/* * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "jit_code_cache.h" #include <sstream> #include <android-base/logging.h> #include <android-base/unique_fd.h> #include "arch/context.h" #include "art_method-inl.h" #include "base/enums.h" #include "base/histogram-inl.h" #include "base/logging.h" // For VLOG. #include "base/membarrier.h" #include "base/memfd.h" #include "base/mem_map.h" #include "base/quasi_atomic.h" #include "base/stl_util.h" #include "base/systrace.h" #include "base/time_utils.h" #include "base/utils.h" #include "cha.h" #include "debugger_interface.h" #include "dex/dex_file_loader.h" #include "dex/method_reference.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "gc/accounting/bitmap-inl.h" #include "gc/allocator/dlmalloc.h" #include "gc/scoped_gc_critical_section.h" #include "handle.h" #include "instrumentation.h" #include "intern_table.h" #include "jit/jit.h" #include "jit/profiling_info.h" #include "linear_alloc.h" #include "oat_file-inl.h" #include "oat_quick_method_header.h" #include "object_callbacks.h" #include "profile/profile_compilation_info.h" #include "scoped_thread_state_change-inl.h" #include "stack.h" #include "thread-current-inl.h" #include "thread_list.h" using android::base::unique_fd; namespace art { namespace jit { static constexpr size_t kCodeSizeLogThreshold = 50 * KB; static constexpr size_t kStackMapSizeLogThreshold = 50 * KB; // Data cache will be half of the capacity // Code cache will be the other half of the capacity. // TODO: Make this variable? static constexpr size_t kCodeAndDataCapacityDivider = 2; static constexpr int kProtR = PROT_READ; static constexpr int kProtRW = PROT_READ | PROT_WRITE; static constexpr int kProtRWX = PROT_READ | PROT_WRITE | PROT_EXEC; static constexpr int kProtRX = PROT_READ | PROT_EXEC; namespace { // Translate an address belonging to one memory map into an address in a second. This is useful // when there are two virtual memory ranges for the same physical memory range. template <typename T> T* TranslateAddress(T* src_ptr, const MemMap& src, const MemMap& dst) { CHECK(src.HasAddress(src_ptr)); uint8_t* const raw_src_ptr = reinterpret_cast<uint8_t*>(src_ptr); return reinterpret_cast<T*>(raw_src_ptr - src.Begin() + dst.Begin()); } } // namespace class JitCodeCache::JniStubKey { public: explicit JniStubKey(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) : shorty_(method->GetShorty()), is_static_(method->IsStatic()), is_fast_native_(method->IsFastNative()), is_critical_native_(method->IsCriticalNative()), is_synchronized_(method->IsSynchronized()) { DCHECK(!(is_fast_native_ && is_critical_native_)); } bool operator<(const JniStubKey& rhs) const { if (is_static_ != rhs.is_static_) { return rhs.is_static_; } if (is_synchronized_ != rhs.is_synchronized_) { return rhs.is_synchronized_; } if (is_fast_native_ != rhs.is_fast_native_) { return rhs.is_fast_native_; } if (is_critical_native_ != rhs.is_critical_native_) { return rhs.is_critical_native_; } return strcmp(shorty_, rhs.shorty_) < 0; } // Update the shorty to point to another method's shorty. Call this function when removing // the method that references the old shorty from JniCodeData and not removing the entire // JniCodeData; the old shorty may become a dangling pointer when that method is unloaded. void UpdateShorty(ArtMethod* method) const REQUIRES_SHARED(Locks::mutator_lock_) { const char* shorty = method->GetShorty(); DCHECK_STREQ(shorty_, shorty); shorty_ = shorty; } private: // The shorty points to a DexFile data and may need to change // to point to the same shorty in a different DexFile. mutable const char* shorty_; const bool is_static_; const bool is_fast_native_; const bool is_critical_native_; const bool is_synchronized_; }; class JitCodeCache::JniStubData { public: JniStubData() : code_(nullptr), methods_() {} void SetCode(const void* code) { DCHECK(code != nullptr); code_ = code; } const void* GetCode() const { return code_; } bool IsCompiled() const { return GetCode() != nullptr; } void AddMethod(ArtMethod* method) { if (!ContainsElement(methods_, method)) { methods_.push_back(method); } } const std::vector<ArtMethod*>& GetMethods() const { return methods_; } void RemoveMethodsIn(const LinearAlloc& alloc) { auto kept_end = std::remove_if( methods_.begin(), methods_.end(), [&alloc](ArtMethod* method) { return alloc.ContainsUnsafe(method); }); methods_.erase(kept_end, methods_.end()); } bool RemoveMethod(ArtMethod* method) { auto it = std::find(methods_.begin(), methods_.end(), method); if (it != methods_.end()) { methods_.erase(it); return true; } else { return false; } } void MoveObsoleteMethod(ArtMethod* old_method, ArtMethod* new_method) { std::replace(methods_.begin(), methods_.end(), old_method, new_method); } private: const void* code_; std::vector<ArtMethod*> methods_; }; bool JitCodeCache::InitializeMappings(bool rwx_memory_allowed, bool is_zygote, std::string* error_msg) { ScopedTrace trace(__PRETTY_FUNCTION__); const size_t capacity = max_capacity_; const size_t data_capacity = capacity / kCodeAndDataCapacityDivider; const size_t exec_capacity = capacity - data_capacity; // File descriptor enabling dual-view mapping of code section. unique_fd mem_fd; // Zygote shouldn't create a shared mapping for JIT, so we cannot use dual view // for it. if (!is_zygote) { // Bionic supports memfd_create, but the call may fail on older kernels. mem_fd = unique_fd(art::memfd_create("/jit-cache", /* flags= */ 0)); if (mem_fd.get() < 0) { std::ostringstream oss; oss << "Failed to initialize dual view JIT. memfd_create() error: " << strerror(errno); if (!rwx_memory_allowed) { // Without using RWX page permissions, the JIT can not fallback to single mapping as it // requires tranitioning the code pages to RWX for updates. *error_msg = oss.str(); return false; } VLOG(jit) << oss.str(); } } if (mem_fd.get() >= 0 && ftruncate(mem_fd, capacity) != 0) { std::ostringstream oss; oss << "Failed to initialize memory file: " << strerror(errno); *error_msg = oss.str(); return false; } std::string data_cache_name = is_zygote ? "zygote-data-code-cache" : "data-code-cache"; std::string exec_cache_name = is_zygote ? "zygote-jit-code-cache" : "jit-code-cache"; std::string error_str; // Map name specific for android_os_Debug.cpp accounting. // Map in low 4gb to simplify accessing root tables for x86_64. // We could do PC-relative addressing to avoid this problem, but that // would require reserving code and data area before submitting, which // means more windows for the code memory to be RWX. int base_flags; MemMap data_pages; if (mem_fd.get() >= 0) { // Dual view of JIT code cache case. Create an initial mapping of data pages large enough // for data and non-writable view of JIT code pages. We use the memory file descriptor to // enable dual mapping - we'll create a second mapping using the descriptor below. The // mappings will look like: // // VA PA // // +---------------+ // | non exec code |\ // +---------------+ \ // : :\ \ // +---------------+.\.+---------------+ // | exec code | \| code | // +---------------+...+---------------+ // | data | | data | // +---------------+...+---------------+ // // In this configuration code updates are written to the non-executable view of the code // cache, and the executable view of the code cache has fixed RX memory protections. // // This memory needs to be mapped shared as the code portions will have two mappings. base_flags = MAP_SHARED; data_pages = MemMap::MapFile( data_capacity + exec_capacity, kProtRW, base_flags, mem_fd, /* start= */ 0, /* low_4gb= */ true, data_cache_name.c_str(), &error_str); } else { // Single view of JIT code cache case. Create an initial mapping of data pages large enough // for data and JIT code pages. The mappings will look like: // // VA PA // // +---------------+...+---------------+ // | exec code | | code | // +---------------+...+---------------+ // | data | | data | // +---------------+...+---------------+ // // In this configuration code updates are written to the executable view of the code cache, // and the executable view of the code cache transitions RX to RWX for the update and then // back to RX after the update. base_flags = MAP_PRIVATE | MAP_ANON; data_pages = MemMap::MapAnonymous( data_cache_name.c_str(), data_capacity + exec_capacity, kProtRW, /* low_4gb= */ true, &error_str); } if (!data_pages.IsValid()) { std::ostringstream oss; oss << "Failed to create read write cache: " << error_str << " size=" << capacity; *error_msg = oss.str(); return false; } MemMap exec_pages; MemMap non_exec_pages; if (exec_capacity > 0) { uint8_t* const divider = data_pages.Begin() + data_capacity; // Set initial permission for executable view to catch any SELinux permission problems early // (for processes that cannot map WX pages). Otherwise, this region does not need to be // executable as there is no code in the cache yet. exec_pages = data_pages.RemapAtEnd(divider, exec_cache_name.c_str(), kProtRX, base_flags | MAP_FIXED, mem_fd.get(), (mem_fd.get() >= 0) ? data_capacity : 0, &error_str); if (!exec_pages.IsValid()) { std::ostringstream oss; oss << "Failed to create read execute code cache: " << error_str << " size=" << capacity; *error_msg = oss.str(); return false; } if (mem_fd.get() >= 0) { // For dual view, create the secondary view of code memory used for updating code. This view // is never executable. std::string name = exec_cache_name + "-rw"; non_exec_pages = MemMap::MapFile(exec_capacity, kProtR, base_flags, mem_fd, /* start= */ data_capacity, /* low_4GB= */ false, name.c_str(), &error_str); if (!non_exec_pages.IsValid()) { static const char* kFailedNxView = "Failed to map non-executable view of JIT code cache"; if (rwx_memory_allowed) { // Log and continue as single view JIT (requires RWX memory). VLOG(jit) << kFailedNxView; } else { *error_msg = kFailedNxView; return false; } } } } else { // Profiling only. No memory for code required. } data_pages_ = std::move(data_pages); exec_pages_ = std::move(exec_pages); non_exec_pages_ = std::move(non_exec_pages); return true; } JitCodeCache* JitCodeCache::Create(bool used_only_for_profile_data, bool rwx_memory_allowed, bool is_zygote, std::string* error_msg) { // Register for membarrier expedited sync core if JIT will be generating code. if (!used_only_for_profile_data) { if (art::membarrier(art::MembarrierCommand::kRegisterPrivateExpeditedSyncCore) != 0) { // MEMBARRIER_CMD_PRIVATE_EXPEDITED_SYNC_CORE ensures that CPU instruction pipelines are // flushed and it's used when adding code to the JIT. The memory used by the new code may // have just been released and, in theory, the old code could still be in a pipeline. VLOG(jit) << "Kernel does not support membarrier sync-core"; } } // Check whether the provided max capacity in options is below 1GB. size_t max_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheMaxCapacity(); // We need to have 32 bit offsets from method headers in code cache which point to things // in the data cache. If the maps are more than 4G apart, having multiple maps wouldn't work. // Ensure we're below 1 GB to be safe. if (max_capacity > 1 * GB) { std::ostringstream oss; oss << "Maxium code cache capacity is limited to 1 GB, " << PrettySize(max_capacity) << " is too big"; *error_msg = oss.str(); return nullptr; } size_t initial_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheInitialCapacity(); std::unique_ptr<JitCodeCache> jit_code_cache(new JitCodeCache()); MutexLock mu(Thread::Current(), jit_code_cache->lock_); jit_code_cache->InitializeState(initial_capacity, max_capacity); // Zygote should never collect code to share the memory with the children. if (is_zygote) { jit_code_cache->garbage_collect_code_ = false; } if (!jit_code_cache->InitializeMappings(rwx_memory_allowed, is_zygote, error_msg)) { return nullptr; } jit_code_cache->InitializeSpaces(); VLOG(jit) << "Created jit code cache: initial capacity=" << PrettySize(initial_capacity) << ", maximum capacity=" << PrettySize(max_capacity); return jit_code_cache.release(); } JitCodeCache::JitCodeCache() : lock_("Jit code cache", kJitCodeCacheLock), lock_cond_("Jit code cache condition variable", lock_), collection_in_progress_(false), last_collection_increased_code_cache_(false), garbage_collect_code_(true), used_memory_for_data_(0), used_memory_for_code_(0), number_of_compilations_(0), number_of_osr_compilations_(0), number_of_collections_(0), histogram_stack_map_memory_use_("Memory used for stack maps", 16), histogram_code_memory_use_("Memory used for compiled code", 16), histogram_profiling_info_memory_use_("Memory used for profiling info", 16), is_weak_access_enabled_(true), inline_cache_cond_("Jit inline cache condition variable", lock_), zygote_data_pages_(), zygote_exec_pages_(), zygote_data_mspace_(nullptr), zygote_exec_mspace_(nullptr) { } void JitCodeCache::InitializeState(size_t initial_capacity, size_t max_capacity) { CHECK_GE(max_capacity, initial_capacity); CHECK(max_capacity <= 1 * GB) << "The max supported size for JIT code cache is 1GB"; // Align both capacities to page size, as that's the unit mspaces use. initial_capacity = RoundDown(initial_capacity, 2 * kPageSize); max_capacity = RoundDown(max_capacity, 2 * kPageSize); used_memory_for_data_ = 0; used_memory_for_code_ = 0; number_of_compilations_ = 0; number_of_osr_compilations_ = 0; number_of_collections_ = 0; data_pages_ = MemMap(); exec_pages_ = MemMap(); non_exec_pages_ = MemMap(); initial_capacity_ = initial_capacity; max_capacity_ = max_capacity; current_capacity_ = initial_capacity, data_end_ = initial_capacity / kCodeAndDataCapacityDivider; exec_end_ = initial_capacity - data_end_; } void JitCodeCache::InitializeSpaces() { // Initialize the data heap data_mspace_ = create_mspace_with_base(data_pages_.Begin(), data_end_, false /*locked*/); CHECK(data_mspace_ != nullptr) << "create_mspace_with_base (data) failed"; // Initialize the code heap MemMap* code_heap = nullptr; if (non_exec_pages_.IsValid()) { code_heap = &non_exec_pages_; } else if (exec_pages_.IsValid()) { code_heap = &exec_pages_; } if (code_heap != nullptr) { // Make all pages reserved for the code heap writable. The mspace allocator, that manages the // heap, will take and initialize pages in create_mspace_with_base(). CheckedCall(mprotect, "create code heap", code_heap->Begin(), code_heap->Size(), kProtRW); exec_mspace_ = create_mspace_with_base(code_heap->Begin(), exec_end_, false /*locked*/); CHECK(exec_mspace_ != nullptr) << "create_mspace_with_base (exec) failed"; SetFootprintLimit(initial_capacity_); // Protect pages containing heap metadata. Updates to the code heap toggle write permission to // perform the update and there are no other times write access is required. CheckedCall(mprotect, "protect code heap", code_heap->Begin(), code_heap->Size(), kProtR); } else { exec_mspace_ = nullptr; SetFootprintLimit(initial_capacity_); } } JitCodeCache::~JitCodeCache() {} bool JitCodeCache::ContainsPc(const void* ptr) const { return exec_pages_.HasAddress(ptr) || zygote_exec_pages_.HasAddress(ptr); } bool JitCodeCache::WillExecuteJitCode(ArtMethod* method) { ScopedObjectAccess soa(art::Thread::Current()); ScopedAssertNoThreadSuspension sants(__FUNCTION__); if (ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { return true; } else if (method->GetEntryPointFromQuickCompiledCode() == GetQuickInstrumentationEntryPoint()) { return FindCompiledCodeForInstrumentation(method) != nullptr; } return false; } bool JitCodeCache::ContainsMethod(ArtMethod* method) { MutexLock mu(Thread::Current(), lock_); if (UNLIKELY(method->IsNative())) { auto it = jni_stubs_map_.find(JniStubKey(method)); if (it != jni_stubs_map_.end() && it->second.IsCompiled() && ContainsElement(it->second.GetMethods(), method)) { return true; } } else { for (const auto& it : method_code_map_) { if (it.second == method) { return true; } } } return false; } const void* JitCodeCache::GetJniStubCode(ArtMethod* method) { DCHECK(method->IsNative()); MutexLock mu(Thread::Current(), lock_); auto it = jni_stubs_map_.find(JniStubKey(method)); if (it != jni_stubs_map_.end()) { JniStubData& data = it->second; if (data.IsCompiled() && ContainsElement(data.GetMethods(), method)) { return data.GetCode(); } } return nullptr; } const void* JitCodeCache::FindCompiledCodeForInstrumentation(ArtMethod* method) { // If jit-gc is still on we use the SavedEntryPoint field for doing that and so cannot use it to // find the instrumentation entrypoint. if (LIKELY(GetGarbageCollectCode())) { return nullptr; } ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); if (info == nullptr) { return nullptr; } // When GC is disabled for trampoline tracing we will use SavedEntrypoint to hold the actual // jit-compiled version of the method. If jit-gc is disabled for other reasons this will just be // nullptr. return info->GetSavedEntryPoint(); } const void* JitCodeCache::GetZygoteSavedEntryPoint(ArtMethod* method) { if (Runtime::Current()->IsUsingApexBootImageLocation() && // Currently only applies to boot classpath method->GetDeclaringClass()->GetClassLoader() == nullptr) { const void* entry_point = nullptr; if (method->IsNative()) { const void* code_ptr = GetJniStubCode(method); if (code_ptr != nullptr) { entry_point = OatQuickMethodHeader::FromCodePointer(code_ptr)->GetEntryPoint(); } } else { ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize); if (profiling_info != nullptr) { entry_point = profiling_info->GetSavedEntryPoint(); } } if (Runtime::Current()->IsZygote() || IsInZygoteExecSpace(entry_point)) { return entry_point; } } return nullptr; } class ScopedCodeCacheWrite : ScopedTrace { public: explicit ScopedCodeCacheWrite(const JitCodeCache* const code_cache) : ScopedTrace("ScopedCodeCacheWrite"), code_cache_(code_cache) { ScopedTrace trace("mprotect all"); const MemMap* const updatable_pages = code_cache_->GetUpdatableCodeMapping(); if (updatable_pages != nullptr) { int prot = code_cache_->HasDualCodeMapping() ? kProtRW : kProtRWX; CheckedCall(mprotect, "Cache +W", updatable_pages->Begin(), updatable_pages->Size(), prot); } } ~ScopedCodeCacheWrite() { ScopedTrace trace("mprotect code"); const MemMap* const updatable_pages = code_cache_->GetUpdatableCodeMapping(); if (updatable_pages != nullptr) { int prot = code_cache_->HasDualCodeMapping() ? kProtR : kProtRX; CheckedCall(mprotect, "Cache -W", updatable_pages->Begin(), updatable_pages->Size(), prot); } } private: const JitCodeCache* const code_cache_; DISALLOW_COPY_AND_ASSIGN(ScopedCodeCacheWrite); }; uint8_t* JitCodeCache::CommitCode(Thread* self, ArtMethod* method, uint8_t* stack_map, uint8_t* roots_data, const uint8_t* code, size_t code_size, size_t data_size, bool osr, const std::vector<Handle<mirror::Object>>& roots, bool has_should_deoptimize_flag, const ArenaSet<ArtMethod*>& cha_single_implementation_list) { uint8_t* result = CommitCodeInternal(self, method, stack_map, roots_data, code, code_size, data_size, osr, roots, has_should_deoptimize_flag, cha_single_implementation_list); if (result == nullptr) { // Retry. GarbageCollectCache(self); result = CommitCodeInternal(self, method, stack_map, roots_data, code, code_size, data_size, osr, roots, has_should_deoptimize_flag, cha_single_implementation_list); } return result; } bool JitCodeCache::WaitForPotentialCollectionToComplete(Thread* self) { bool in_collection = false; while (collection_in_progress_) { in_collection = true; lock_cond_.Wait(self); } return in_collection; } static size_t GetJitCodeAlignment() { if (kRuntimeISA == InstructionSet::kArm || kRuntimeISA == InstructionSet::kThumb2) { // Some devices with 32-bit ARM kernels need additional JIT code alignment when using dual // view JIT (b/132205399). The alignment returned here coincides with the typical ARM d-cache // line (though the value should be probed ideally). Both the method header and code in the // cache are aligned to this size. Anything less than 64-bytes exhibits the problem. return 64; } return GetInstructionSetAlignment(kRuntimeISA); } static uintptr_t FromCodeToAllocation(const void* code) { size_t alignment = GetJitCodeAlignment(); return reinterpret_cast<uintptr_t>(code) - RoundUp(sizeof(OatQuickMethodHeader), alignment); } static uint32_t ComputeRootTableSize(uint32_t number_of_roots) { return sizeof(uint32_t) + number_of_roots * sizeof(GcRoot<mirror::Object>); } static uint32_t GetNumberOfRoots(const uint8_t* stack_map) { // The length of the table is stored just before the stack map (and therefore at the end of // the table itself), in order to be able to fetch it from a `stack_map` pointer. return reinterpret_cast<const uint32_t*>(stack_map)[-1]; } static void FillRootTableLength(uint8_t* roots_data, uint32_t length) { // Store the length of the table at the end. This will allow fetching it from a `stack_map` // pointer. reinterpret_cast<uint32_t*>(roots_data)[length] = length; } static const uint8_t* FromStackMapToRoots(const uint8_t* stack_map_data) { return stack_map_data - ComputeRootTableSize(GetNumberOfRoots(stack_map_data)); } static void DCheckRootsAreValid(const std::vector<Handle<mirror::Object>>& roots) REQUIRES(!Locks::intern_table_lock_) REQUIRES_SHARED(Locks::mutator_lock_) { if (!kIsDebugBuild) { return; } // Put all roots in `roots_data`. for (Handle<mirror::Object> object : roots) { // Ensure the string is strongly interned. b/32995596 if (object->IsString()) { ObjPtr<mirror::String> str = object->AsString(); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); CHECK(class_linker->GetInternTable()->LookupStrong(Thread::Current(), str) != nullptr); } } } void JitCodeCache::FillRootTable(uint8_t* roots_data, const std::vector<Handle<mirror::Object>>& roots) { GcRoot<mirror::Object>* gc_roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data); const uint32_t length = roots.size(); // Put all roots in `roots_data`. for (uint32_t i = 0; i < length; ++i) { ObjPtr<mirror::Object> object = roots[i].Get(); gc_roots[i] = GcRoot<mirror::Object>(object); } } static uint8_t* GetRootTable(const void* code_ptr, uint32_t* number_of_roots = nullptr) { OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); uint8_t* data = method_header->GetOptimizedCodeInfoPtr(); uint32_t roots = GetNumberOfRoots(data); if (number_of_roots != nullptr) { *number_of_roots = roots; } return data - ComputeRootTableSize(roots); } // Use a sentinel for marking entries in the JIT table that have been cleared. // This helps diagnosing in case the compiled code tries to wrongly access such // entries. static mirror::Class* const weak_sentinel = reinterpret_cast<mirror::Class*>(Context::kBadGprBase + 0xff); // Helper for the GC to process a weak class in a JIT root table. static inline void ProcessWeakClass(GcRoot<mirror::Class>* root_ptr, IsMarkedVisitor* visitor, mirror::Class* update) REQUIRES_SHARED(Locks::mutator_lock_) { // This does not need a read barrier because this is called by GC. mirror::Class* cls = root_ptr->Read<kWithoutReadBarrier>(); if (cls != nullptr && cls != weak_sentinel) { DCHECK((cls->IsClass<kDefaultVerifyFlags>())); // Look at the classloader of the class to know if it has been unloaded. // This does not need a read barrier because this is called by GC. ObjPtr<mirror::Object> class_loader = cls->GetClassLoader<kDefaultVerifyFlags, kWithoutReadBarrier>(); if (class_loader == nullptr || visitor->IsMarked(class_loader.Ptr()) != nullptr) { // The class loader is live, update the entry if the class has moved. mirror::Class* new_cls = down_cast<mirror::Class*>(visitor->IsMarked(cls)); // Note that new_object can be null for CMS and newly allocated objects. if (new_cls != nullptr && new_cls != cls) { *root_ptr = GcRoot<mirror::Class>(new_cls); } } else { // The class loader is not live, clear the entry. *root_ptr = GcRoot<mirror::Class>(update); } } } void JitCodeCache::SweepRootTables(IsMarkedVisitor* visitor) { MutexLock mu(Thread::Current(), lock_); for (const auto& entry : method_code_map_) { uint32_t number_of_roots = 0; uint8_t* roots_data = GetRootTable(entry.first, &number_of_roots); GcRoot<mirror::Object>* roots = reinterpret_cast<GcRoot<mirror::Object>*>(roots_data); for (uint32_t i = 0; i < number_of_roots; ++i) { // This does not need a read barrier because this is called by GC. mirror::Object* object = roots[i].Read<kWithoutReadBarrier>(); if (object == nullptr || object == weak_sentinel) { // entry got deleted in a previous sweep. } else if (object->IsString<kDefaultVerifyFlags>()) { mirror::Object* new_object = visitor->IsMarked(object); // We know the string is marked because it's a strongly-interned string that // is always alive. The IsMarked implementation of the CMS collector returns // null for newly allocated objects, but we know those haven't moved. Therefore, // only update the entry if we get a different non-null string. // TODO: Do not use IsMarked for j.l.Class, and adjust once we move this method // out of the weak access/creation pause. b/32167580 if (new_object != nullptr && new_object != object) { DCHECK(new_object->IsString()); roots[i] = GcRoot<mirror::Object>(new_object); } } else { ProcessWeakClass( reinterpret_cast<GcRoot<mirror::Class>*>(&roots[i]), visitor, weak_sentinel); } } } // Walk over inline caches to clear entries containing unloaded classes. for (ProfilingInfo* info : profiling_infos_) { for (size_t i = 0; i < info->number_of_inline_caches_; ++i) { InlineCache* cache = &info->cache_[i]; for (size_t j = 0; j < InlineCache::kIndividualCacheSize; ++j) { ProcessWeakClass(&cache->classes_[j], visitor, nullptr); } } } } void JitCodeCache::FreeCodeAndData(const void* code_ptr) { if (IsInZygoteExecSpace(code_ptr)) { // No need to free, this is shared memory. return; } uintptr_t allocation = FromCodeToAllocation(code_ptr); // Notify native debugger that we are about to remove the code. // It does nothing if we are not using native debugger. RemoveNativeDebugInfoForJit(Thread::Current(), code_ptr); if (OatQuickMethodHeader::FromCodePointer(code_ptr)->IsOptimized()) { FreeData(GetRootTable(code_ptr)); } // else this is a JNI stub without any data. uint8_t* code_allocation = reinterpret_cast<uint8_t*>(allocation); if (HasDualCodeMapping()) { code_allocation = TranslateAddress(code_allocation, exec_pages_, non_exec_pages_); } FreeCode(code_allocation); } void JitCodeCache::FreeAllMethodHeaders( const std::unordered_set<OatQuickMethodHeader*>& method_headers) { // We need to remove entries in method_headers from CHA dependencies // first since once we do FreeCode() below, the memory can be reused // so it's possible for the same method_header to start representing // different compile code. MutexLock mu(Thread::Current(), lock_); { MutexLock mu2(Thread::Current(), *Locks::cha_lock_); Runtime::Current()->GetClassLinker()->GetClassHierarchyAnalysis() ->RemoveDependentsWithMethodHeaders(method_headers); } ScopedCodeCacheWrite scc(this); for (const OatQuickMethodHeader* method_header : method_headers) { FreeCodeAndData(method_header->GetCode()); } } void JitCodeCache::RemoveMethodsIn(Thread* self, const LinearAlloc& alloc) { ScopedTrace trace(__PRETTY_FUNCTION__); // We use a set to first collect all method_headers whose code need to be // removed. We need to free the underlying code after we remove CHA dependencies // for entries in this set. And it's more efficient to iterate through // the CHA dependency map just once with an unordered_set. std::unordered_set<OatQuickMethodHeader*> method_headers; { MutexLock mu(self, lock_); // We do not check if a code cache GC is in progress, as this method comes // with the classlinker_classes_lock_ held, and suspending ourselves could // lead to a deadlock. { ScopedCodeCacheWrite scc(this); for (auto it = jni_stubs_map_.begin(); it != jni_stubs_map_.end();) { it->second.RemoveMethodsIn(alloc); if (it->second.GetMethods().empty()) { method_headers.insert(OatQuickMethodHeader::FromCodePointer(it->second.GetCode())); it = jni_stubs_map_.erase(it); } else { it->first.UpdateShorty(it->second.GetMethods().front()); ++it; } } for (auto it = method_code_map_.begin(); it != method_code_map_.end();) { if (alloc.ContainsUnsafe(it->second)) { method_headers.insert(OatQuickMethodHeader::FromCodePointer(it->first)); it = method_code_map_.erase(it); } else { ++it; } } } for (auto it = osr_code_map_.begin(); it != osr_code_map_.end();) { if (alloc.ContainsUnsafe(it->first)) { // Note that the code has already been pushed to method_headers in the loop // above and is going to be removed in FreeCode() below. it = osr_code_map_.erase(it); } else { ++it; } } for (auto it = profiling_infos_.begin(); it != profiling_infos_.end();) { ProfilingInfo* info = *it; if (alloc.ContainsUnsafe(info->GetMethod())) { info->GetMethod()->SetProfilingInfo(nullptr); FreeData(reinterpret_cast<uint8_t*>(info)); it = profiling_infos_.erase(it); } else { ++it; } } } FreeAllMethodHeaders(method_headers); } bool JitCodeCache::IsWeakAccessEnabled(Thread* self) const { return kUseReadBarrier ? self->GetWeakRefAccessEnabled() : is_weak_access_enabled_.load(std::memory_order_seq_cst); } void JitCodeCache::WaitUntilInlineCacheAccessible(Thread* self) { if (IsWeakAccessEnabled(self)) { return; } ScopedThreadSuspension sts(self, kWaitingWeakGcRootRead); MutexLock mu(self, lock_); while (!IsWeakAccessEnabled(self)) { inline_cache_cond_.Wait(self); } } void JitCodeCache::BroadcastForInlineCacheAccess() { Thread* self = Thread::Current(); MutexLock mu(self, lock_); inline_cache_cond_.Broadcast(self); } void JitCodeCache::AllowInlineCacheAccess() { DCHECK(!kUseReadBarrier); is_weak_access_enabled_.store(true, std::memory_order_seq_cst); BroadcastForInlineCacheAccess(); } void JitCodeCache::DisallowInlineCacheAccess() { DCHECK(!kUseReadBarrier); is_weak_access_enabled_.store(false, std::memory_order_seq_cst); } void JitCodeCache::CopyInlineCacheInto(const InlineCache& ic, Handle<mirror::ObjectArray<mirror::Class>> array) { WaitUntilInlineCacheAccessible(Thread::Current()); // Note that we don't need to lock `lock_` here, the compiler calling // this method has already ensured the inline cache will not be deleted. for (size_t in_cache = 0, in_array = 0; in_cache < InlineCache::kIndividualCacheSize; ++in_cache) { mirror::Class* object = ic.classes_[in_cache].Read(); if (object != nullptr) { array->Set(in_array++, object); } } } static void ClearMethodCounter(ArtMethod* method, bool was_warm) REQUIRES_SHARED(Locks::mutator_lock_) { if (was_warm) { method->SetPreviouslyWarm(); } // We reset the counter to 1 so that the profile knows that the method was executed at least once. // This is required for layout purposes. // We also need to make sure we'll pass the warmup threshold again, so we set to 0 if // the warmup threshold is 1. uint16_t jit_warmup_threshold = Runtime::Current()->GetJITOptions()->GetWarmupThreshold(); method->SetCounter(std::min(jit_warmup_threshold - 1, 1)); } void JitCodeCache::WaitForPotentialCollectionToCompleteRunnable(Thread* self) { while (collection_in_progress_) { lock_.Unlock(self); { ScopedThreadSuspension sts(self, kSuspended); MutexLock mu(self, lock_); WaitForPotentialCollectionToComplete(self); } lock_.Lock(self); } } const MemMap* JitCodeCache::GetUpdatableCodeMapping() const { if (HasDualCodeMapping()) { return &non_exec_pages_; } else if (HasCodeMapping()) { return &exec_pages_; } else { return nullptr; } } uint8_t* JitCodeCache::CommitCodeInternal(Thread* self, ArtMethod* method, uint8_t* stack_map, uint8_t* roots_data, const uint8_t* code, size_t code_size, size_t data_size, bool osr, const std::vector<Handle<mirror::Object>>& roots, bool has_should_deoptimize_flag, const ArenaSet<ArtMethod*>& cha_single_implementation_list) { DCHECK(!method->IsNative() || !osr); if (!method->IsNative()) { // We need to do this before grabbing the lock_ because it needs to be able to see the string // InternTable. Native methods do not have roots. DCheckRootsAreValid(roots); } OatQuickMethodHeader* method_header = nullptr; uint8_t* nox_memory = nullptr; uint8_t* code_ptr = nullptr; MutexLock mu(self, lock_); // We need to make sure that there will be no jit-gcs going on and wait for any ongoing one to // finish. WaitForPotentialCollectionToCompleteRunnable(self); { ScopedCodeCacheWrite scc(this); size_t alignment = GetJitCodeAlignment(); // Ensure the header ends up at expected instruction alignment. size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment); size_t total_size = header_size + code_size; // AllocateCode allocates memory in non-executable region for alignment header and code. The // header size may include alignment padding. nox_memory = AllocateCode(total_size); if (nox_memory == nullptr) { return nullptr; } // code_ptr points to non-executable code. code_ptr = nox_memory + header_size; std::copy(code, code + code_size, code_ptr); method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); // From here code_ptr points to executable code. if (HasDualCodeMapping()) { code_ptr = TranslateAddress(code_ptr, non_exec_pages_, exec_pages_); } new (method_header) OatQuickMethodHeader( (stack_map != nullptr) ? code_ptr - stack_map : 0u, code_size); DCHECK(!Runtime::Current()->IsAotCompiler()); if (has_should_deoptimize_flag) { method_header->SetHasShouldDeoptimizeFlag(); } // Update method_header pointer to executable code region. if (HasDualCodeMapping()) { method_header = TranslateAddress(method_header, non_exec_pages_, exec_pages_); } // Both instruction and data caches need flushing to the point of unification where both share // a common view of memory. Flushing the data cache ensures the dirty cachelines from the // newly added code are written out to the point of unification. Flushing the instruction // cache ensures the newly written code will be fetched from the point of unification before // use. Memory in the code cache is re-cycled as code is added and removed. The flushes // prevent stale code from residing in the instruction cache. // // Caches are flushed before write permission is removed because some ARMv8 Qualcomm kernels // may trigger a segfault if a page fault occurs when requesting a cache maintenance // operation. This is a kernel bug that we need to work around until affected devices // (e.g. Nexus 5X and 6P) stop being supported or their kernels are fixed. // // For reference, this behavior is caused by this commit: // https://android.googlesource.com/kernel/msm/+/3fbe6bc28a6b9939d0650f2f17eb5216c719950c // bool cache_flush_success = true; if (HasDualCodeMapping()) { // Flush the data cache lines associated with the non-executable copy of the code just added. cache_flush_success = FlushCpuCaches(nox_memory, nox_memory + total_size); } // Invalidate i-cache for the executable mapping. if (cache_flush_success) { uint8_t* x_memory = reinterpret_cast<uint8_t*>(FromCodeToAllocation(code_ptr)); cache_flush_success = FlushCpuCaches(x_memory, x_memory + total_size); } // If flushing the cache has failed, reject the allocation because we can't guarantee // correctness of the instructions present in the processor caches. if (!cache_flush_success) { PLOG(ERROR) << "Cache flush failed for JIT code, code not committed."; FreeCode(nox_memory); return nullptr; } // Ensure CPU instruction pipelines are flushed for all cores. This is necessary for // correctness as code may still be in instruction pipelines despite the i-cache flush. It is // not safe to assume that changing permissions with mprotect (RX->RWX->RX) will cause a TLB // shootdown (incidentally invalidating the CPU pipelines by sending an IPI to all cores to // notify them of the TLB invalidation). Some architectures, notably ARM and ARM64, have // hardware support that broadcasts TLB invalidations and so their kernels have no software // based TLB shootdown. The sync-core flavor of membarrier was introduced in Linux 4.16 to // address this (see mbarrier(2)). The membarrier here will fail on prior kernels and on // platforms lacking the appropriate support. art::membarrier(art::MembarrierCommand::kPrivateExpeditedSyncCore); number_of_compilations_++; } // We need to update the entry point in the runnable state for the instrumentation. { // The following needs to be guarded by cha_lock_ also. Otherwise it's possible that the // compiled code is considered invalidated by some class linking, but below we still make the // compiled code valid for the method. Need cha_lock_ for checking all single-implementation // flags and register dependencies. MutexLock cha_mu(self, *Locks::cha_lock_); bool single_impl_still_valid = true; for (ArtMethod* single_impl : cha_single_implementation_list) { if (!single_impl->HasSingleImplementation()) { // Simply discard the compiled code. Clear the counter so that it may be recompiled later. // Hopefully the class hierarchy will be more stable when compilation is retried. single_impl_still_valid = false; ClearMethodCounter(method, /*was_warm=*/ false); break; } } // Discard the code if any single-implementation assumptions are now invalid. if (!single_impl_still_valid) { VLOG(jit) << "JIT discarded jitted code due to invalid single-implementation assumptions."; return nullptr; } DCHECK(cha_single_implementation_list.empty() || !Runtime::Current()->IsJavaDebuggable()) << "Should not be using cha on debuggable apps/runs!"; ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); for (ArtMethod* single_impl : cha_single_implementation_list) { class_linker->GetClassHierarchyAnalysis()->AddDependency(single_impl, method, method_header); } if (UNLIKELY(method->IsNative())) { auto it = jni_stubs_map_.find(JniStubKey(method)); DCHECK(it != jni_stubs_map_.end()) << "Entry inserted in NotifyCompilationOf() should be alive."; JniStubData* data = &it->second; DCHECK(ContainsElement(data->GetMethods(), method)) << "Entry inserted in NotifyCompilationOf() should contain this method."; data->SetCode(code_ptr); instrumentation::Instrumentation* instrum = Runtime::Current()->GetInstrumentation(); for (ArtMethod* m : data->GetMethods()) { if (!class_linker->IsQuickResolutionStub(m->GetEntryPointFromQuickCompiledCode())) { instrum->UpdateMethodsCode(m, method_header->GetEntryPoint()); } } } else { // Fill the root table before updating the entry point. DCHECK_EQ(FromStackMapToRoots(stack_map), roots_data); DCHECK_LE(roots_data, stack_map); FillRootTable(roots_data, roots); { // Flush data cache, as compiled code references literals in it. // TODO(oth): establish whether this is necessary. if (!FlushCpuCaches(roots_data, roots_data + data_size)) { PLOG(ERROR) << "Cache flush failed for JIT data, code not committed."; ScopedCodeCacheWrite scc(this); FreeCode(nox_memory); return nullptr; } } method_code_map_.Put(code_ptr, method); if (osr) { number_of_osr_compilations_++; osr_code_map_.Put(method, code_ptr); } else if (class_linker->IsQuickResolutionStub( method->GetEntryPointFromQuickCompiledCode())) { // This situation currently only occurs in the jit-zygote mode. DCHECK(Runtime::Current()->IsZygote()); DCHECK(Runtime::Current()->IsUsingApexBootImageLocation()); DCHECK(method->GetProfilingInfo(kRuntimePointerSize) != nullptr); DCHECK(method->GetDeclaringClass()->GetClassLoader() == nullptr); // Save the entrypoint, so it can be fethed later once the class is // initialized. method->GetProfilingInfo(kRuntimePointerSize)->SetSavedEntryPoint( method_header->GetEntryPoint()); } else { Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( method, method_header->GetEntryPoint()); } } VLOG(jit) << "JIT added (osr=" << std::boolalpha << osr << std::noboolalpha << ") " << ArtMethod::PrettyMethod(method) << "@" << method << " ccache_size=" << PrettySize(CodeCacheSizeLocked()) << ": " << " dcache_size=" << PrettySize(DataCacheSizeLocked()) << ": " << reinterpret_cast<const void*>(method_header->GetEntryPoint()) << "," << reinterpret_cast<const void*>(method_header->GetEntryPoint() + method_header->GetCodeSize()); histogram_code_memory_use_.AddValue(code_size); if (code_size > kCodeSizeLogThreshold) { LOG(INFO) << "JIT allocated " << PrettySize(code_size) << " for compiled code of " << ArtMethod::PrettyMethod(method); } } return reinterpret_cast<uint8_t*>(method_header); } size_t JitCodeCache::CodeCacheSize() { MutexLock mu(Thread::Current(), lock_); return CodeCacheSizeLocked(); } bool JitCodeCache::RemoveMethod(ArtMethod* method, bool release_memory) { // This function is used only for testing and only with non-native methods. CHECK(!method->IsNative()); MutexLock mu(Thread::Current(), lock_); bool osr = osr_code_map_.find(method) != osr_code_map_.end(); bool in_cache = RemoveMethodLocked(method, release_memory); if (!in_cache) { return false; } method->SetCounter(0); Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( method, GetQuickToInterpreterBridge()); VLOG(jit) << "JIT removed (osr=" << std::boolalpha << osr << std::noboolalpha << ") " << ArtMethod::PrettyMethod(method) << "@" << method << " ccache_size=" << PrettySize(CodeCacheSizeLocked()) << ": " << " dcache_size=" << PrettySize(DataCacheSizeLocked()); return true; } bool JitCodeCache::RemoveMethodLocked(ArtMethod* method, bool release_memory) { if (LIKELY(!method->IsNative())) { ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); if (info != nullptr) { RemoveElement(profiling_infos_, info); } method->SetProfilingInfo(nullptr); } bool in_cache = false; ScopedCodeCacheWrite ccw(this); if (UNLIKELY(method->IsNative())) { auto it = jni_stubs_map_.find(JniStubKey(method)); if (it != jni_stubs_map_.end() && it->second.RemoveMethod(method)) { in_cache = true; if (it->second.GetMethods().empty()) { if (release_memory) { FreeCodeAndData(it->second.GetCode()); } jni_stubs_map_.erase(it); } else { it->first.UpdateShorty(it->second.GetMethods().front()); } } } else { for (auto it = method_code_map_.begin(); it != method_code_map_.end();) { if (it->second == method) { in_cache = true; if (release_memory) { FreeCodeAndData(it->first); } it = method_code_map_.erase(it); } else { ++it; } } auto osr_it = osr_code_map_.find(method); if (osr_it != osr_code_map_.end()) { osr_code_map_.erase(osr_it); } } return in_cache; } // This notifies the code cache that the given method has been redefined and that it should remove // any cached information it has on the method. All threads must be suspended before calling this // method. The compiled code for the method (if there is any) must not be in any threads call stack. void JitCodeCache::NotifyMethodRedefined(ArtMethod* method) { MutexLock mu(Thread::Current(), lock_); RemoveMethodLocked(method, /* release_memory= */ true); } // This invalidates old_method. Once this function returns one can no longer use old_method to // execute code unless it is fixed up. This fixup will happen later in the process of installing a // class redefinition. // TODO We should add some info to ArtMethod to note that 'old_method' has been invalidated and // shouldn't be used since it is no longer logically in the jit code cache. // TODO We should add DCHECKS that validate that the JIT is paused when this method is entered. void JitCodeCache::MoveObsoleteMethod(ArtMethod* old_method, ArtMethod* new_method) { MutexLock mu(Thread::Current(), lock_); if (old_method->IsNative()) { // Update methods in jni_stubs_map_. for (auto& entry : jni_stubs_map_) { JniStubData& data = entry.second; data.MoveObsoleteMethod(old_method, new_method); } return; } // Update ProfilingInfo to the new one and remove it from the old_method. if (old_method->GetProfilingInfo(kRuntimePointerSize) != nullptr) { DCHECK_EQ(old_method->GetProfilingInfo(kRuntimePointerSize)->GetMethod(), old_method); ProfilingInfo* info = old_method->GetProfilingInfo(kRuntimePointerSize); old_method->SetProfilingInfo(nullptr); // Since the JIT should be paused and all threads suspended by the time this is called these // checks should always pass. DCHECK(!info->IsInUseByCompiler()); new_method->SetProfilingInfo(info); // Get rid of the old saved entrypoint if it is there. info->SetSavedEntryPoint(nullptr); info->method_ = new_method; } // Update method_code_map_ to point to the new method. for (auto& it : method_code_map_) { if (it.second == old_method) { it.second = new_method; } } // Update osr_code_map_ to point to the new method. auto code_map = osr_code_map_.find(old_method); if (code_map != osr_code_map_.end()) { osr_code_map_.Put(new_method, code_map->second); osr_code_map_.erase(old_method); } } void JitCodeCache::ClearEntryPointsInZygoteExecSpace() { MutexLock mu(Thread::Current(), lock_); // Iterate over profiling infos to know which methods may have been JITted. Note that // to be JITted, a method must have a profiling info. for (ProfilingInfo* info : profiling_infos_) { ArtMethod* method = info->GetMethod(); if (IsInZygoteExecSpace(method->GetEntryPointFromQuickCompiledCode())) { method->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); } // If zygote does method tracing, or in some configuration where // the JIT zygote does GC, we also need to clear the saved entry point // in the profiling info. if (IsInZygoteExecSpace(info->GetSavedEntryPoint())) { info->SetSavedEntryPoint(nullptr); } } } size_t JitCodeCache::CodeCacheSizeLocked() { return used_memory_for_code_; } size_t JitCodeCache::DataCacheSize() { MutexLock mu(Thread::Current(), lock_); return DataCacheSizeLocked(); } size_t JitCodeCache::DataCacheSizeLocked() { return used_memory_for_data_; } void JitCodeCache::ClearData(Thread* self, uint8_t* stack_map_data, uint8_t* roots_data) { DCHECK_EQ(FromStackMapToRoots(stack_map_data), roots_data); MutexLock mu(self, lock_); FreeData(reinterpret_cast<uint8_t*>(roots_data)); } size_t JitCodeCache::ReserveData(Thread* self, size_t stack_map_size, size_t number_of_roots, ArtMethod* method, uint8_t** stack_map_data, uint8_t** roots_data) { size_t table_size = ComputeRootTableSize(number_of_roots); size_t size = RoundUp(stack_map_size + table_size, sizeof(void*)); uint8_t* result = nullptr; { ScopedThreadSuspension sts(self, kSuspended); MutexLock mu(self, lock_); WaitForPotentialCollectionToComplete(self); result = AllocateData(size); } if (result == nullptr) { // Retry. GarbageCollectCache(self); ScopedThreadSuspension sts(self, kSuspended); MutexLock mu(self, lock_); WaitForPotentialCollectionToComplete(self); result = AllocateData(size); } MutexLock mu(self, lock_); histogram_stack_map_memory_use_.AddValue(size); if (size > kStackMapSizeLogThreshold) { LOG(INFO) << "JIT allocated " << PrettySize(size) << " for stack maps of " << ArtMethod::PrettyMethod(method); } if (result != nullptr) { *roots_data = result; *stack_map_data = result + table_size; FillRootTableLength(*roots_data, number_of_roots); return size; } else { *roots_data = nullptr; *stack_map_data = nullptr; return 0; } } class MarkCodeClosure final : public Closure { public: MarkCodeClosure(JitCodeCache* code_cache, CodeCacheBitmap* bitmap, Barrier* barrier) : code_cache_(code_cache), bitmap_(bitmap), barrier_(barrier) {} void Run(Thread* thread) override REQUIRES_SHARED(Locks::mutator_lock_) { ScopedTrace trace(__PRETTY_FUNCTION__); DCHECK(thread == Thread::Current() || thread->IsSuspended()); StackVisitor::WalkStack( [&](const art::StackVisitor* stack_visitor) { const OatQuickMethodHeader* method_header = stack_visitor->GetCurrentOatQuickMethodHeader(); if (method_header == nullptr) { return true; } const void* code = method_header->GetCode(); if (code_cache_->ContainsPc(code) && !code_cache_->IsInZygoteExecSpace(code)) { // Use the atomic set version, as multiple threads are executing this code. bitmap_->AtomicTestAndSet(FromCodeToAllocation(code)); } return true; }, thread, /* context= */ nullptr, art::StackVisitor::StackWalkKind::kSkipInlinedFrames); if (kIsDebugBuild) { // The stack walking code queries the side instrumentation stack if it // sees an instrumentation exit pc, so the JIT code of methods in that stack // must have been seen. We sanity check this below. for (const instrumentation::InstrumentationStackFrame& frame : *thread->GetInstrumentationStack()) { // The 'method_' in InstrumentationStackFrame is the one that has return_pc_ in // its stack frame, it is not the method owning return_pc_. We just pass null to // LookupMethodHeader: the method is only checked against in debug builds. OatQuickMethodHeader* method_header = code_cache_->LookupMethodHeader(frame.return_pc_, /* method= */ nullptr); if (method_header != nullptr) { const void* code = method_header->GetCode(); CHECK(bitmap_->Test(FromCodeToAllocation(code))); } } } barrier_->Pass(Thread::Current()); } private: JitCodeCache* const code_cache_; CodeCacheBitmap* const bitmap_; Barrier* const barrier_; }; void JitCodeCache::NotifyCollectionDone(Thread* self) { collection_in_progress_ = false; lock_cond_.Broadcast(self); } void JitCodeCache::SetFootprintLimit(size_t new_footprint) { size_t data_space_footprint = new_footprint / kCodeAndDataCapacityDivider; DCHECK(IsAlignedParam(data_space_footprint, kPageSize)); DCHECK_EQ(data_space_footprint * kCodeAndDataCapacityDivider, new_footprint); mspace_set_footprint_limit(data_mspace_, data_space_footprint); if (HasCodeMapping()) { ScopedCodeCacheWrite scc(this); mspace_set_footprint_limit(exec_mspace_, new_footprint - data_space_footprint); } } bool JitCodeCache::IncreaseCodeCacheCapacity() { if (current_capacity_ == max_capacity_) { return false; } // Double the capacity if we're below 1MB, or increase it by 1MB if // we're above. if (current_capacity_ < 1 * MB) { current_capacity_ *= 2; } else { current_capacity_ += 1 * MB; } if (current_capacity_ > max_capacity_) { current_capacity_ = max_capacity_; } VLOG(jit) << "Increasing code cache capacity to " << PrettySize(current_capacity_); SetFootprintLimit(current_capacity_); return true; } void JitCodeCache::MarkCompiledCodeOnThreadStacks(Thread* self) { Barrier barrier(0); size_t threads_running_checkpoint = 0; MarkCodeClosure closure(this, GetLiveBitmap(), &barrier); threads_running_checkpoint = Runtime::Current()->GetThreadList()->RunCheckpoint(&closure); // Now that we have run our checkpoint, move to a suspended state and wait // for other threads to run the checkpoint. ScopedThreadSuspension sts(self, kSuspended); if (threads_running_checkpoint != 0) { barrier.Increment(self, threads_running_checkpoint); } } bool JitCodeCache::ShouldDoFullCollection() { if (current_capacity_ == max_capacity_) { // Always do a full collection when the code cache is full. return true; } else if (current_capacity_ < kReservedCapacity) { // Always do partial collection when the code cache size is below the reserved // capacity. return false; } else if (last_collection_increased_code_cache_) { // This time do a full collection. return true; } else { // This time do a partial collection. return false; } } void JitCodeCache::GarbageCollectCache(Thread* self) { ScopedTrace trace(__FUNCTION__); // Wait for an existing collection, or let everyone know we are starting one. { ScopedThreadSuspension sts(self, kSuspended); MutexLock mu(self, lock_); if (!garbage_collect_code_) { IncreaseCodeCacheCapacity(); return; } else if (WaitForPotentialCollectionToComplete(self)) { return; } else { number_of_collections_++; live_bitmap_.reset(CodeCacheBitmap::Create( "code-cache-bitmap", reinterpret_cast<uintptr_t>(exec_pages_.Begin()), reinterpret_cast<uintptr_t>(exec_pages_.Begin() + current_capacity_ / 2))); collection_in_progress_ = true; } } TimingLogger logger("JIT code cache timing logger", true, VLOG_IS_ON(jit)); { TimingLogger::ScopedTiming st("Code cache collection", &logger); bool do_full_collection = false; { MutexLock mu(self, lock_); do_full_collection = ShouldDoFullCollection(); } VLOG(jit) << "Do " << (do_full_collection ? "full" : "partial") << " code cache collection, code=" << PrettySize(CodeCacheSize()) << ", data=" << PrettySize(DataCacheSize()); DoCollection(self, /* collect_profiling_info= */ do_full_collection); VLOG(jit) << "After code cache collection, code=" << PrettySize(CodeCacheSize()) << ", data=" << PrettySize(DataCacheSize()); { MutexLock mu(self, lock_); // Increase the code cache only when we do partial collections. // TODO: base this strategy on how full the code cache is? if (do_full_collection) { last_collection_increased_code_cache_ = false; } else { last_collection_increased_code_cache_ = true; IncreaseCodeCacheCapacity(); } bool next_collection_will_be_full = ShouldDoFullCollection(); // Start polling the liveness of compiled code to prepare for the next full collection. if (next_collection_will_be_full) { // Save the entry point of methods we have compiled, and update the entry // point of those methods to the interpreter. If the method is invoked, the // interpreter will update its entry point to the compiled code and call it. for (ProfilingInfo* info : profiling_infos_) { const void* entry_point = info->GetMethod()->GetEntryPointFromQuickCompiledCode(); if (!IsInZygoteDataSpace(info) && ContainsPc(entry_point)) { info->SetSavedEntryPoint(entry_point); // Don't call Instrumentation::UpdateMethodsCode(), as it can check the declaring // class of the method. We may be concurrently running a GC which makes accessing // the class unsafe. We know it is OK to bypass the instrumentation as we've just // checked that the current entry point is JIT compiled code. info->GetMethod()->SetEntryPointFromQuickCompiledCode(GetQuickToInterpreterBridge()); } } DCHECK(CheckLiveCompiledCodeHasProfilingInfo()); // Change entry points of native methods back to the GenericJNI entrypoint. for (const auto& entry : jni_stubs_map_) { const JniStubData& data = entry.second; if (!data.IsCompiled() || IsInZygoteExecSpace(data.GetCode())) { continue; } // Make sure a single invocation of the GenericJNI trampoline tries to recompile. uint16_t new_counter = Runtime::Current()->GetJit()->HotMethodThreshold() - 1u; const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(data.GetCode()); for (ArtMethod* method : data.GetMethods()) { if (method->GetEntryPointFromQuickCompiledCode() == method_header->GetEntryPoint()) { // Don't call Instrumentation::UpdateMethodsCode(), same as for normal methods above. method->SetCounter(new_counter); method->SetEntryPointFromQuickCompiledCode(GetQuickGenericJniStub()); } } } } live_bitmap_.reset(nullptr); NotifyCollectionDone(self); } } Runtime::Current()->GetJit()->AddTimingLogger(logger); } void JitCodeCache::RemoveUnmarkedCode(Thread* self) { ScopedTrace trace(__FUNCTION__); std::unordered_set<OatQuickMethodHeader*> method_headers; { MutexLock mu(self, lock_); ScopedCodeCacheWrite scc(this); // Iterate over all compiled code and remove entries that are not marked. for (auto it = jni_stubs_map_.begin(); it != jni_stubs_map_.end();) { JniStubData* data = &it->second; if (IsInZygoteExecSpace(data->GetCode()) || !data->IsCompiled() || GetLiveBitmap()->Test(FromCodeToAllocation(data->GetCode()))) { ++it; } else { method_headers.insert(OatQuickMethodHeader::FromCodePointer(data->GetCode())); it = jni_stubs_map_.erase(it); } } for (auto it = method_code_map_.begin(); it != method_code_map_.end();) { const void* code_ptr = it->first; uintptr_t allocation = FromCodeToAllocation(code_ptr); if (IsInZygoteExecSpace(code_ptr) || GetLiveBitmap()->Test(allocation)) { ++it; } else { OatQuickMethodHeader* header = OatQuickMethodHeader::FromCodePointer(code_ptr); method_headers.insert(header); it = method_code_map_.erase(it); } } } FreeAllMethodHeaders(method_headers); } bool JitCodeCache::GetGarbageCollectCode() { MutexLock mu(Thread::Current(), lock_); return garbage_collect_code_; } void JitCodeCache::SetGarbageCollectCode(bool value) { Thread* self = Thread::Current(); MutexLock mu(self, lock_); if (garbage_collect_code_ != value) { if (garbage_collect_code_) { // When dynamically disabling the garbage collection, we neee // to make sure that a potential current collection is finished, and also // clear the saved entry point in profiling infos to avoid dangling pointers. WaitForPotentialCollectionToComplete(self); for (ProfilingInfo* info : profiling_infos_) { info->SetSavedEntryPoint(nullptr); } } // Update the flag while holding the lock to ensure no thread will try to GC. garbage_collect_code_ = value; } } void JitCodeCache::DoCollection(Thread* self, bool collect_profiling_info) { ScopedTrace trace(__FUNCTION__); { MutexLock mu(self, lock_); if (collect_profiling_info) { // Clear the profiling info of methods that do not have compiled code as entrypoint. // Also remove the saved entry point from the ProfilingInfo objects. for (ProfilingInfo* info : profiling_infos_) { const void* ptr = info->GetMethod()->GetEntryPointFromQuickCompiledCode(); if (!ContainsPc(ptr) && !info->IsInUseByCompiler() && !IsInZygoteDataSpace(info)) { info->GetMethod()->SetProfilingInfo(nullptr); } if (info->GetSavedEntryPoint() != nullptr) { info->SetSavedEntryPoint(nullptr); // We are going to move this method back to interpreter. Clear the counter now to // give it a chance to be hot again. ClearMethodCounter(info->GetMethod(), /*was_warm=*/ true); } } } else if (kIsDebugBuild) { // Sanity check that the profiling infos do not have a dangling entry point. for (ProfilingInfo* info : profiling_infos_) { DCHECK(!Runtime::Current()->IsZygote()); const void* entry_point = info->GetSavedEntryPoint(); DCHECK(entry_point == nullptr || IsInZygoteExecSpace(entry_point)); } } // Mark compiled code that are entrypoints of ArtMethods. Compiled code that is not // an entry point is either: // - an osr compiled code, that will be removed if not in a thread call stack. // - discarded compiled code, that will be removed if not in a thread call stack. for (const auto& entry : jni_stubs_map_) { const JniStubData& data = entry.second; const void* code_ptr = data.GetCode(); if (IsInZygoteExecSpace(code_ptr)) { continue; } const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); for (ArtMethod* method : data.GetMethods()) { if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) { GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(code_ptr)); break; } } } for (const auto& it : method_code_map_) { ArtMethod* method = it.second; const void* code_ptr = it.first; if (IsInZygoteExecSpace(code_ptr)) { continue; } const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) { GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(code_ptr)); } } // Empty osr method map, as osr compiled code will be deleted (except the ones // on thread stacks). osr_code_map_.clear(); } // Run a checkpoint on all threads to mark the JIT compiled code they are running. MarkCompiledCodeOnThreadStacks(self); // At this point, mutator threads are still running, and entrypoints of methods can // change. We do know they cannot change to a code cache entry that is not marked, // therefore we can safely remove those entries. RemoveUnmarkedCode(self); if (collect_profiling_info) { MutexLock mu(self, lock_); // Free all profiling infos of methods not compiled nor being compiled. auto profiling_kept_end = std::remove_if(profiling_infos_.begin(), profiling_infos_.end(), [this] (ProfilingInfo* info) NO_THREAD_SAFETY_ANALYSIS { const void* ptr = info->GetMethod()->GetEntryPointFromQuickCompiledCode(); // We have previously cleared the ProfilingInfo pointer in the ArtMethod in the hope // that the compiled code would not get revived. As mutator threads run concurrently, // they may have revived the compiled code, and now we are in the situation where // a method has compiled code but no ProfilingInfo. // We make sure compiled methods have a ProfilingInfo object. It is needed for // code cache collection. if (ContainsPc(ptr) && info->GetMethod()->GetProfilingInfo(kRuntimePointerSize) == nullptr) { info->GetMethod()->SetProfilingInfo(info); } else if (info->GetMethod()->GetProfilingInfo(kRuntimePointerSize) != info) { // No need for this ProfilingInfo object anymore. FreeData(reinterpret_cast<uint8_t*>(info)); return true; } return false; }); profiling_infos_.erase(profiling_kept_end, profiling_infos_.end()); DCHECK(CheckLiveCompiledCodeHasProfilingInfo()); } } bool JitCodeCache::CheckLiveCompiledCodeHasProfilingInfo() { ScopedTrace trace(__FUNCTION__); // Check that methods we have compiled do have a ProfilingInfo object. We would // have memory leaks of compiled code otherwise. for (const auto& it : method_code_map_) { ArtMethod* method = it.second; if (method->GetProfilingInfo(kRuntimePointerSize) == nullptr) { const void* code_ptr = it.first; const OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); if (method_header->GetEntryPoint() == method->GetEntryPointFromQuickCompiledCode()) { // If the code is not dead, then we have a problem. Note that this can even // happen just after a collection, as mutator threads are running in parallel // and could deoptimize an existing compiled code. return false; } } } return true; } OatQuickMethodHeader* JitCodeCache::LookupMethodHeader(uintptr_t pc, ArtMethod* method) { static_assert(kRuntimeISA != InstructionSet::kThumb2, "kThumb2 cannot be a runtime ISA"); if (kRuntimeISA == InstructionSet::kArm) { // On Thumb-2, the pc is offset by one. --pc; } if (!ContainsPc(reinterpret_cast<const void*>(pc))) { return nullptr; } if (!kIsDebugBuild) { // Called with null `method` only from MarkCodeClosure::Run() in debug build. CHECK(method != nullptr); } MutexLock mu(Thread::Current(), lock_); OatQuickMethodHeader* method_header = nullptr; ArtMethod* found_method = nullptr; // Only for DCHECK(), not for JNI stubs. if (method != nullptr && UNLIKELY(method->IsNative())) { auto it = jni_stubs_map_.find(JniStubKey(method)); if (it == jni_stubs_map_.end() || !ContainsElement(it->second.GetMethods(), method)) { return nullptr; } const void* code_ptr = it->second.GetCode(); method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); if (!method_header->Contains(pc)) { return nullptr; } } else { auto it = method_code_map_.lower_bound(reinterpret_cast<const void*>(pc)); if (it != method_code_map_.begin()) { --it; const void* code_ptr = it->first; if (OatQuickMethodHeader::FromCodePointer(code_ptr)->Contains(pc)) { method_header = OatQuickMethodHeader::FromCodePointer(code_ptr); found_method = it->second; } } if (method_header == nullptr && method == nullptr) { // Scan all compiled JNI stubs as well. This slow search is used only // for checks in debug build, for release builds the `method` is not null. for (auto&& entry : jni_stubs_map_) { const JniStubData& data = entry.second; if (data.IsCompiled() && OatQuickMethodHeader::FromCodePointer(data.GetCode())->Contains(pc)) { method_header = OatQuickMethodHeader::FromCodePointer(data.GetCode()); } } } if (method_header == nullptr) { return nullptr; } } if (kIsDebugBuild && method != nullptr && !method->IsNative()) { // When we are walking the stack to redefine classes and creating obsolete methods it is // possible that we might have updated the method_code_map by making this method obsolete in a // previous frame. Therefore we should just check that the non-obsolete version of this method // is the one we expect. We change to the non-obsolete versions in the error message since the // obsolete version of the method might not be fully initialized yet. This situation can only // occur when we are in the process of allocating and setting up obsolete methods. Otherwise // method and it->second should be identical. (See openjdkjvmti/ti_redefine.cc for more // information.) DCHECK_EQ(found_method->GetNonObsoleteMethod(), method->GetNonObsoleteMethod()) << ArtMethod::PrettyMethod(method->GetNonObsoleteMethod()) << " " << ArtMethod::PrettyMethod(found_method->GetNonObsoleteMethod()) << " " << std::hex << pc; } return method_header; } OatQuickMethodHeader* JitCodeCache::LookupOsrMethodHeader(ArtMethod* method) { MutexLock mu(Thread::Current(), lock_); auto it = osr_code_map_.find(method); if (it == osr_code_map_.end()) { return nullptr; } return OatQuickMethodHeader::FromCodePointer(it->second); } ProfilingInfo* JitCodeCache::AddProfilingInfo(Thread* self, ArtMethod* method, const std::vector<uint32_t>& entries, bool retry_allocation) // No thread safety analysis as we are using TryLock/Unlock explicitly. NO_THREAD_SAFETY_ANALYSIS { ProfilingInfo* info = nullptr; if (!retry_allocation) { // If we are allocating for the interpreter, just try to lock, to avoid // lock contention with the JIT. if (lock_.ExclusiveTryLock(self)) { info = AddProfilingInfoInternal(self, method, entries); lock_.ExclusiveUnlock(self); } } else { { MutexLock mu(self, lock_); info = AddProfilingInfoInternal(self, method, entries); } if (info == nullptr) { GarbageCollectCache(self); MutexLock mu(self, lock_); info = AddProfilingInfoInternal(self, method, entries); } } return info; } ProfilingInfo* JitCodeCache::AddProfilingInfoInternal(Thread* self ATTRIBUTE_UNUSED, ArtMethod* method, const std::vector<uint32_t>& entries) { size_t profile_info_size = RoundUp( sizeof(ProfilingInfo) + sizeof(InlineCache) * entries.size(), sizeof(void*)); // Check whether some other thread has concurrently created it. ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); if (info != nullptr) { return info; } uint8_t* data = AllocateData(profile_info_size); if (data == nullptr) { return nullptr; } info = new (data) ProfilingInfo(method, entries); // Make sure other threads see the data in the profiling info object before the // store in the ArtMethod's ProfilingInfo pointer. std::atomic_thread_fence(std::memory_order_release); method->SetProfilingInfo(info); profiling_infos_.push_back(info); histogram_profiling_info_memory_use_.AddValue(profile_info_size); return info; } // NO_THREAD_SAFETY_ANALYSIS as this is called from mspace code, at which point the lock // is already held. void* JitCodeCache::MoreCore(const void* mspace, intptr_t increment) NO_THREAD_SAFETY_ANALYSIS { if (mspace == exec_mspace_) { DCHECK(exec_mspace_ != nullptr); const MemMap* const code_pages = GetUpdatableCodeMapping(); void* result = code_pages->Begin() + exec_end_; exec_end_ += increment; return result; } else { DCHECK_EQ(data_mspace_, mspace); void* result = data_pages_.Begin() + data_end_; data_end_ += increment; return result; } } void JitCodeCache::GetProfiledMethods(const std::set<std::string>& dex_base_locations, std::vector<ProfileMethodInfo>& methods) { Thread* self = Thread::Current(); WaitUntilInlineCacheAccessible(self); MutexLock mu(self, lock_); ScopedTrace trace(__FUNCTION__); uint16_t jit_compile_threshold = Runtime::Current()->GetJITOptions()->GetCompileThreshold(); for (const ProfilingInfo* info : profiling_infos_) { ArtMethod* method = info->GetMethod(); const DexFile* dex_file = method->GetDexFile(); const std::string base_location = DexFileLoader::GetBaseLocation(dex_file->GetLocation()); if (!ContainsElement(dex_base_locations, base_location)) { // Skip dex files which are not profiled. continue; } std::vector<ProfileMethodInfo::ProfileInlineCache> inline_caches; // If the method didn't reach the compilation threshold don't save the inline caches. // They might be incomplete and cause unnecessary deoptimizations. // If the inline cache is empty the compiler will generate a regular invoke virtual/interface. if (method->GetCounter() < jit_compile_threshold) { methods.emplace_back(/*ProfileMethodInfo*/ MethodReference(dex_file, method->GetDexMethodIndex()), inline_caches); continue; } for (size_t i = 0; i < info->number_of_inline_caches_; ++i) { std::vector<TypeReference> profile_classes; const InlineCache& cache = info->cache_[i]; ArtMethod* caller = info->GetMethod(); bool is_missing_types = false; for (size_t k = 0; k < InlineCache::kIndividualCacheSize; k++) { mirror::Class* cls = cache.classes_[k].Read(); if (cls == nullptr) { break; } // Check if the receiver is in the boot class path or if it's in the // same class loader as the caller. If not, skip it, as there is not // much we can do during AOT. if (!cls->IsBootStrapClassLoaded() && caller->GetClassLoader() != cls->GetClassLoader()) { is_missing_types = true; continue; } const DexFile* class_dex_file = nullptr; dex::TypeIndex type_index; if (cls->GetDexCache() == nullptr) { DCHECK(cls->IsArrayClass()) << cls->PrettyClass(); // Make a best effort to find the type index in the method's dex file. // We could search all open dex files but that might turn expensive // and probably not worth it. class_dex_file = dex_file; type_index = cls->FindTypeIndexInOtherDexFile(*dex_file); } else { class_dex_file = &(cls->GetDexFile()); type_index = cls->GetDexTypeIndex(); } if (!type_index.IsValid()) { // Could be a proxy class or an array for which we couldn't find the type index. is_missing_types = true; continue; } if (ContainsElement(dex_base_locations, DexFileLoader::GetBaseLocation(class_dex_file->GetLocation()))) { // Only consider classes from the same apk (including multidex). profile_classes.emplace_back(/*ProfileMethodInfo::ProfileClassReference*/ class_dex_file, type_index); } else { is_missing_types = true; } } if (!profile_classes.empty()) { inline_caches.emplace_back(/*ProfileMethodInfo::ProfileInlineCache*/ cache.dex_pc_, is_missing_types, profile_classes); } } methods.emplace_back(/*ProfileMethodInfo*/ MethodReference(dex_file, method->GetDexMethodIndex()), inline_caches); } } bool JitCodeCache::IsOsrCompiled(ArtMethod* method) { MutexLock mu(Thread::Current(), lock_); return osr_code_map_.find(method) != osr_code_map_.end(); } bool JitCodeCache::NotifyCompilationOf(ArtMethod* method, Thread* self, bool osr) { if (!osr && ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { return false; } ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); if (class_linker->IsQuickResolutionStub(method->GetEntryPointFromQuickCompiledCode())) { if (!Runtime::Current()->IsUsingApexBootImageLocation() || !Runtime::Current()->IsZygote()) { // Unless we're running as zygote in the jitzygote experiment, we currently don't save // the JIT compiled code if we cannot update the entrypoint due to having the resolution stub. VLOG(jit) << "Not compiling " << method->PrettyMethod() << " because it has the resolution stub"; // Give it a new chance to be hot. ClearMethodCounter(method, /*was_warm=*/ false); return false; } } MutexLock mu(self, lock_); if (osr && (osr_code_map_.find(method) != osr_code_map_.end())) { return false; } if (UNLIKELY(method->IsNative())) { JniStubKey key(method); auto it = jni_stubs_map_.find(key); bool new_compilation = false; if (it == jni_stubs_map_.end()) { // Create a new entry to mark the stub as being compiled. it = jni_stubs_map_.Put(key, JniStubData{}); new_compilation = true; } JniStubData* data = &it->second; data->AddMethod(method); if (data->IsCompiled()) { OatQuickMethodHeader* method_header = OatQuickMethodHeader::FromCodePointer(data->GetCode()); const void* entrypoint = method_header->GetEntryPoint(); // Update also entrypoints of other methods held by the JniStubData. // We could simply update the entrypoint of `method` but if the last JIT GC has // changed these entrypoints to GenericJNI in preparation for a full GC, we may // as well change them back as this stub shall not be collected anyway and this // can avoid a few expensive GenericJNI calls. instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); for (ArtMethod* m : data->GetMethods()) { // Call the dedicated method instead of the more generic UpdateMethodsCode, because // `m` might be in the process of being deleted. if (!class_linker->IsQuickResolutionStub(m->GetEntryPointFromQuickCompiledCode())) { instrumentation->UpdateNativeMethodsCodeToJitCode(m, entrypoint); } } if (collection_in_progress_) { if (!IsInZygoteExecSpace(data->GetCode())) { GetLiveBitmap()->AtomicTestAndSet(FromCodeToAllocation(data->GetCode())); } } } return new_compilation; } else { ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); if (info == nullptr) { VLOG(jit) << method->PrettyMethod() << " needs a ProfilingInfo to be compiled"; // Because the counter is not atomic, there are some rare cases where we may not hit the // threshold for creating the ProfilingInfo. Reset the counter now to "correct" this. ClearMethodCounter(method, /*was_warm=*/ false); return false; } if (info->IsMethodBeingCompiled(osr)) { return false; } info->SetIsMethodBeingCompiled(true, osr); return true; } } ProfilingInfo* JitCodeCache::NotifyCompilerUse(ArtMethod* method, Thread* self) { MutexLock mu(self, lock_); ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); if (info != nullptr) { if (!info->IncrementInlineUse()) { // Overflow of inlining uses, just bail. return nullptr; } } return info; } void JitCodeCache::DoneCompilerUse(ArtMethod* method, Thread* self) { MutexLock mu(self, lock_); ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); DCHECK(info != nullptr); info->DecrementInlineUse(); } void JitCodeCache::DoneCompiling(ArtMethod* method, Thread* self, bool osr) { DCHECK_EQ(Thread::Current(), self); MutexLock mu(self, lock_); if (UNLIKELY(method->IsNative())) { auto it = jni_stubs_map_.find(JniStubKey(method)); DCHECK(it != jni_stubs_map_.end()); JniStubData* data = &it->second; DCHECK(ContainsElement(data->GetMethods(), method)); if (UNLIKELY(!data->IsCompiled())) { // Failed to compile; the JNI compiler never fails, but the cache may be full. jni_stubs_map_.erase(it); // Remove the entry added in NotifyCompilationOf(). } // else CommitCodeInternal() updated entrypoints of all methods in the JniStubData. } else { ProfilingInfo* info = method->GetProfilingInfo(kRuntimePointerSize); DCHECK(info->IsMethodBeingCompiled(osr)); info->SetIsMethodBeingCompiled(false, osr); } } void JitCodeCache::InvalidateCompiledCodeFor(ArtMethod* method, const OatQuickMethodHeader* header) { DCHECK(!method->IsNative()); ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize); const void* method_entrypoint = method->GetEntryPointFromQuickCompiledCode(); if ((profiling_info != nullptr) && (profiling_info->GetSavedEntryPoint() == header->GetEntryPoint())) { // When instrumentation is set, the actual entrypoint is the one in the profiling info. method_entrypoint = profiling_info->GetSavedEntryPoint(); // Prevent future uses of the compiled code. profiling_info->SetSavedEntryPoint(nullptr); } // Clear the method counter if we are running jitted code since we might want to jit this again in // the future. if (method_entrypoint == header->GetEntryPoint()) { // The entrypoint is the one to invalidate, so we just update it to the interpreter entry point // and clear the counter to get the method Jitted again. Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( method, GetQuickToInterpreterBridge()); ClearMethodCounter(method, /*was_warm=*/ profiling_info != nullptr); } else { MutexLock mu(Thread::Current(), lock_); auto it = osr_code_map_.find(method); if (it != osr_code_map_.end() && OatQuickMethodHeader::FromCodePointer(it->second) == header) { // Remove the OSR method, to avoid using it again. osr_code_map_.erase(it); } } } uint8_t* JitCodeCache::AllocateCode(size_t allocation_size) { // Each allocation should be on its own set of cache lines. The allocation must be large enough // for header, code, and any padding. size_t alignment = GetJitCodeAlignment(); uint8_t* result = reinterpret_cast<uint8_t*>( mspace_memalign(exec_mspace_, alignment, allocation_size)); size_t header_size = RoundUp(sizeof(OatQuickMethodHeader), alignment); // Ensure the header ends up at expected instruction alignment. DCHECK_ALIGNED_PARAM(reinterpret_cast<uintptr_t>(result + header_size), alignment); used_memory_for_code_ += mspace_usable_size(result); return result; } void JitCodeCache::FreeCode(uint8_t* code) { if (IsInZygoteExecSpace(code)) { // No need to free, this is shared memory. return; } used_memory_for_code_ -= mspace_usable_size(code); mspace_free(exec_mspace_, code); } uint8_t* JitCodeCache::AllocateData(size_t data_size) { void* result = mspace_malloc(data_mspace_, data_size); used_memory_for_data_ += mspace_usable_size(result); return reinterpret_cast<uint8_t*>(result); } void JitCodeCache::FreeData(uint8_t* data) { if (IsInZygoteDataSpace(data)) { // No need to free, this is shared memory. return; } used_memory_for_data_ -= mspace_usable_size(data); mspace_free(data_mspace_, data); } void JitCodeCache::Dump(std::ostream& os) { MutexLock mu(Thread::Current(), lock_); os << "Current JIT code cache size: " << PrettySize(used_memory_for_code_) << "\n" << "Current JIT data cache size: " << PrettySize(used_memory_for_data_) << "\n" << "Current JIT mini-debug-info size: " << PrettySize(GetJitMiniDebugInfoMemUsage()) << "\n" << "Current JIT capacity: " << PrettySize(current_capacity_) << "\n" << "Current number of JIT JNI stub entries: " << jni_stubs_map_.size() << "\n" << "Current number of JIT code cache entries: " << method_code_map_.size() << "\n" << "Total number of JIT compilations: " << number_of_compilations_ << "\n" << "Total number of JIT compilations for on stack replacement: " << number_of_osr_compilations_ << "\n" << "Total number of JIT code cache collections: " << number_of_collections_ << std::endl; histogram_stack_map_memory_use_.PrintMemoryUse(os); histogram_code_memory_use_.PrintMemoryUse(os); histogram_profiling_info_memory_use_.PrintMemoryUse(os); } void JitCodeCache::PostForkChildAction(bool is_system_server, bool is_zygote) { if (is_zygote) { // Don't transition if this is for a child zygote. return; } MutexLock mu(Thread::Current(), lock_); zygote_data_pages_ = std::move(data_pages_); zygote_exec_pages_ = std::move(exec_pages_); zygote_data_mspace_ = data_mspace_; zygote_exec_mspace_ = exec_mspace_; size_t initial_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheInitialCapacity(); size_t max_capacity = Runtime::Current()->GetJITOptions()->GetCodeCacheMaxCapacity(); InitializeState(initial_capacity, max_capacity); std::string error_msg; if (!InitializeMappings(/* rwx_memory_allowed= */ !is_system_server, is_zygote, &error_msg)) { LOG(WARNING) << "Could not reset JIT state after zygote fork: " << error_msg; return; } InitializeSpaces(); } } // namespace jit } // namespace art