return StringValue(""); } Value* WipeCacheFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (!argv.empty()) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %zu", name, argv.size()); } fprintf(static_cast<UpdaterInfo*>(state->cookie)->cmd_pipe, "wipe_cache\n"); return StringValue("t"); } Value* RunProgramFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() < 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects at least 1 arg", name); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } auto exec_args = StringVectorToNullTerminatedArray(args); LOG(INFO) << "about to run program [" << exec_args[0] << "] with " << argv.size() << " args"; pid_t child = fork(); if (child == 0) { execv(exec_args[0], exec_args.data()); PLOG(ERROR) << "run_program: execv failed"; _exit(EXIT_FAILURE); } int status; waitpid(child, &status, 0); if (WIFEXITED(status)) { if (WEXITSTATUS(status) != 0) { LOG(ERROR) << "run_program: child exited with status " << WEXITSTATUS(status); } } else if (WIFSIGNALED(status)) { LOG(ERROR) << "run_program: child terminated by signal " << WTERMSIG(status); } return StringValue(std::to_string(status)); } // read_file(filename) // Reads a local file 'filename' and returns its contents as a string Value. Value* ReadFileFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); } const std::string& filename = args[0]; std::string contents; if (android::base::ReadFileToString(filename, &contents)) { return new Value(Value::Type::STRING, std::move(contents)); } // Leave it to caller to handle the failure. PLOG(ERROR) << name << ": Failed to read " << filename; return StringValue(""); } // write_value(value, filename) // Writes 'value' to 'filename'. // Example: write_value("960000", "/sys/devices/system/cpu/cpu0/cpufreq/scaling_max_freq") Value* WriteValueFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); } const std::string& filename = args[1]; if (filename.empty()) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Filename cannot be empty", name); } const std::string& value = args[0]; if (!android::base::WriteStringToFile(value, filename)) { PLOG(ERROR) << name << ": Failed to write to \"" << filename << "\""; return StringValue(""); } else { return StringValue("t"); } } // Immediately reboot the device. Recovery is not finished normally, // so if you reboot into recovery it will re-start applying the // current package (because nothing has cleared the copy of the // arguments stored in the BCB). // // The argument is the partition name passed to the android reboot // property. It can be "recovery" to boot from the recovery // partition, or "" (empty string) to boot from the regular boot // partition. Value* RebootNowFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s(): Failed to parse the argument(s)", name); } const std::string& filename = args[0]; const std::string& property = args[1]; // Zero out the 'command' field of the bootloader message. Leave the rest intact. bootloader_message boot; std::string err; if (!read_bootloader_message_from(&boot, filename, &err)) { LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err; return StringValue(""); } memset(boot.command, 0, sizeof(boot.command)); if (!write_bootloader_message_to(boot, filename, &err)) { LOG(ERROR) << name << "(): Failed to write to \"" << filename << "\": " << err; return StringValue(""); } reboot("reboot," + property); sleep(5); return ErrorAbort(state, kRebootFailure, "%s() failed to reboot", name); } // Store a string value somewhere that future invocations of recovery // can access it. This value is called the "stage" and can be used to // drive packages that need to do reboots in the middle of // installation and keep track of where they are in the multi-stage // install. // // The first argument is the block device for the misc partition // ("/misc" in the fstab), which is where this value is stored. The // second argument is the string to store; it should not exceed 31 // bytes. Value* SetStageFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& filename = args[0]; const std::string& stagestr = args[1]; // Store this value in the misc partition, immediately after the // bootloader message that the main recovery uses to save its // arguments in case of the device restarting midway through // package installation. bootloader_message boot; std::string err; if (!read_bootloader_message_from(&boot, filename, &err)) { LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err; return StringValue(""); } strlcpy(boot.stage, stagestr.c_str(), sizeof(boot.stage)); if (!write_bootloader_message_to(boot, filename, &err)) { LOG(ERROR) << name << "(): Failed to write to \"" << filename << "\": " << err; return StringValue(""); } return StringValue(filename); } // Return the value most recently saved with SetStageFn. The argument // is the block device for the misc partition. Value* GetStageFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 1) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 1 arg, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& filename = args[0]; bootloader_message boot; std::string err; if (!read_bootloader_message_from(&boot, filename, &err)) { LOG(ERROR) << name << "(): Failed to read from \"" << filename << "\": " << err; return StringValue(""); } return StringValue(boot.stage); } Value* WipeBlockDeviceFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.size() != 2) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects 2 args, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() Failed to parse the argument(s)", name); } const std::string& filename = args[0]; const std::string& len_str = args[1]; size_t len; if (!android::base::ParseUint(len_str.c_str(), &len)) { return nullptr; } android::base::unique_fd fd(open(filename.c_str(), O_WRONLY)); if (fd == -1) { PLOG(ERROR) << "Failed to open " << filename; return StringValue(""); } // The wipe_block_device function in ext4_utils returns 0 on success and 1 // for failure. int status = wipe_block_device(fd, len); return StringValue((status == 0) ? "t" : ""); } Value* EnableRebootFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (!argv.empty()) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects no args, got %zu", name, argv.size()); } UpdaterInfo* ui = static_cast<UpdaterInfo*>(state->cookie); fprintf(ui->cmd_pipe, "enable_reboot\n"); return StringValue("t"); } Value* Tune2FsFn(const char* name, State* state, const std::vector<std::unique_ptr<Expr>>& argv) { if (argv.empty()) { return ErrorAbort(state, kArgsParsingFailure, "%s() expects args, got %zu", name, argv.size()); } std::vector<std::string> args; if (!ReadArgs(state, argv, &args)) { return ErrorAbort(state, kArgsParsingFailure, "%s() could not read args", name); } // tune2fs expects the program name as its first arg. args.insert(args.begin(), "tune2fs"); auto tune2fs_args = StringVectorToNullTerminatedArray(args); // tune2fs changes the filesystem parameters on an ext2 filesystem; it returns 0 on success. if (auto result = tune2fs_main(tune2fs_args.size() - 1, tune2fs_args.data()); result != 0) { return ErrorAbort(state, kTune2FsFailure, "%s() returned error code %d", name, result); } return StringValue("t"); } void RegisterInstallFunctions() { RegisterFunction("mount", MountFn); RegisterFunction("is_mounted", IsMountedFn); RegisterFunction("unmount", UnmountFn); RegisterFunction("format", FormatFn); RegisterFunction("show_progress", ShowProgressFn); RegisterFunction("set_progress", SetProgressFn); RegisterFunction("package_extract_file", PackageExtractFileFn); RegisterFunction("getprop", GetPropFn); RegisterFunction("file_getprop", FileGetPropFn); RegisterFunction("apply_patch_space", ApplyPatchSpaceFn); RegisterFunction("patch_partition", PatchPartitionFn); RegisterFunction("patch_partition_check", PatchPartitionCheckFn); RegisterFunction("wipe_block_device", WipeBlockDeviceFn); RegisterFunction("read_file", ReadFileFn); RegisterFunction("write_value", WriteValueFn); RegisterFunction("wipe_cache", WipeCacheFn); RegisterFunction("ui_print", UIPrintFn); RegisterFunction("run_program", RunProgramFn); RegisterFunction("reboot_now", RebootNowFn); RegisterFunction("get_stage", GetStageFn); RegisterFunction("set_stage", SetStageFn); RegisterFunction("enable_reboot", EnableRebootFn); RegisterFunction("tune2fs", Tune2FsFn); }