/* * Copyright 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "jit.h" #include <dlfcn.h> #include "art_method-inl.h" #include "base/enums.h" #include "base/file_utils.h" #include "base/logging.h" // For VLOG. #include "base/memory_tool.h" #include "base/runtime_debug.h" #include "base/scoped_flock.h" #include "base/utils.h" #include "class_root.h" #include "debugger.h" #include "dex/type_lookup_table.h" #include "entrypoints/runtime_asm_entrypoints.h" #include "interpreter/interpreter.h" #include "jit-inl.h" #include "jit_code_cache.h" #include "jni/java_vm_ext.h" #include "mirror/method_handle_impl.h" #include "mirror/var_handle.h" #include "oat_file.h" #include "oat_file_manager.h" #include "oat_quick_method_header.h" #include "profile/profile_compilation_info.h" #include "profile_saver.h" #include "runtime.h" #include "runtime_options.h" #include "stack.h" #include "stack_map.h" #include "thread-inl.h" #include "thread_list.h" namespace art { namespace jit { static constexpr bool kEnableOnStackReplacement = true; // Different compilation threshold constants. These can be overridden on the command line. static constexpr size_t kJitDefaultCompileThreshold = 10000; // Non-debug default. static constexpr size_t kJitStressDefaultCompileThreshold = 100; // Fast-debug build. static constexpr size_t kJitSlowStressDefaultCompileThreshold = 2; // Slow-debug build. // JIT compiler void* Jit::jit_library_handle_ = nullptr; void* Jit::jit_compiler_handle_ = nullptr; void* (*Jit::jit_load_)(void) = nullptr; void (*Jit::jit_unload_)(void*) = nullptr; bool (*Jit::jit_compile_method_)(void*, ArtMethod*, Thread*, bool, bool) = nullptr; void (*Jit::jit_types_loaded_)(void*, mirror::Class**, size_t count) = nullptr; bool (*Jit::jit_generate_debug_info_)(void*) = nullptr; void (*Jit::jit_update_options_)(void*) = nullptr; struct StressModeHelper { DECLARE_RUNTIME_DEBUG_FLAG(kSlowMode); }; DEFINE_RUNTIME_DEBUG_FLAG(StressModeHelper, kSlowMode); uint32_t JitOptions::RoundUpThreshold(uint32_t threshold) { if (threshold > kJitSamplesBatchSize) { threshold = RoundUp(threshold, kJitSamplesBatchSize); } CHECK_LE(threshold, std::numeric_limits<uint16_t>::max()); return threshold; } JitOptions* JitOptions::CreateFromRuntimeArguments(const RuntimeArgumentMap& options) { auto* jit_options = new JitOptions; jit_options->use_jit_compilation_ = options.GetOrDefault(RuntimeArgumentMap::UseJitCompilation); jit_options->code_cache_initial_capacity_ = options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheInitialCapacity); jit_options->code_cache_max_capacity_ = options.GetOrDefault(RuntimeArgumentMap::JITCodeCacheMaxCapacity); jit_options->dump_info_on_shutdown_ = options.Exists(RuntimeArgumentMap::DumpJITInfoOnShutdown); jit_options->profile_saver_options_ = options.GetOrDefault(RuntimeArgumentMap::ProfileSaverOpts); jit_options->thread_pool_pthread_priority_ = options.GetOrDefault(RuntimeArgumentMap::JITPoolThreadPthreadPriority); if (options.Exists(RuntimeArgumentMap::JITCompileThreshold)) { jit_options->compile_threshold_ = *options.Get(RuntimeArgumentMap::JITCompileThreshold); } else { jit_options->compile_threshold_ = kIsDebugBuild ? (StressModeHelper::kSlowMode ? kJitSlowStressDefaultCompileThreshold : kJitStressDefaultCompileThreshold) : kJitDefaultCompileThreshold; } jit_options->compile_threshold_ = RoundUpThreshold(jit_options->compile_threshold_); if (options.Exists(RuntimeArgumentMap::JITWarmupThreshold)) { jit_options->warmup_threshold_ = *options.Get(RuntimeArgumentMap::JITWarmupThreshold); } else { jit_options->warmup_threshold_ = jit_options->compile_threshold_ / 2; } jit_options->warmup_threshold_ = RoundUpThreshold(jit_options->warmup_threshold_); if (options.Exists(RuntimeArgumentMap::JITOsrThreshold)) { jit_options->osr_threshold_ = *options.Get(RuntimeArgumentMap::JITOsrThreshold); } else { jit_options->osr_threshold_ = jit_options->compile_threshold_ * 2; if (jit_options->osr_threshold_ > std::numeric_limits<uint16_t>::max()) { jit_options->osr_threshold_ = RoundDown(std::numeric_limits<uint16_t>::max(), kJitSamplesBatchSize); } } jit_options->osr_threshold_ = RoundUpThreshold(jit_options->osr_threshold_); if (options.Exists(RuntimeArgumentMap::JITPriorityThreadWeight)) { jit_options->priority_thread_weight_ = *options.Get(RuntimeArgumentMap::JITPriorityThreadWeight); if (jit_options->priority_thread_weight_ > jit_options->warmup_threshold_) { LOG(FATAL) << "Priority thread weight is above the warmup threshold."; } else if (jit_options->priority_thread_weight_ == 0) { LOG(FATAL) << "Priority thread weight cannot be 0."; } } else { jit_options->priority_thread_weight_ = std::max( jit_options->warmup_threshold_ / Jit::kDefaultPriorityThreadWeightRatio, static_cast<size_t>(1)); } if (options.Exists(RuntimeArgumentMap::JITInvokeTransitionWeight)) { jit_options->invoke_transition_weight_ = *options.Get(RuntimeArgumentMap::JITInvokeTransitionWeight); if (jit_options->invoke_transition_weight_ > jit_options->warmup_threshold_) { LOG(FATAL) << "Invoke transition weight is above the warmup threshold."; } else if (jit_options->invoke_transition_weight_ == 0) { LOG(FATAL) << "Invoke transition weight cannot be 0."; } } else { jit_options->invoke_transition_weight_ = std::max( jit_options->warmup_threshold_ / Jit::kDefaultInvokeTransitionWeightRatio, static_cast<size_t>(1)); } return jit_options; } void Jit::DumpInfo(std::ostream& os) { code_cache_->Dump(os); cumulative_timings_.Dump(os); MutexLock mu(Thread::Current(), lock_); memory_use_.PrintMemoryUse(os); } void Jit::DumpForSigQuit(std::ostream& os) { DumpInfo(os); ProfileSaver::DumpInstanceInfo(os); } void Jit::AddTimingLogger(const TimingLogger& logger) { cumulative_timings_.AddLogger(logger); } Jit::Jit(JitCodeCache* code_cache, JitOptions* options) : code_cache_(code_cache), options_(options), cumulative_timings_("JIT timings"), memory_use_("Memory used for compilation", 16), lock_("JIT memory use lock") {} Jit* Jit::Create(JitCodeCache* code_cache, JitOptions* options) { if (jit_load_ == nullptr) { LOG(WARNING) << "Not creating JIT: library not loaded"; return nullptr; } jit_compiler_handle_ = (jit_load_)(); if (jit_compiler_handle_ == nullptr) { LOG(WARNING) << "Not creating JIT: failed to allocate a compiler"; return nullptr; } std::unique_ptr<Jit> jit(new Jit(code_cache, options)); // If the code collector is enabled, check if that still holds: // With 'perf', we want a 1-1 mapping between an address and a method. // We aren't able to keep method pointers live during the instrumentation method entry trampoline // so we will just disable jit-gc if we are doing that. if (code_cache->GetGarbageCollectCode()) { code_cache->SetGarbageCollectCode(!jit_generate_debug_info_(jit_compiler_handle_) && !Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()); } VLOG(jit) << "JIT created with initial_capacity=" << PrettySize(options->GetCodeCacheInitialCapacity()) << ", max_capacity=" << PrettySize(options->GetCodeCacheMaxCapacity()) << ", compile_threshold=" << options->GetCompileThreshold() << ", profile_saver_options=" << options->GetProfileSaverOptions(); // Notify native debugger about the classes already loaded before the creation of the jit. jit->DumpTypeInfoForLoadedTypes(Runtime::Current()->GetClassLinker()); return jit.release(); } template <typename T> bool Jit::LoadSymbol(T* address, const char* name, std::string* error_msg) { *address = reinterpret_cast<T>(dlsym(jit_library_handle_, name)); if (*address == nullptr) { *error_msg = std::string("JIT couldn't find ") + name + std::string(" entry point"); return false; } return true; } bool Jit::LoadCompilerLibrary(std::string* error_msg) { jit_library_handle_ = dlopen( kIsDebugBuild ? "libartd-compiler.so" : "libart-compiler.so", RTLD_NOW); if (jit_library_handle_ == nullptr) { std::ostringstream oss; oss << "JIT could not load libart-compiler.so: " << dlerror(); *error_msg = oss.str(); return false; } bool all_resolved = true; all_resolved = all_resolved && LoadSymbol(&jit_load_, "jit_load", error_msg); all_resolved = all_resolved && LoadSymbol(&jit_unload_, "jit_unload", error_msg); all_resolved = all_resolved && LoadSymbol(&jit_compile_method_, "jit_compile_method", error_msg); all_resolved = all_resolved && LoadSymbol(&jit_types_loaded_, "jit_types_loaded", error_msg); all_resolved = all_resolved && LoadSymbol(&jit_update_options_, "jit_update_options", error_msg); all_resolved = all_resolved && LoadSymbol(&jit_generate_debug_info_, "jit_generate_debug_info", error_msg); if (!all_resolved) { dlclose(jit_library_handle_); return false; } return true; } bool Jit::CompileMethod(ArtMethod* method, Thread* self, bool baseline, bool osr) { DCHECK(Runtime::Current()->UseJitCompilation()); DCHECK(!method->IsRuntimeMethod()); RuntimeCallbacks* cb = Runtime::Current()->GetRuntimeCallbacks(); // Don't compile the method if it has breakpoints. if (cb->IsMethodBeingInspected(method) && !cb->IsMethodSafeToJit(method)) { VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to not being safe to jit according to runtime-callbacks. For example, there" << " could be breakpoints in this method."; return false; } // Don't compile the method if we are supposed to be deoptimized. instrumentation::Instrumentation* instrumentation = Runtime::Current()->GetInstrumentation(); if (instrumentation->AreAllMethodsDeoptimized() || instrumentation->IsDeoptimized(method)) { VLOG(jit) << "JIT not compiling " << method->PrettyMethod() << " due to deoptimization"; return false; } // If we get a request to compile a proxy method, we pass the actual Java method // of that proxy method, as the compiler does not expect a proxy method. ArtMethod* method_to_compile = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); if (!code_cache_->NotifyCompilationOf(method_to_compile, self, osr)) { return false; } VLOG(jit) << "Compiling method " << ArtMethod::PrettyMethod(method_to_compile) << " osr=" << std::boolalpha << osr; bool success = jit_compile_method_(jit_compiler_handle_, method_to_compile, self, baseline, osr); code_cache_->DoneCompiling(method_to_compile, self, osr); if (!success) { VLOG(jit) << "Failed to compile method " << ArtMethod::PrettyMethod(method_to_compile) << " osr=" << std::boolalpha << osr; } if (kIsDebugBuild) { if (self->IsExceptionPending()) { mirror::Throwable* exception = self->GetException(); LOG(FATAL) << "No pending exception expected after compiling " << ArtMethod::PrettyMethod(method) << ": " << exception->Dump(); } } return success; } void Jit::WaitForWorkersToBeCreated() { if (thread_pool_ != nullptr) { thread_pool_->WaitForWorkersToBeCreated(); } } void Jit::DeleteThreadPool() { Thread* self = Thread::Current(); DCHECK(Runtime::Current()->IsShuttingDown(self)); if (thread_pool_ != nullptr) { std::unique_ptr<ThreadPool> pool; { ScopedSuspendAll ssa(__FUNCTION__); // Clear thread_pool_ field while the threads are suspended. // A mutator in the 'AddSamples' method will check against it. pool = std::move(thread_pool_); } // When running sanitized, let all tasks finish to not leak. Otherwise just clear the queue. if (!kRunningOnMemoryTool) { pool->StopWorkers(self); pool->RemoveAllTasks(self); } // We could just suspend all threads, but we know those threads // will finish in a short period, so it's not worth adding a suspend logic // here. Besides, this is only done for shutdown. pool->Wait(self, false, false); } } void Jit::StartProfileSaver(const std::string& filename, const std::vector<std::string>& code_paths) { if (options_->GetSaveProfilingInfo()) { ProfileSaver::Start(options_->GetProfileSaverOptions(), filename, code_cache_, code_paths); } } void Jit::StopProfileSaver() { if (options_->GetSaveProfilingInfo() && ProfileSaver::IsStarted()) { ProfileSaver::Stop(options_->DumpJitInfoOnShutdown()); } } bool Jit::JitAtFirstUse() { return HotMethodThreshold() == 0; } bool Jit::CanInvokeCompiledCode(ArtMethod* method) { return code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode()); } Jit::~Jit() { DCHECK(!options_->GetSaveProfilingInfo() || !ProfileSaver::IsStarted()); if (options_->DumpJitInfoOnShutdown()) { DumpInfo(LOG_STREAM(INFO)); Runtime::Current()->DumpDeoptimizations(LOG_STREAM(INFO)); } DeleteThreadPool(); if (jit_compiler_handle_ != nullptr) { jit_unload_(jit_compiler_handle_); jit_compiler_handle_ = nullptr; } if (jit_library_handle_ != nullptr) { dlclose(jit_library_handle_); jit_library_handle_ = nullptr; } } void Jit::NewTypeLoadedIfUsingJit(mirror::Class* type) { if (!Runtime::Current()->UseJitCompilation()) { // No need to notify if we only use the JIT to save profiles. return; } jit::Jit* jit = Runtime::Current()->GetJit(); if (jit_generate_debug_info_(jit->jit_compiler_handle_)) { DCHECK(jit->jit_types_loaded_ != nullptr); jit->jit_types_loaded_(jit->jit_compiler_handle_, &type, 1); } } void Jit::DumpTypeInfoForLoadedTypes(ClassLinker* linker) { struct CollectClasses : public ClassVisitor { bool operator()(ObjPtr<mirror::Class> klass) override REQUIRES_SHARED(Locks::mutator_lock_) { classes_.push_back(klass.Ptr()); return true; } std::vector<mirror::Class*> classes_; }; if (jit_generate_debug_info_(jit_compiler_handle_)) { ScopedObjectAccess so(Thread::Current()); CollectClasses visitor; linker->VisitClasses(&visitor); jit_types_loaded_(jit_compiler_handle_, visitor.classes_.data(), visitor.classes_.size()); } } extern "C" void art_quick_osr_stub(void** stack, size_t stack_size_in_bytes, const uint8_t* native_pc, JValue* result, const char* shorty, Thread* self); bool Jit::MaybeDoOnStackReplacement(Thread* thread, ArtMethod* method, uint32_t dex_pc, int32_t dex_pc_offset, JValue* result) { if (!kEnableOnStackReplacement) { return false; } Jit* jit = Runtime::Current()->GetJit(); if (jit == nullptr) { return false; } if (UNLIKELY(__builtin_frame_address(0) < thread->GetStackEnd())) { // Don't attempt to do an OSR if we are close to the stack limit. Since // the interpreter frames are still on stack, OSR has the potential // to stack overflow even for a simple loop. // b/27094810. return false; } // Get the actual Java method if this method is from a proxy class. The compiler // and the JIT code cache do not expect methods from proxy classes. method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); // Cheap check if the method has been compiled already. That's an indicator that we should // osr into it. if (!jit->GetCodeCache()->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { return false; } // Fetch some data before looking up for an OSR method. We don't want thread // suspension once we hold an OSR method, as the JIT code cache could delete the OSR // method while we are being suspended. CodeItemDataAccessor accessor(method->DexInstructionData()); const size_t number_of_vregs = accessor.RegistersSize(); const char* shorty = method->GetShorty(); std::string method_name(VLOG_IS_ON(jit) ? method->PrettyMethod() : ""); void** memory = nullptr; size_t frame_size = 0; ShadowFrame* shadow_frame = nullptr; const uint8_t* native_pc = nullptr; { ScopedAssertNoThreadSuspension sts("Holding OSR method"); const OatQuickMethodHeader* osr_method = jit->GetCodeCache()->LookupOsrMethodHeader(method); if (osr_method == nullptr) { // No osr method yet, just return to the interpreter. return false; } CodeInfo code_info(osr_method); // Find stack map starting at the target dex_pc. StackMap stack_map = code_info.GetOsrStackMapForDexPc(dex_pc + dex_pc_offset); if (!stack_map.IsValid()) { // There is no OSR stack map for this dex pc offset. Just return to the interpreter in the // hope that the next branch has one. return false; } // Before allowing the jump, make sure no code is actively inspecting the method to avoid // jumping from interpreter to OSR while e.g. single stepping. Note that we could selectively // disable OSR when single stepping, but that's currently hard to know at this point. if (Runtime::Current()->GetRuntimeCallbacks()->IsMethodBeingInspected(method)) { return false; } // We found a stack map, now fill the frame with dex register values from the interpreter's // shadow frame. DexRegisterMap vreg_map = code_info.GetDexRegisterMapOf(stack_map); frame_size = osr_method->GetFrameSizeInBytes(); // Allocate memory to put shadow frame values. The osr stub will copy that memory to // stack. // Note that we could pass the shadow frame to the stub, and let it copy the values there, // but that is engineering complexity not worth the effort for something like OSR. memory = reinterpret_cast<void**>(malloc(frame_size)); CHECK(memory != nullptr); memset(memory, 0, frame_size); // Art ABI: ArtMethod is at the bottom of the stack. memory[0] = method; shadow_frame = thread->PopShadowFrame(); if (vreg_map.empty()) { // If we don't have a dex register map, then there are no live dex registers at // this dex pc. } else { DCHECK_EQ(vreg_map.size(), number_of_vregs); for (uint16_t vreg = 0; vreg < number_of_vregs; ++vreg) { DexRegisterLocation::Kind location = vreg_map[vreg].GetKind(); if (location == DexRegisterLocation::Kind::kNone) { // Dex register is dead or uninitialized. continue; } if (location == DexRegisterLocation::Kind::kConstant) { // We skip constants because the compiled code knows how to handle them. continue; } DCHECK_EQ(location, DexRegisterLocation::Kind::kInStack); int32_t vreg_value = shadow_frame->GetVReg(vreg); int32_t slot_offset = vreg_map[vreg].GetStackOffsetInBytes(); DCHECK_LT(slot_offset, static_cast<int32_t>(frame_size)); DCHECK_GT(slot_offset, 0); (reinterpret_cast<int32_t*>(memory))[slot_offset / sizeof(int32_t)] = vreg_value; } } native_pc = stack_map.GetNativePcOffset(kRuntimeISA) + osr_method->GetEntryPoint(); VLOG(jit) << "Jumping to " << method_name << "@" << std::hex << reinterpret_cast<uintptr_t>(native_pc); } { ManagedStack fragment; thread->PushManagedStackFragment(&fragment); (*art_quick_osr_stub)(memory, frame_size, native_pc, result, shorty, thread); if (UNLIKELY(thread->GetException() == Thread::GetDeoptimizationException())) { thread->DeoptimizeWithDeoptimizationException(result); } thread->PopManagedStackFragment(fragment); } free(memory); thread->PushShadowFrame(shadow_frame); VLOG(jit) << "Done running OSR code for " << method_name; return true; } void Jit::AddMemoryUsage(ArtMethod* method, size_t bytes) { if (bytes > 4 * MB) { LOG(INFO) << "Compiler allocated " << PrettySize(bytes) << " to compile " << ArtMethod::PrettyMethod(method); } MutexLock mu(Thread::Current(), lock_); memory_use_.AddValue(bytes); } class JitCompileTask final : public Task { public: enum class TaskKind { kAllocateProfile, kCompile, kCompileBaseline, kCompileOsr, }; JitCompileTask(ArtMethod* method, TaskKind kind) : method_(method), kind_(kind), klass_(nullptr) { ScopedObjectAccess soa(Thread::Current()); // For a non-bootclasspath class, add a global ref to the class to prevent class unloading // until compilation is done. if (method->GetDeclaringClass()->GetClassLoader() != nullptr) { klass_ = soa.Vm()->AddGlobalRef(soa.Self(), method_->GetDeclaringClass()); CHECK(klass_ != nullptr); } } ~JitCompileTask() { if (klass_ != nullptr) { ScopedObjectAccess soa(Thread::Current()); soa.Vm()->DeleteGlobalRef(soa.Self(), klass_); } } void Run(Thread* self) override { ScopedObjectAccess soa(self); switch (kind_) { case TaskKind::kCompile: case TaskKind::kCompileBaseline: case TaskKind::kCompileOsr: { Runtime::Current()->GetJit()->CompileMethod( method_, self, /* baseline= */ (kind_ == TaskKind::kCompileBaseline), /* osr= */ (kind_ == TaskKind::kCompileOsr)); break; } case TaskKind::kAllocateProfile: { if (ProfilingInfo::Create(self, method_, /* retry_allocation= */ true)) { VLOG(jit) << "Start profiling " << ArtMethod::PrettyMethod(method_); } break; } } ProfileSaver::NotifyJitActivity(); } void Finalize() override { delete this; } private: ArtMethod* const method_; const TaskKind kind_; jobject klass_; DISALLOW_IMPLICIT_CONSTRUCTORS(JitCompileTask); }; class ZygoteTask final : public Task { public: ZygoteTask() {} void Run(Thread* self) override { Runtime* runtime = Runtime::Current(); std::string profile_file; for (const std::string& option : runtime->GetImageCompilerOptions()) { if (android::base::StartsWith(option, "--profile-file=")) { profile_file = option.substr(strlen("--profile-file=")); break; } } const std::vector<const DexFile*>& boot_class_path = runtime->GetClassLinker()->GetBootClassPath(); ScopedNullHandle<mirror::ClassLoader> null_handle; // We add to the queue for zygote so that we can fork processes in-between // compilations. runtime->GetJit()->CompileMethodsFromProfile( self, boot_class_path, profile_file, null_handle, /* add_to_queue= */ true); } void Finalize() override { delete this; } private: DISALLOW_COPY_AND_ASSIGN(ZygoteTask); }; static std::string GetProfileFile(const std::string& dex_location) { // Hardcoded assumption where the profile file is. // TODO(ngeoffray): this is brittle and we would need to change change if we // wanted to do more eager JITting of methods in a profile. This is // currently only for system server. return dex_location + ".prof"; } class JitProfileTask final : public Task { public: JitProfileTask(const std::vector<std::unique_ptr<const DexFile>>& dex_files, ObjPtr<mirror::ClassLoader> class_loader) { ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); for (const auto& dex_file : dex_files) { dex_files_.push_back(dex_file.get()); // Register the dex file so that we can guarantee it doesn't get deleted // while reading it during the task. class_linker->RegisterDexFile(*dex_file.get(), class_loader); } ScopedObjectAccess soa(Thread::Current()); class_loader_ = soa.Vm()->AddGlobalRef(soa.Self(), class_loader.Ptr()); } void Run(Thread* self) override { ScopedObjectAccess soa(self); StackHandleScope<1> hs(self); Handle<mirror::ClassLoader> loader = hs.NewHandle<mirror::ClassLoader>( soa.Decode<mirror::ClassLoader>(class_loader_)); Runtime::Current()->GetJit()->CompileMethodsFromProfile( self, dex_files_, GetProfileFile(dex_files_[0]->GetLocation()), loader, /* add_to_queue= */ false); } void Finalize() override { delete this; } private: std::vector<const DexFile*> dex_files_; jobject class_loader_; DISALLOW_COPY_AND_ASSIGN(JitProfileTask); }; void Jit::CreateThreadPool() { // There is a DCHECK in the 'AddSamples' method to ensure the tread pool // is not null when we instrument. // We need peers as we may report the JIT thread, e.g., in the debugger. constexpr bool kJitPoolNeedsPeers = true; thread_pool_.reset(new ThreadPool("Jit thread pool", 1, kJitPoolNeedsPeers)); thread_pool_->SetPthreadPriority(options_->GetThreadPoolPthreadPriority()); Start(); // If we're not using the default boot image location, request a JIT task to // compile all methods in the boot image profile. Runtime* runtime = Runtime::Current(); if (runtime->IsZygote() && runtime->IsUsingApexBootImageLocation() && UseJitCompilation()) { thread_pool_->AddTask(Thread::Current(), new ZygoteTask()); } } void Jit::RegisterDexFiles(const std::vector<std::unique_ptr<const DexFile>>& dex_files, ObjPtr<mirror::ClassLoader> class_loader) { if (dex_files.empty()) { return; } Runtime* runtime = Runtime::Current(); if (runtime->IsSystemServer() && runtime->IsUsingApexBootImageLocation() && UseJitCompilation()) { thread_pool_->AddTask(Thread::Current(), new JitProfileTask(dex_files, class_loader)); } } void Jit::CompileMethodsFromProfile( Thread* self, const std::vector<const DexFile*>& dex_files, const std::string& profile_file, Handle<mirror::ClassLoader> class_loader, bool add_to_queue) { if (profile_file.empty()) { LOG(WARNING) << "Expected a profile file in JIT zygote mode"; return; } std::string error_msg; ScopedFlock profile = LockedFile::Open( profile_file.c_str(), O_RDONLY, /* block= */ false, &error_msg); // Return early if we're unable to obtain a lock on the profile. if (profile.get() == nullptr) { LOG(ERROR) << "Cannot lock profile: " << error_msg; return; } ProfileCompilationInfo profile_info; if (!profile_info.Load(profile->Fd())) { LOG(ERROR) << "Could not load profile file"; return; } ScopedObjectAccess soa(self); StackHandleScope<1> hs(self); MutableHandle<mirror::DexCache> dex_cache = hs.NewHandle<mirror::DexCache>(nullptr); ClassLinker* class_linker = Runtime::Current()->GetClassLinker(); for (const DexFile* dex_file : dex_files) { if (LocationIsOnRuntimeModule(dex_file->GetLocation().c_str())) { // The runtime module jars are already preopted. continue; } // To speed up class lookups, generate a type lookup table for // the dex file. if (dex_file->GetOatDexFile() == nullptr) { TypeLookupTable type_lookup_table = TypeLookupTable::Create(*dex_file); type_lookup_tables_.push_back( std::make_unique<art::OatDexFile>(std::move(type_lookup_table))); dex_file->SetOatDexFile(type_lookup_tables_.back().get()); } std::set<dex::TypeIndex> class_types; std::set<uint16_t> all_methods; if (!profile_info.GetClassesAndMethods(*dex_file, &class_types, &all_methods, &all_methods, &all_methods)) { // This means the profile file did not reference the dex file, which is the case // if there's no classes and methods of that dex file in the profile. continue; } dex_cache.Assign(class_linker->FindDexCache(self, *dex_file)); CHECK(dex_cache != nullptr) << "Could not find dex cache for " << dex_file->GetLocation(); for (uint16_t method_idx : all_methods) { ArtMethod* method = class_linker->ResolveMethodWithoutInvokeType( method_idx, dex_cache, class_loader); if (method == nullptr) { self->ClearException(); continue; } if (!method->IsCompilable() || !method->IsInvokable()) { continue; } const void* entry_point = method->GetEntryPointFromQuickCompiledCode(); if (class_linker->IsQuickToInterpreterBridge(entry_point) || class_linker->IsQuickGenericJniStub(entry_point) || class_linker->IsQuickResolutionStub(entry_point)) { if (!method->IsNative()) { // The compiler requires a ProfilingInfo object for non-native methods. ProfilingInfo::Create(self, method, /* retry_allocation= */ true); } // Special case ZygoteServer class so that it gets compiled before the // zygote enters it. This avoids needing to do OSR during app startup. // TODO: have a profile instead. if (!add_to_queue || method->GetDeclaringClass()->DescriptorEquals( "Lcom/android/internal/os/ZygoteServer;")) { CompileMethod(method, self, /* baseline= */ false, /* osr= */ false); } else { thread_pool_->AddTask(self, new JitCompileTask(method, JitCompileTask::TaskKind::kCompile)); } } } } } static bool IgnoreSamplesForMethod(ArtMethod* method) REQUIRES_SHARED(Locks::mutator_lock_) { if (method->IsClassInitializer() || !method->IsCompilable()) { // We do not want to compile such methods. return true; } if (method->IsNative()) { ObjPtr<mirror::Class> klass = method->GetDeclaringClass(); if (klass == GetClassRoot<mirror::MethodHandle>() || klass == GetClassRoot<mirror::VarHandle>()) { // MethodHandle and VarHandle invocation methods are required to throw an // UnsupportedOperationException if invoked reflectively. We achieve this by having native // implementations that arise the exception. We need to disable JIT compilation of these JNI // methods as it can lead to transitioning between JIT compiled JNI stubs and generic JNI // stubs. Since these stubs have different stack representations we can then crash in stack // walking (b/78151261). return true; } } return false; } bool Jit::MaybeCompileMethod(Thread* self, ArtMethod* method, uint32_t old_count, uint32_t new_count, bool with_backedges) { if (thread_pool_ == nullptr) { // Should only see this when shutting down, starting up, or in safe mode. DCHECK(Runtime::Current()->IsShuttingDown(self) || !Runtime::Current()->IsFinishedStarting() || Runtime::Current()->IsSafeMode()); return false; } if (IgnoreSamplesForMethod(method)) { return false; } if (HotMethodThreshold() == 0) { // Tests might request JIT on first use (compiled synchronously in the interpreter). return false; } DCHECK(thread_pool_ != nullptr); DCHECK_GT(WarmMethodThreshold(), 0); DCHECK_GT(HotMethodThreshold(), WarmMethodThreshold()); DCHECK_GT(OSRMethodThreshold(), HotMethodThreshold()); DCHECK_GE(PriorityThreadWeight(), 1); DCHECK_LE(PriorityThreadWeight(), HotMethodThreshold()); if (old_count < WarmMethodThreshold() && new_count >= WarmMethodThreshold()) { // Note: Native method have no "warm" state or profiling info. if (!method->IsNative() && method->GetProfilingInfo(kRuntimePointerSize) == nullptr) { bool success = ProfilingInfo::Create(self, method, /* retry_allocation= */ false); if (success) { VLOG(jit) << "Start profiling " << method->PrettyMethod(); } if (thread_pool_ == nullptr) { // Calling ProfilingInfo::Create might put us in a suspended state, which could // lead to the thread pool being deleted when we are shutting down. DCHECK(Runtime::Current()->IsShuttingDown(self)); return false; } if (!success) { // We failed allocating. Instead of doing the collection on the Java thread, we push // an allocation to a compiler thread, that will do the collection. thread_pool_->AddTask( self, new JitCompileTask(method, JitCompileTask::TaskKind::kAllocateProfile)); } } } if (UseJitCompilation()) { if (old_count == 0 && method->IsNative() && Runtime::Current()->IsUsingApexBootImageLocation()) { // jitzygote: Compile JNI stub on first use to avoid the expensive generic stub. CompileMethod(method, self, /* baseline= */ false, /* osr= */ false); return true; } if (old_count < HotMethodThreshold() && new_count >= HotMethodThreshold()) { if (!code_cache_->ContainsPc(method->GetEntryPointFromQuickCompiledCode())) { DCHECK(thread_pool_ != nullptr); thread_pool_->AddTask(self, new JitCompileTask(method, JitCompileTask::TaskKind::kCompile)); } } if (old_count < OSRMethodThreshold() && new_count >= OSRMethodThreshold()) { if (!with_backedges) { return false; } DCHECK(!method->IsNative()); // No back edges reported for native methods. if (!code_cache_->IsOsrCompiled(method)) { DCHECK(thread_pool_ != nullptr); thread_pool_->AddTask( self, new JitCompileTask(method, JitCompileTask::TaskKind::kCompileOsr)); } } } return true; } class ScopedSetRuntimeThread { public: explicit ScopedSetRuntimeThread(Thread* self) : self_(self), was_runtime_thread_(self_->IsRuntimeThread()) { self_->SetIsRuntimeThread(true); } ~ScopedSetRuntimeThread() { self_->SetIsRuntimeThread(was_runtime_thread_); } private: Thread* self_; bool was_runtime_thread_; }; void Jit::MethodEntered(Thread* thread, ArtMethod* method) { Runtime* runtime = Runtime::Current(); if (UNLIKELY(runtime->UseJitCompilation() && runtime->GetJit()->JitAtFirstUse())) { ArtMethod* np_method = method->GetInterfaceMethodIfProxy(kRuntimePointerSize); if (np_method->IsCompilable()) { if (!np_method->IsNative()) { // The compiler requires a ProfilingInfo object for non-native methods. ProfilingInfo::Create(thread, np_method, /* retry_allocation= */ true); } JitCompileTask compile_task(method, JitCompileTask::TaskKind::kCompile); // Fake being in a runtime thread so that class-load behavior will be the same as normal jit. ScopedSetRuntimeThread ssrt(thread); compile_task.Run(thread); } return; } ProfilingInfo* profiling_info = method->GetProfilingInfo(kRuntimePointerSize); // Update the entrypoint if the ProfilingInfo has one. The interpreter will call it // instead of interpreting the method. We don't update it for instrumentation as the entrypoint // must remain the instrumentation entrypoint. if ((profiling_info != nullptr) && (profiling_info->GetSavedEntryPoint() != nullptr) && (method->GetEntryPointFromQuickCompiledCode() != GetQuickInstrumentationEntryPoint())) { Runtime::Current()->GetInstrumentation()->UpdateMethodsCode( method, profiling_info->GetSavedEntryPoint()); } else { AddSamples(thread, method, 1, /* with_backedges= */false); } } void Jit::InvokeVirtualOrInterface(ObjPtr<mirror::Object> this_object, ArtMethod* caller, uint32_t dex_pc, ArtMethod* callee ATTRIBUTE_UNUSED) { ScopedAssertNoThreadSuspension ants(__FUNCTION__); DCHECK(this_object != nullptr); ProfilingInfo* info = caller->GetProfilingInfo(kRuntimePointerSize); if (info != nullptr) { info->AddInvokeInfo(dex_pc, this_object->GetClass()); } } void Jit::WaitForCompilationToFinish(Thread* self) { if (thread_pool_ != nullptr) { thread_pool_->Wait(self, false, false); } } void Jit::Stop() { Thread* self = Thread::Current(); // TODO(ngeoffray): change API to not require calling WaitForCompilationToFinish twice. WaitForCompilationToFinish(self); GetThreadPool()->StopWorkers(self); WaitForCompilationToFinish(self); } void Jit::Start() { GetThreadPool()->StartWorkers(Thread::Current()); } ScopedJitSuspend::ScopedJitSuspend() { jit::Jit* jit = Runtime::Current()->GetJit(); was_on_ = (jit != nullptr) && (jit->GetThreadPool() != nullptr); if (was_on_) { jit->Stop(); } } ScopedJitSuspend::~ScopedJitSuspend() { if (was_on_) { DCHECK(Runtime::Current()->GetJit() != nullptr); DCHECK(Runtime::Current()->GetJit()->GetThreadPool() != nullptr); Runtime::Current()->GetJit()->Start(); } } void Jit::PostForkChildAction(bool is_system_server, bool is_zygote) { if (is_zygote) { // Remove potential tasks that have been inherited from the zygote. Child zygotes // currently don't need the whole boot image compiled (ie webview_zygote). thread_pool_->RemoveAllTasks(Thread::Current()); // Don't transition if this is for a child zygote. return; } if (Runtime::Current()->IsSafeMode()) { // Delete the thread pool, we are not going to JIT. thread_pool_.reset(nullptr); return; } // At this point, the compiler options have been adjusted to the particular configuration // of the forked child. Parse them again. jit_update_options_(jit_compiler_handle_); // Adjust the status of code cache collection: the status from zygote was to not collect. code_cache_->SetGarbageCollectCode(!jit_generate_debug_info_(jit_compiler_handle_) && !Runtime::Current()->GetInstrumentation()->AreExitStubsInstalled()); if (thread_pool_ != nullptr) { if (!is_system_server) { // Remove potential tasks that have been inherited from the zygote. // We keep the queue for system server, as not having those methods compiled // impacts app startup. thread_pool_->RemoveAllTasks(Thread::Current()); } else if (Runtime::Current()->IsUsingApexBootImageLocation() && UseJitCompilation()) { // Disable garbage collection: we don't want it to delete methods we're compiling // through boot and system server profiles. // TODO(ngeoffray): Fix this so we still collect deoptimized and unused code. code_cache_->SetGarbageCollectCode(false); } // Resume JIT compilation. thread_pool_->CreateThreads(); } } void Jit::PreZygoteFork() { if (thread_pool_ == nullptr) { return; } thread_pool_->DeleteThreads(); } void Jit::PostZygoteFork() { if (thread_pool_ == nullptr) { return; } thread_pool_->CreateThreads(); } } // namespace jit } // namespace art