/* * Copyright (C) 2008 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /* * Preparation and completion of hprof data generation. The output is * written into two files and then combined. This is necessary because * we generate some of the data (strings and classes) while we dump the * heap, and some analysis tools require that the class and string data * appear first. */ #include "hprof.h" #include <errno.h> #include <fcntl.h> #include <stdio.h> #include <string.h> #include <sys/time.h> #include <sys/uio.h> #include <time.h> #include <unistd.h> #include <set> #include <android-base/logging.h> #include <android-base/stringprintf.h> #include "art_field-inl.h" #include "art_method-inl.h" #include "base/array_ref.h" #include "base/file_utils.h" #include "base/macros.h" #include "base/mutex.h" #include "base/os.h" #include "base/safe_map.h" #include "base/time_utils.h" #include "base/unix_file/fd_file.h" #include "class_linker.h" #include "class_root.h" #include "common_throws.h" #include "debugger.h" #include "dex/dex_file-inl.h" #include "gc/accounting/heap_bitmap.h" #include "gc/allocation_record.h" #include "gc/heap-visit-objects-inl.h" #include "gc/heap.h" #include "gc/scoped_gc_critical_section.h" #include "gc/space/space.h" #include "gc_root.h" #include "jdwp/jdwp.h" #include "jdwp/jdwp_priv.h" #include "mirror/class-inl.h" #include "mirror/class.h" #include "mirror/object-refvisitor-inl.h" #include "runtime_globals.h" #include "scoped_thread_state_change-inl.h" #include "thread_list.h" namespace art { namespace hprof { static constexpr bool kDirectStream = true; static constexpr uint32_t kHprofTime = 0; static constexpr uint32_t kHprofNullThread = 0; static constexpr size_t kMaxObjectsPerSegment = 128; static constexpr size_t kMaxBytesPerSegment = 4096; // The static field-name for the synthetic object generated to account for class static overhead. static constexpr const char* kClassOverheadName = "$classOverhead"; enum HprofTag { HPROF_TAG_STRING = 0x01, HPROF_TAG_LOAD_CLASS = 0x02, HPROF_TAG_UNLOAD_CLASS = 0x03, HPROF_TAG_STACK_FRAME = 0x04, HPROF_TAG_STACK_TRACE = 0x05, HPROF_TAG_ALLOC_SITES = 0x06, HPROF_TAG_HEAP_SUMMARY = 0x07, HPROF_TAG_START_THREAD = 0x0A, HPROF_TAG_END_THREAD = 0x0B, HPROF_TAG_HEAP_DUMP = 0x0C, HPROF_TAG_HEAP_DUMP_SEGMENT = 0x1C, HPROF_TAG_HEAP_DUMP_END = 0x2C, HPROF_TAG_CPU_SAMPLES = 0x0D, HPROF_TAG_CONTROL_SETTINGS = 0x0E, }; // Values for the first byte of HEAP_DUMP and HEAP_DUMP_SEGMENT records: enum HprofHeapTag { // Traditional. HPROF_ROOT_UNKNOWN = 0xFF, HPROF_ROOT_JNI_GLOBAL = 0x01, HPROF_ROOT_JNI_LOCAL = 0x02, HPROF_ROOT_JAVA_FRAME = 0x03, HPROF_ROOT_NATIVE_STACK = 0x04, HPROF_ROOT_STICKY_CLASS = 0x05, HPROF_ROOT_THREAD_BLOCK = 0x06, HPROF_ROOT_MONITOR_USED = 0x07, HPROF_ROOT_THREAD_OBJECT = 0x08, HPROF_CLASS_DUMP = 0x20, HPROF_INSTANCE_DUMP = 0x21, HPROF_OBJECT_ARRAY_DUMP = 0x22, HPROF_PRIMITIVE_ARRAY_DUMP = 0x23, // Android. HPROF_HEAP_DUMP_INFO = 0xfe, HPROF_ROOT_INTERNED_STRING = 0x89, HPROF_ROOT_FINALIZING = 0x8a, // Obsolete. HPROF_ROOT_DEBUGGER = 0x8b, HPROF_ROOT_REFERENCE_CLEANUP = 0x8c, // Obsolete. HPROF_ROOT_VM_INTERNAL = 0x8d, HPROF_ROOT_JNI_MONITOR = 0x8e, HPROF_UNREACHABLE = 0x90, // Obsolete. HPROF_PRIMITIVE_ARRAY_NODATA_DUMP = 0xc3, // Obsolete. }; enum HprofHeapId { HPROF_HEAP_DEFAULT = 0, HPROF_HEAP_ZYGOTE = 'Z', HPROF_HEAP_APP = 'A', HPROF_HEAP_IMAGE = 'I', }; enum HprofBasicType { hprof_basic_object = 2, hprof_basic_boolean = 4, hprof_basic_char = 5, hprof_basic_float = 6, hprof_basic_double = 7, hprof_basic_byte = 8, hprof_basic_short = 9, hprof_basic_int = 10, hprof_basic_long = 11, }; using HprofStringId = uint32_t; using HprofClassObjectId = uint32_t; using HprofClassSerialNumber = uint32_t; using HprofStackTraceSerialNumber = uint32_t; using HprofStackFrameId = uint32_t; static constexpr HprofStackTraceSerialNumber kHprofNullStackTrace = 0; class EndianOutput { public: EndianOutput() : length_(0), sum_length_(0), max_length_(0), started_(false) {} virtual ~EndianOutput() {} void StartNewRecord(uint8_t tag, uint32_t time) { if (length_ > 0) { EndRecord(); } DCHECK_EQ(length_, 0U); AddU1(tag); AddU4(time); AddU4(0xdeaddead); // Length, replaced on flush. started_ = true; } void EndRecord() { // Replace length in header. if (started_) { UpdateU4(sizeof(uint8_t) + sizeof(uint32_t), length_ - sizeof(uint8_t) - 2 * sizeof(uint32_t)); } HandleEndRecord(); sum_length_ += length_; max_length_ = std::max(max_length_, length_); length_ = 0; started_ = false; } void AddU1(uint8_t value) { AddU1List(&value, 1); } void AddU2(uint16_t value) { AddU2List(&value, 1); } void AddU4(uint32_t value) { AddU4List(&value, 1); } void AddU8(uint64_t value) { AddU8List(&value, 1); } void AddObjectId(const mirror::Object* value) { AddU4(PointerToLowMemUInt32(value)); } void AddStackTraceSerialNumber(HprofStackTraceSerialNumber value) { AddU4(value); } // The ID for the synthetic object generated to account for class static overhead. void AddClassStaticsId(const mirror::Class* value) { AddU4(1 | PointerToLowMemUInt32(value)); } void AddJniGlobalRefId(jobject value) { AddU4(PointerToLowMemUInt32(value)); } void AddClassId(HprofClassObjectId value) { AddU4(value); } void AddStringId(HprofStringId value) { AddU4(value); } void AddU1List(const uint8_t* values, size_t count) { HandleU1List(values, count); length_ += count; } void AddU2List(const uint16_t* values, size_t count) { HandleU2List(values, count); length_ += count * sizeof(uint16_t); } void AddU4List(const uint32_t* values, size_t count) { HandleU4List(values, count); length_ += count * sizeof(uint32_t); } virtual void UpdateU4(size_t offset, uint32_t new_value ATTRIBUTE_UNUSED) { DCHECK_LE(offset, length_ - 4); } void AddU8List(const uint64_t* values, size_t count) { HandleU8List(values, count); length_ += count * sizeof(uint64_t); } void AddIdList(mirror::ObjectArray<mirror::Object>* values) REQUIRES_SHARED(Locks::mutator_lock_) { const int32_t length = values->GetLength(); for (int32_t i = 0; i < length; ++i) { AddObjectId(values->GetWithoutChecks(i).Ptr()); } } void AddUtf8String(const char* str) { // The terminating NUL character is NOT written. AddU1List((const uint8_t*)str, strlen(str)); } size_t Length() const { return length_; } size_t SumLength() const { return sum_length_; } size_t MaxLength() const { return max_length_; } protected: virtual void HandleU1List(const uint8_t* values ATTRIBUTE_UNUSED, size_t count ATTRIBUTE_UNUSED) { } virtual void HandleU1AsU2List(const uint8_t* values ATTRIBUTE_UNUSED, size_t count ATTRIBUTE_UNUSED) { } virtual void HandleU2List(const uint16_t* values ATTRIBUTE_UNUSED, size_t count ATTRIBUTE_UNUSED) { } virtual void HandleU4List(const uint32_t* values ATTRIBUTE_UNUSED, size_t count ATTRIBUTE_UNUSED) { } virtual void HandleU8List(const uint64_t* values ATTRIBUTE_UNUSED, size_t count ATTRIBUTE_UNUSED) { } virtual void HandleEndRecord() { } size_t length_; // Current record size. size_t sum_length_; // Size of all data. size_t max_length_; // Maximum seen length. bool started_; // Was StartRecord called? }; // This keeps things buffered until flushed. class EndianOutputBuffered : public EndianOutput { public: explicit EndianOutputBuffered(size_t reserve_size) { buffer_.reserve(reserve_size); } virtual ~EndianOutputBuffered() {} void UpdateU4(size_t offset, uint32_t new_value) override { DCHECK_LE(offset, length_ - 4); buffer_[offset + 0] = static_cast<uint8_t>((new_value >> 24) & 0xFF); buffer_[offset + 1] = static_cast<uint8_t>((new_value >> 16) & 0xFF); buffer_[offset + 2] = static_cast<uint8_t>((new_value >> 8) & 0xFF); buffer_[offset + 3] = static_cast<uint8_t>((new_value >> 0) & 0xFF); } protected: void HandleU1List(const uint8_t* values, size_t count) override { DCHECK_EQ(length_, buffer_.size()); buffer_.insert(buffer_.end(), values, values + count); } void HandleU1AsU2List(const uint8_t* values, size_t count) override { DCHECK_EQ(length_, buffer_.size()); // All 8-bits are grouped in 2 to make 16-bit block like Java Char if (count & 1) { buffer_.push_back(0); } for (size_t i = 0; i < count; ++i) { uint8_t value = *values; buffer_.push_back(value); values++; } } void HandleU2List(const uint16_t* values, size_t count) override { DCHECK_EQ(length_, buffer_.size()); for (size_t i = 0; i < count; ++i) { uint16_t value = *values; buffer_.push_back(static_cast<uint8_t>((value >> 8) & 0xFF)); buffer_.push_back(static_cast<uint8_t>((value >> 0) & 0xFF)); values++; } } void HandleU4List(const uint32_t* values, size_t count) override { DCHECK_EQ(length_, buffer_.size()); for (size_t i = 0; i < count; ++i) { uint32_t value = *values; buffer_.push_back(static_cast<uint8_t>((value >> 24) & 0xFF)); buffer_.push_back(static_cast<uint8_t>((value >> 16) & 0xFF)); buffer_.push_back(static_cast<uint8_t>((value >> 8) & 0xFF)); buffer_.push_back(static_cast<uint8_t>((value >> 0) & 0xFF)); values++; } } void HandleU8List(const uint64_t* values, size_t count) override { DCHECK_EQ(length_, buffer_.size()); for (size_t i = 0; i < count; ++i) { uint64_t value = *values; buffer_.push_back(static_cast<uint8_t>((value >> 56) & 0xFF)); buffer_.push_back(static_cast<uint8_t>((value >> 48) & 0xFF)); buffer_.push_back(static_cast<uint8_t>((value >> 40) & 0xFF)); buffer_.push_back(static_cast<uint8_t>((value >> 32) & 0xFF)); buffer_.push_back(static_cast<uint8_t>((value >> 24) & 0xFF)); buffer_.push_back(static_cast<uint8_t>((value >> 16) & 0xFF)); buffer_.push_back(static_cast<uint8_t>((value >> 8) & 0xFF)); buffer_.push_back(static_cast<uint8_t>((value >> 0) & 0xFF)); values++; } } void HandleEndRecord() override { DCHECK_EQ(buffer_.size(), length_); if (kIsDebugBuild && started_) { uint32_t stored_length = static_cast<uint32_t>(buffer_[5]) << 24 | static_cast<uint32_t>(buffer_[6]) << 16 | static_cast<uint32_t>(buffer_[7]) << 8 | static_cast<uint32_t>(buffer_[8]); DCHECK_EQ(stored_length, length_ - sizeof(uint8_t) - 2 * sizeof(uint32_t)); } HandleFlush(buffer_.data(), length_); buffer_.clear(); } virtual void HandleFlush(const uint8_t* buffer ATTRIBUTE_UNUSED, size_t length ATTRIBUTE_UNUSED) { } std::vector<uint8_t> buffer_; }; class FileEndianOutput final : public EndianOutputBuffered { public: FileEndianOutput(File* fp, size_t reserved_size) : EndianOutputBuffered(reserved_size), fp_(fp), errors_(false) { DCHECK(fp != nullptr); } ~FileEndianOutput() { } bool Errors() { return errors_; } protected: void HandleFlush(const uint8_t* buffer, size_t length) override { if (!errors_) { errors_ = !fp_->WriteFully(buffer, length); } } private: File* fp_; bool errors_; }; class VectorEndianOuputput final : public EndianOutputBuffered { public: VectorEndianOuputput(std::vector<uint8_t>& data, size_t reserved_size) : EndianOutputBuffered(reserved_size), full_data_(data) {} ~VectorEndianOuputput() {} protected: void HandleFlush(const uint8_t* buf, size_t length) override { size_t old_size = full_data_.size(); full_data_.resize(old_size + length); memcpy(full_data_.data() + old_size, buf, length); } private: std::vector<uint8_t>& full_data_; }; #define __ output_-> class Hprof : public SingleRootVisitor { public: Hprof(const char* output_filename, int fd, bool direct_to_ddms) : filename_(output_filename), fd_(fd), direct_to_ddms_(direct_to_ddms) { LOG(INFO) << "hprof: heap dump \"" << filename_ << "\" starting..."; } void Dump() REQUIRES(Locks::mutator_lock_) REQUIRES(!Locks::heap_bitmap_lock_, !Locks::alloc_tracker_lock_) { { MutexLock mu(Thread::Current(), *Locks::alloc_tracker_lock_); if (Runtime::Current()->GetHeap()->IsAllocTrackingEnabled()) { PopulateAllocationTrackingTraces(); } } // First pass to measure the size of the dump. size_t overall_size; size_t max_length; { EndianOutput count_output; output_ = &count_output; ProcessHeap(false); overall_size = count_output.SumLength(); max_length = count_output.MaxLength(); output_ = nullptr; } bool okay; visited_objects_.clear(); if (direct_to_ddms_) { if (kDirectStream) { okay = DumpToDdmsDirect(overall_size, max_length, CHUNK_TYPE("HPDS")); } else { okay = DumpToDdmsBuffered(overall_size, max_length); } } else { okay = DumpToFile(overall_size, max_length); } if (okay) { const uint64_t duration = NanoTime() - start_ns_; LOG(INFO) << "hprof: heap dump completed (" << PrettySize(RoundUp(overall_size, KB)) << ") in " << PrettyDuration(duration) << " objects " << total_objects_ << " objects with stack traces " << total_objects_with_stack_trace_; } } private: void DumpHeapObject(mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_); void DumpHeapClass(mirror::Class* klass) REQUIRES_SHARED(Locks::mutator_lock_); void DumpHeapArray(mirror::Array* obj, mirror::Class* klass) REQUIRES_SHARED(Locks::mutator_lock_); void DumpFakeObjectArray(mirror::Object* obj, const std::set<mirror::Object*>& elements) REQUIRES_SHARED(Locks::mutator_lock_); void DumpHeapInstanceObject(mirror::Object* obj, mirror::Class* klass, const std::set<mirror::Object*>& fake_roots) REQUIRES_SHARED(Locks::mutator_lock_); bool AddRuntimeInternalObjectsField(mirror::Class* klass) REQUIRES_SHARED(Locks::mutator_lock_); void ProcessHeap(bool header_first) REQUIRES(Locks::mutator_lock_) { // Reset current heap and object count. current_heap_ = HPROF_HEAP_DEFAULT; objects_in_segment_ = 0; if (header_first) { ProcessHeader(true); ProcessBody(); } else { ProcessBody(); ProcessHeader(false); } } void ProcessBody() REQUIRES(Locks::mutator_lock_) { Runtime* const runtime = Runtime::Current(); // Walk the roots and the heap. output_->StartNewRecord(HPROF_TAG_HEAP_DUMP_SEGMENT, kHprofTime); simple_roots_.clear(); runtime->VisitRoots(this); runtime->VisitImageRoots(this); auto dump_object = [this](mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { DCHECK(obj != nullptr); DumpHeapObject(obj); }; runtime->GetHeap()->VisitObjectsPaused(dump_object); output_->StartNewRecord(HPROF_TAG_HEAP_DUMP_END, kHprofTime); output_->EndRecord(); } void ProcessHeader(bool string_first) REQUIRES(Locks::mutator_lock_) { // Write the header. WriteFixedHeader(); // Write the string and class tables, and any stack traces, to the header. // (jhat requires that these appear before any of the data in the body that refers to them.) // jhat also requires the string table appear before class table and stack traces. // However, WriteStackTraces() can modify the string table, so it's necessary to call // WriteStringTable() last in the first pass, to compute the correct length of the output. if (string_first) { WriteStringTable(); } WriteClassTable(); WriteStackTraces(); if (!string_first) { WriteStringTable(); } output_->EndRecord(); } void WriteClassTable() REQUIRES_SHARED(Locks::mutator_lock_) { for (const auto& p : classes_) { mirror::Class* c = p.first; HprofClassSerialNumber sn = p.second; CHECK(c != nullptr); output_->StartNewRecord(HPROF_TAG_LOAD_CLASS, kHprofTime); // LOAD CLASS format: // U4: class serial number (always > 0) // ID: class object ID. We use the address of the class object structure as its ID. // U4: stack trace serial number // ID: class name string ID __ AddU4(sn); __ AddObjectId(c); __ AddStackTraceSerialNumber(LookupStackTraceSerialNumber(c)); __ AddStringId(LookupClassNameId(c)); } } void WriteStringTable() { for (const auto& p : strings_) { const std::string& string = p.first; const HprofStringId id = p.second; output_->StartNewRecord(HPROF_TAG_STRING, kHprofTime); // STRING format: // ID: ID for this string // U1*: UTF8 characters for string (NOT null terminated) // (the record format encodes the length) __ AddU4(id); __ AddUtf8String(string.c_str()); } } void StartNewHeapDumpSegment() { // This flushes the old segment and starts a new one. output_->StartNewRecord(HPROF_TAG_HEAP_DUMP_SEGMENT, kHprofTime); objects_in_segment_ = 0; // Starting a new HEAP_DUMP resets the heap to default. current_heap_ = HPROF_HEAP_DEFAULT; } void CheckHeapSegmentConstraints() { if (objects_in_segment_ >= kMaxObjectsPerSegment || output_->Length() >= kMaxBytesPerSegment) { StartNewHeapDumpSegment(); } } void VisitRoot(mirror::Object* obj, const RootInfo& root_info) override REQUIRES_SHARED(Locks::mutator_lock_); void MarkRootObject(const mirror::Object* obj, jobject jni_obj, HprofHeapTag heap_tag, uint32_t thread_serial); HprofClassObjectId LookupClassId(mirror::Class* c) REQUIRES_SHARED(Locks::mutator_lock_) { if (c != nullptr) { auto it = classes_.find(c); if (it == classes_.end()) { // first time to see this class HprofClassSerialNumber sn = next_class_serial_number_++; classes_.Put(c, sn); // Make sure that we've assigned a string ID for this class' name LookupClassNameId(c); } } return PointerToLowMemUInt32(c); } HprofStackTraceSerialNumber LookupStackTraceSerialNumber(const mirror::Object* obj) REQUIRES_SHARED(Locks::mutator_lock_) { auto r = allocation_records_.find(obj); if (r == allocation_records_.end()) { return kHprofNullStackTrace; } else { const gc::AllocRecordStackTrace* trace = r->second; auto result = traces_.find(trace); CHECK(result != traces_.end()); return result->second; } } HprofStringId LookupStringId(mirror::String* string) REQUIRES_SHARED(Locks::mutator_lock_) { return LookupStringId(string->ToModifiedUtf8()); } HprofStringId LookupStringId(const char* string) { return LookupStringId(std::string(string)); } HprofStringId LookupStringId(const std::string& string) { auto it = strings_.find(string); if (it != strings_.end()) { return it->second; } HprofStringId id = next_string_id_++; strings_.Put(string, id); return id; } HprofStringId LookupClassNameId(mirror::Class* c) REQUIRES_SHARED(Locks::mutator_lock_) { return LookupStringId(c->PrettyDescriptor()); } void WriteFixedHeader() { // Write the file header. // U1: NUL-terminated magic string. const char magic[] = "JAVA PROFILE 1.0.3"; __ AddU1List(reinterpret_cast<const uint8_t*>(magic), sizeof(magic)); // U4: size of identifiers. We're using addresses as IDs and our heap references are stored // as uint32_t. // Note of warning: hprof-conv hard-codes the size of identifiers to 4. static_assert(sizeof(mirror::HeapReference<mirror::Object>) == sizeof(uint32_t), "Unexpected HeapReference size"); __ AddU4(sizeof(uint32_t)); // The current time, in milliseconds since 0:00 GMT, 1/1/70. timeval now; const uint64_t nowMs = (gettimeofday(&now, nullptr) < 0) ? 0 : (uint64_t)now.tv_sec * 1000 + now.tv_usec / 1000; // TODO: It seems it would be correct to use U8. // U4: high word of the 64-bit time. __ AddU4(static_cast<uint32_t>(nowMs >> 32)); // U4: low word of the 64-bit time. __ AddU4(static_cast<uint32_t>(nowMs & 0xFFFFFFFF)); } void WriteStackTraces() REQUIRES_SHARED(Locks::mutator_lock_) { // Write a dummy stack trace record so the analysis tools don't freak out. output_->StartNewRecord(HPROF_TAG_STACK_TRACE, kHprofTime); __ AddStackTraceSerialNumber(kHprofNullStackTrace); __ AddU4(kHprofNullThread); __ AddU4(0); // no frames // TODO: jhat complains "WARNING: Stack trace not found for serial # -1", but no trace should // have -1 as its serial number (as long as HprofStackTraceSerialNumber doesn't overflow). for (const auto& it : traces_) { const gc::AllocRecordStackTrace* trace = it.first; HprofStackTraceSerialNumber trace_sn = it.second; size_t depth = trace->GetDepth(); // First write stack frames of the trace for (size_t i = 0; i < depth; ++i) { const gc::AllocRecordStackTraceElement* frame = &trace->GetStackElement(i); ArtMethod* method = frame->GetMethod(); CHECK(method != nullptr); output_->StartNewRecord(HPROF_TAG_STACK_FRAME, kHprofTime); // STACK FRAME format: // ID: stack frame ID. We use the address of the AllocRecordStackTraceElement object as its ID. // ID: method name string ID // ID: method signature string ID // ID: source file name string ID // U4: class serial number // U4: >0, line number; 0, no line information available; -1, unknown location auto frame_result = frames_.find(frame); CHECK(frame_result != frames_.end()); __ AddU4(frame_result->second); __ AddStringId(LookupStringId(method->GetName())); __ AddStringId(LookupStringId(method->GetSignature().ToString())); const char* source_file = method->GetDeclaringClassSourceFile(); if (source_file == nullptr) { source_file = ""; } __ AddStringId(LookupStringId(source_file)); auto class_result = classes_.find(method->GetDeclaringClass().Ptr()); CHECK(class_result != classes_.end()); __ AddU4(class_result->second); __ AddU4(frame->ComputeLineNumber()); } // Then write the trace itself output_->StartNewRecord(HPROF_TAG_STACK_TRACE, kHprofTime); // STACK TRACE format: // U4: stack trace serial number. We use the address of the AllocRecordStackTrace object as its serial number. // U4: thread serial number. We use Thread::GetTid(). // U4: number of frames // [ID]*: series of stack frame ID's __ AddStackTraceSerialNumber(trace_sn); __ AddU4(trace->GetTid()); __ AddU4(depth); for (size_t i = 0; i < depth; ++i) { const gc::AllocRecordStackTraceElement* frame = &trace->GetStackElement(i); auto frame_result = frames_.find(frame); CHECK(frame_result != frames_.end()); __ AddU4(frame_result->second); } } } bool DumpToDdmsBuffered(size_t overall_size ATTRIBUTE_UNUSED, size_t max_length ATTRIBUTE_UNUSED) REQUIRES(Locks::mutator_lock_) { LOG(FATAL) << "Unimplemented"; UNREACHABLE(); // // Send the data off to DDMS. // iovec iov[2]; // iov[0].iov_base = header_data_ptr_; // iov[0].iov_len = header_data_size_; // iov[1].iov_base = body_data_ptr_; // iov[1].iov_len = body_data_size_; // Dbg::DdmSendChunkV(CHUNK_TYPE("HPDS"), iov, 2); } bool DumpToFile(size_t overall_size, size_t max_length) REQUIRES(Locks::mutator_lock_) { // Where exactly are we writing to? int out_fd; if (fd_ >= 0) { out_fd = DupCloexec(fd_); if (out_fd < 0) { ThrowRuntimeException("Couldn't dump heap; dup(%d) failed: %s", fd_, strerror(errno)); return false; } } else { out_fd = open(filename_.c_str(), O_WRONLY | O_CREAT | O_TRUNC | O_CLOEXEC, 0644); if (out_fd < 0) { ThrowRuntimeException("Couldn't dump heap; open(\"%s\") failed: %s", filename_.c_str(), strerror(errno)); return false; } } std::unique_ptr<File> file(new File(out_fd, filename_, true)); bool okay; { FileEndianOutput file_output(file.get(), max_length); output_ = &file_output; ProcessHeap(true); okay = !file_output.Errors(); if (okay) { // Check for expected size. Output is expected to be less-or-equal than first phase, see // b/23521263. DCHECK_LE(file_output.SumLength(), overall_size); } output_ = nullptr; } if (okay) { okay = file->FlushCloseOrErase() == 0; } else { file->Erase(); } if (!okay) { std::string msg(android::base::StringPrintf("Couldn't dump heap; writing \"%s\" failed: %s", filename_.c_str(), strerror(errno))); ThrowRuntimeException("%s", msg.c_str()); LOG(ERROR) << msg; } return okay; } bool DumpToDdmsDirect(size_t overall_size, size_t max_length, uint32_t chunk_type) REQUIRES(Locks::mutator_lock_) { CHECK(direct_to_ddms_); std::vector<uint8_t> out_data; // TODO It would be really good to have some streaming thing again. b/73084059 VectorEndianOuputput output(out_data, max_length); output_ = &output; // Write the dump. ProcessHeap(true); Runtime::Current()->GetRuntimeCallbacks()->DdmPublishChunk( chunk_type, ArrayRef<const uint8_t>(out_data.data(), out_data.size())); // Check for expected size. See DumpToFile for comment. DCHECK_LE(output.SumLength(), overall_size); output_ = nullptr; return true; } void PopulateAllocationTrackingTraces() REQUIRES(Locks::mutator_lock_, Locks::alloc_tracker_lock_) { gc::AllocRecordObjectMap* records = Runtime::Current()->GetHeap()->GetAllocationRecords(); CHECK(records != nullptr); HprofStackTraceSerialNumber next_trace_sn = kHprofNullStackTrace + 1; HprofStackFrameId next_frame_id = 0; size_t count = 0; for (auto it = records->Begin(), end = records->End(); it != end; ++it) { const mirror::Object* obj = it->first.Read(); if (obj == nullptr) { continue; } ++count; const gc::AllocRecordStackTrace* trace = it->second.GetStackTrace(); // Copy the pair into a real hash map to speed up look up. auto records_result = allocation_records_.emplace(obj, trace); // The insertion should always succeed, i.e. no duplicate object pointers in "records" CHECK(records_result.second); // Generate serial numbers for traces, and IDs for frames. auto traces_result = traces_.find(trace); if (traces_result == traces_.end()) { traces_.emplace(trace, next_trace_sn++); // only check frames if the trace is newly discovered for (size_t i = 0, depth = trace->GetDepth(); i < depth; ++i) { const gc::AllocRecordStackTraceElement* frame = &trace->GetStackElement(i); auto frames_result = frames_.find(frame); if (frames_result == frames_.end()) { frames_.emplace(frame, next_frame_id++); } } } } CHECK_EQ(traces_.size(), next_trace_sn - kHprofNullStackTrace - 1); CHECK_EQ(frames_.size(), next_frame_id); total_objects_with_stack_trace_ = count; } // If direct_to_ddms_ is set, "filename_" and "fd" will be ignored. // Otherwise, "filename_" must be valid, though if "fd" >= 0 it will // only be used for debug messages. std::string filename_; int fd_; bool direct_to_ddms_; uint64_t start_ns_ = NanoTime(); EndianOutput* output_ = nullptr; HprofHeapId current_heap_ = HPROF_HEAP_DEFAULT; // Which heap we're currently dumping. size_t objects_in_segment_ = 0; size_t total_objects_ = 0u; size_t total_objects_with_stack_trace_ = 0u; HprofStringId next_string_id_ = 0x400000; SafeMap<std::string, HprofStringId> strings_; HprofClassSerialNumber next_class_serial_number_ = 1; SafeMap<mirror::Class*, HprofClassSerialNumber> classes_; std::unordered_map<const gc::AllocRecordStackTrace*, HprofStackTraceSerialNumber, gc::HashAllocRecordTypesPtr<gc::AllocRecordStackTrace>, gc::EqAllocRecordTypesPtr<gc::AllocRecordStackTrace>> traces_; std::unordered_map<const gc::AllocRecordStackTraceElement*, HprofStackFrameId, gc::HashAllocRecordTypesPtr<gc::AllocRecordStackTraceElement>, gc::EqAllocRecordTypesPtr<gc::AllocRecordStackTraceElement>> frames_; std::unordered_map<const mirror::Object*, const gc::AllocRecordStackTrace*> allocation_records_; // Set used to keep track of what simple root records we have already // emitted, to avoid emitting duplicate entries. The simple root records are // those that contain no other information than the root type and the object // id. A pair of root type and object id is packed into a uint64_t, with // the root type in the upper 32 bits and the object id in the lower 32 // bits. std::unordered_set<uint64_t> simple_roots_; // To make sure we don't dump the same object multiple times. b/34967844 std::unordered_set<mirror::Object*> visited_objects_; friend class GcRootVisitor; DISALLOW_COPY_AND_ASSIGN(Hprof); }; static HprofBasicType SignatureToBasicTypeAndSize(const char* sig, size_t* size_out) { char c = sig[0]; HprofBasicType ret; size_t size; switch (c) { case '[': case 'L': ret = hprof_basic_object; size = 4; break; case 'Z': ret = hprof_basic_boolean; size = 1; break; case 'C': ret = hprof_basic_char; size = 2; break; case 'F': ret = hprof_basic_float; size = 4; break; case 'D': ret = hprof_basic_double; size = 8; break; case 'B': ret = hprof_basic_byte; size = 1; break; case 'S': ret = hprof_basic_short; size = 2; break; case 'I': ret = hprof_basic_int; size = 4; break; case 'J': ret = hprof_basic_long; size = 8; break; default: LOG(FATAL) << "UNREACHABLE"; UNREACHABLE(); } if (size_out != nullptr) { *size_out = size; } return ret; } // Always called when marking objects, but only does // something when ctx->gc_scan_state_ is non-zero, which is usually // only true when marking the root set or unreachable // objects. Used to add rootset references to obj. void Hprof::MarkRootObject(const mirror::Object* obj, jobject jni_obj, HprofHeapTag heap_tag, uint32_t thread_serial) { if (heap_tag == 0) { return; } CheckHeapSegmentConstraints(); switch (heap_tag) { // ID: object ID case HPROF_ROOT_UNKNOWN: case HPROF_ROOT_STICKY_CLASS: case HPROF_ROOT_MONITOR_USED: case HPROF_ROOT_INTERNED_STRING: case HPROF_ROOT_DEBUGGER: case HPROF_ROOT_VM_INTERNAL: { uint64_t key = (static_cast<uint64_t>(heap_tag) << 32) | PointerToLowMemUInt32(obj); if (simple_roots_.insert(key).second) { __ AddU1(heap_tag); __ AddObjectId(obj); } break; } // ID: object ID // ID: JNI global ref ID case HPROF_ROOT_JNI_GLOBAL: __ AddU1(heap_tag); __ AddObjectId(obj); __ AddJniGlobalRefId(jni_obj); break; // ID: object ID // U4: thread serial number // U4: frame number in stack trace (-1 for empty) case HPROF_ROOT_JNI_LOCAL: case HPROF_ROOT_JNI_MONITOR: case HPROF_ROOT_JAVA_FRAME: __ AddU1(heap_tag); __ AddObjectId(obj); __ AddU4(thread_serial); __ AddU4((uint32_t)-1); break; // ID: object ID // U4: thread serial number case HPROF_ROOT_NATIVE_STACK: case HPROF_ROOT_THREAD_BLOCK: __ AddU1(heap_tag); __ AddObjectId(obj); __ AddU4(thread_serial); break; // ID: thread object ID // U4: thread serial number // U4: stack trace serial number case HPROF_ROOT_THREAD_OBJECT: __ AddU1(heap_tag); __ AddObjectId(obj); __ AddU4(thread_serial); __ AddU4((uint32_t)-1); // xxx break; case HPROF_CLASS_DUMP: case HPROF_INSTANCE_DUMP: case HPROF_OBJECT_ARRAY_DUMP: case HPROF_PRIMITIVE_ARRAY_DUMP: case HPROF_HEAP_DUMP_INFO: case HPROF_PRIMITIVE_ARRAY_NODATA_DUMP: // Ignored. break; case HPROF_ROOT_FINALIZING: case HPROF_ROOT_REFERENCE_CLEANUP: case HPROF_UNREACHABLE: LOG(FATAL) << "obsolete tag " << static_cast<int>(heap_tag); UNREACHABLE(); } ++objects_in_segment_; } bool Hprof::AddRuntimeInternalObjectsField(mirror::Class* klass) { if (klass->IsDexCacheClass()) { return true; } // IsClassLoaderClass is true for subclasses of classloader but we only want to add the fake // field to the java.lang.ClassLoader class. if (klass->IsClassLoaderClass() && klass->GetSuperClass()->IsObjectClass()) { return true; } return false; } void Hprof::DumpHeapObject(mirror::Object* obj) { // Ignore classes that are retired. if (obj->IsClass() && obj->AsClass()->IsRetired()) { return; } DCHECK(visited_objects_.insert(obj).second) << "Already visited " << obj << "(" << obj->PrettyTypeOf() << ")"; ++total_objects_; class RootCollector { public: RootCollector() {} void operator()(mirror::Object*, MemberOffset, bool) const {} // Note that these don't have read barriers. Its OK however since the GC is guaranteed to not be // running during the hprof dumping process. void VisitRootIfNonNull(mirror::CompressedReference<mirror::Object>* root) const REQUIRES_SHARED(Locks::mutator_lock_) { if (!root->IsNull()) { VisitRoot(root); } } void VisitRoot(mirror::CompressedReference<mirror::Object>* root) const REQUIRES_SHARED(Locks::mutator_lock_) { roots_.insert(root->AsMirrorPtr()); } const std::set<mirror::Object*>& GetRoots() const { return roots_; } private: // These roots are actually live from the object. Avoid marking them as roots in hprof to make // it easier to debug class unloading. mutable std::set<mirror::Object*> roots_; }; RootCollector visitor; // Collect all native roots. if (!obj->IsClass()) { obj->VisitReferences(visitor, VoidFunctor()); } gc::Heap* const heap = Runtime::Current()->GetHeap(); const gc::space::ContinuousSpace* const space = heap->FindContinuousSpaceFromObject(obj, true); HprofHeapId heap_type = HPROF_HEAP_APP; if (space != nullptr) { if (space->IsZygoteSpace()) { heap_type = HPROF_HEAP_ZYGOTE; VisitRoot(obj, RootInfo(kRootVMInternal)); } else if (space->IsImageSpace() && heap->ObjectIsInBootImageSpace(obj)) { // Only count objects in the boot image as HPROF_HEAP_IMAGE, this leaves app image objects as // HPROF_HEAP_APP. b/35762934 heap_type = HPROF_HEAP_IMAGE; VisitRoot(obj, RootInfo(kRootVMInternal)); } } else { const auto* los = heap->GetLargeObjectsSpace(); if (los->Contains(obj) && los->IsZygoteLargeObject(Thread::Current(), obj)) { heap_type = HPROF_HEAP_ZYGOTE; VisitRoot(obj, RootInfo(kRootVMInternal)); } } CheckHeapSegmentConstraints(); if (heap_type != current_heap_) { HprofStringId nameId; // This object is in a different heap than the current one. // Emit a HEAP_DUMP_INFO tag to change heaps. __ AddU1(HPROF_HEAP_DUMP_INFO); __ AddU4(static_cast<uint32_t>(heap_type)); // uint32_t: heap type switch (heap_type) { case HPROF_HEAP_APP: nameId = LookupStringId("app"); break; case HPROF_HEAP_ZYGOTE: nameId = LookupStringId("zygote"); break; case HPROF_HEAP_IMAGE: nameId = LookupStringId("image"); break; default: // Internal error LOG(ERROR) << "Unexpected desiredHeap"; nameId = LookupStringId("<ILLEGAL>"); break; } __ AddStringId(nameId); current_heap_ = heap_type; } mirror::Class* c = obj->GetClass(); if (c == nullptr) { // This object will bother HprofReader, because it has a null // class, so just don't dump it. It could be // gDvm.unlinkedJavaLangClass or it could be an object just // allocated which hasn't been initialized yet. } else { if (obj->IsClass()) { DumpHeapClass(obj->AsClass().Ptr()); } else if (c->IsArrayClass()) { DumpHeapArray(obj->AsArray().Ptr(), c); } else { DumpHeapInstanceObject(obj, c, visitor.GetRoots()); } } ++objects_in_segment_; } void Hprof::DumpHeapClass(mirror::Class* klass) { if (!klass->IsResolved()) { // Class is allocated but not yet resolved: we cannot access its fields or super class. return; } // Note: We will emit instance fields of Class as synthetic static fields with a prefix of // "$class$" so the class fields are visible in hprof dumps. For tools to account for that // correctly, we'll emit an instance size of zero for java.lang.Class, and also emit the // instance fields of java.lang.Object. // // For other overhead (currently only the embedded vtable), we will generate a synthetic // byte array (or field[s] in case the overhead size is of reference size or less). const size_t num_static_fields = klass->NumStaticFields(); // Total class size: // * class instance fields (including Object instance fields) // * vtable // * class static fields const size_t total_class_size = klass->GetClassSize(); // Base class size (common parts of all Class instances): // * class instance fields (including Object instance fields) constexpr size_t base_class_size = sizeof(mirror::Class); CHECK_LE(base_class_size, total_class_size); // Difference of Total and Base: // * vtable // * class static fields const size_t base_overhead_size = total_class_size - base_class_size; // Tools (ahat/Studio) will count the static fields and account for them in the class size. We // must thus subtract them from base_overhead_size or they will be double-counted. size_t class_static_fields_size = 0; for (ArtField& class_static_field : klass->GetSFields()) { size_t size = 0; SignatureToBasicTypeAndSize(class_static_field.GetTypeDescriptor(), &size); class_static_fields_size += size; } CHECK_GE(base_overhead_size, class_static_fields_size); // Now we have: // * vtable const size_t base_no_statics_overhead_size = base_overhead_size - class_static_fields_size; // We may decide to display native overhead (the actual IMT, ArtFields and ArtMethods) in the // future. const size_t java_heap_overhead_size = base_no_statics_overhead_size; // For overhead greater 4, we'll allocate a synthetic array. if (java_heap_overhead_size > 4) { // Create a byte array to reflect the allocation of the // StaticField array at the end of this class. __ AddU1(HPROF_PRIMITIVE_ARRAY_DUMP); __ AddClassStaticsId(klass); __ AddStackTraceSerialNumber(LookupStackTraceSerialNumber(klass)); __ AddU4(java_heap_overhead_size - 4); __ AddU1(hprof_basic_byte); for (size_t i = 0; i < java_heap_overhead_size - 4; ++i) { __ AddU1(0); } } const size_t java_heap_overhead_field_count = java_heap_overhead_size > 0 ? (java_heap_overhead_size == 3 ? 2u : 1u) : 0; __ AddU1(HPROF_CLASS_DUMP); __ AddClassId(LookupClassId(klass)); __ AddStackTraceSerialNumber(LookupStackTraceSerialNumber(klass)); __ AddClassId(LookupClassId(klass->GetSuperClass().Ptr())); __ AddObjectId(klass->GetClassLoader().Ptr()); __ AddObjectId(nullptr); // no signer __ AddObjectId(nullptr); // no prot domain __ AddObjectId(nullptr); // reserved __ AddObjectId(nullptr); // reserved // Instance size. if (klass->IsClassClass()) { // As mentioned above, we will emit instance fields as synthetic static fields. So the // base object is "empty." __ AddU4(0); } else if (klass->IsStringClass()) { // Strings are variable length with character data at the end like arrays. // This outputs the size of an empty string. __ AddU4(sizeof(mirror::String)); } else if (klass->IsArrayClass() || klass->IsPrimitive()) { __ AddU4(0); } else { __ AddU4(klass->GetObjectSize()); // instance size } __ AddU2(0); // empty const pool // Static fields // // Note: we report Class' and Object's instance fields here, too. This is for visibility reasons. // (b/38167721) mirror::Class* class_class = klass->GetClass(); DCHECK(class_class->GetSuperClass()->IsObjectClass()); const size_t static_fields_reported = class_class->NumInstanceFields() + class_class->GetSuperClass()->NumInstanceFields() + java_heap_overhead_field_count + num_static_fields; __ AddU2(dchecked_integral_cast<uint16_t>(static_fields_reported)); if (java_heap_overhead_size != 0) { __ AddStringId(LookupStringId(kClassOverheadName)); size_t overhead_fields = 0; if (java_heap_overhead_size > 4) { __ AddU1(hprof_basic_object); __ AddClassStaticsId(klass); ++overhead_fields; } else { switch (java_heap_overhead_size) { case 4: { __ AddU1(hprof_basic_int); __ AddU4(0); ++overhead_fields; break; } case 2: { __ AddU1(hprof_basic_short); __ AddU2(0); ++overhead_fields; break; } case 3: { __ AddU1(hprof_basic_short); __ AddU2(0); __ AddStringId(LookupStringId(std::string(kClassOverheadName) + "2")); ++overhead_fields; } FALLTHROUGH_INTENDED; case 1: { __ AddU1(hprof_basic_byte); __ AddU1(0); ++overhead_fields; break; } } } DCHECK_EQ(java_heap_overhead_field_count, overhead_fields); } // Helper lambda to emit the given static field. The second argument name_fn will be called to // generate the name to emit. This can be used to emit something else than the field's actual // name. auto static_field_writer = [&](ArtField& field, auto name_fn) REQUIRES_SHARED(Locks::mutator_lock_) { __ AddStringId(LookupStringId(name_fn(field))); size_t size; HprofBasicType t = SignatureToBasicTypeAndSize(field.GetTypeDescriptor(), &size); __ AddU1(t); switch (t) { case hprof_basic_byte: __ AddU1(field.GetByte(klass)); return; case hprof_basic_boolean: __ AddU1(field.GetBoolean(klass)); return; case hprof_basic_char: __ AddU2(field.GetChar(klass)); return; case hprof_basic_short: __ AddU2(field.GetShort(klass)); return; case hprof_basic_float: case hprof_basic_int: case hprof_basic_object: __ AddU4(field.Get32(klass)); return; case hprof_basic_double: case hprof_basic_long: __ AddU8(field.Get64(klass)); return; } LOG(FATAL) << "Unexpected size " << size; UNREACHABLE(); }; { auto class_instance_field_name_fn = [](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) { return std::string("$class$") + field.GetName(); }; for (ArtField& class_instance_field : class_class->GetIFields()) { static_field_writer(class_instance_field, class_instance_field_name_fn); } for (ArtField& object_instance_field : class_class->GetSuperClass()->GetIFields()) { static_field_writer(object_instance_field, class_instance_field_name_fn); } } { auto class_static_field_name_fn = [](ArtField& field) REQUIRES_SHARED(Locks::mutator_lock_) { return field.GetName(); }; for (ArtField& class_static_field : klass->GetSFields()) { static_field_writer(class_static_field, class_static_field_name_fn); } } // Instance fields for this class (no superclass fields) int iFieldCount = klass->NumInstanceFields(); // add_internal_runtime_objects is only for classes that may retain objects live through means // other than fields. It is never the case for strings. const bool add_internal_runtime_objects = AddRuntimeInternalObjectsField(klass); if (klass->IsStringClass() || add_internal_runtime_objects) { __ AddU2((uint16_t)iFieldCount + 1); } else { __ AddU2((uint16_t)iFieldCount); } for (int i = 0; i < iFieldCount; ++i) { ArtField* f = klass->GetInstanceField(i); __ AddStringId(LookupStringId(f->GetName())); HprofBasicType t = SignatureToBasicTypeAndSize(f->GetTypeDescriptor(), nullptr); __ AddU1(t); } // Add native value character array for strings / byte array for compressed strings. if (klass->IsStringClass()) { __ AddStringId(LookupStringId("value")); __ AddU1(hprof_basic_object); } else if (add_internal_runtime_objects) { __ AddStringId(LookupStringId("runtimeInternalObjects")); __ AddU1(hprof_basic_object); } } void Hprof::DumpFakeObjectArray(mirror::Object* obj, const std::set<mirror::Object*>& elements) { __ AddU1(HPROF_OBJECT_ARRAY_DUMP); __ AddObjectId(obj); __ AddStackTraceSerialNumber(LookupStackTraceSerialNumber(obj)); __ AddU4(elements.size()); __ AddClassId(LookupClassId(GetClassRoot<mirror::ObjectArray<mirror::Object>>().Ptr())); for (mirror::Object* e : elements) { __ AddObjectId(e); } } void Hprof::DumpHeapArray(mirror::Array* obj, mirror::Class* klass) { uint32_t length = obj->GetLength(); if (obj->IsObjectArray()) { // obj is an object array. __ AddU1(HPROF_OBJECT_ARRAY_DUMP); __ AddObjectId(obj); __ AddStackTraceSerialNumber(LookupStackTraceSerialNumber(obj)); __ AddU4(length); __ AddClassId(LookupClassId(klass)); // Dump the elements, which are always objects or null. __ AddIdList(obj->AsObjectArray<mirror::Object>().Ptr()); } else { size_t size; HprofBasicType t = SignatureToBasicTypeAndSize( Primitive::Descriptor(klass->GetComponentType()->GetPrimitiveType()), &size); // obj is a primitive array. __ AddU1(HPROF_PRIMITIVE_ARRAY_DUMP); __ AddObjectId(obj); __ AddStackTraceSerialNumber(LookupStackTraceSerialNumber(obj)); __ AddU4(length); __ AddU1(t); // Dump the raw, packed element values. if (size == 1) { __ AddU1List(reinterpret_cast<const uint8_t*>(obj->GetRawData(sizeof(uint8_t), 0)), length); } else if (size == 2) { __ AddU2List(reinterpret_cast<const uint16_t*>(obj->GetRawData(sizeof(uint16_t), 0)), length); } else if (size == 4) { __ AddU4List(reinterpret_cast<const uint32_t*>(obj->GetRawData(sizeof(uint32_t), 0)), length); } else if (size == 8) { __ AddU8List(reinterpret_cast<const uint64_t*>(obj->GetRawData(sizeof(uint64_t), 0)), length); } } } void Hprof::DumpHeapInstanceObject(mirror::Object* obj, mirror::Class* klass, const std::set<mirror::Object*>& fake_roots) { // obj is an instance object. __ AddU1(HPROF_INSTANCE_DUMP); __ AddObjectId(obj); __ AddStackTraceSerialNumber(LookupStackTraceSerialNumber(obj)); __ AddClassId(LookupClassId(klass)); // Reserve some space for the length of the instance data, which we won't // know until we're done writing it. size_t size_patch_offset = output_->Length(); __ AddU4(0x77777777); // What we will use for the string value if the object is a string. mirror::Object* string_value = nullptr; mirror::Object* fake_object_array = nullptr; // Write the instance data; fields for this class, followed by super class fields, and so on. do { const size_t instance_fields = klass->NumInstanceFields(); for (size_t i = 0; i < instance_fields; ++i) { ArtField* f = klass->GetInstanceField(i); size_t size; HprofBasicType t = SignatureToBasicTypeAndSize(f->GetTypeDescriptor(), &size); switch (t) { case hprof_basic_byte: __ AddU1(f->GetByte(obj)); break; case hprof_basic_boolean: __ AddU1(f->GetBoolean(obj)); break; case hprof_basic_char: __ AddU2(f->GetChar(obj)); break; case hprof_basic_short: __ AddU2(f->GetShort(obj)); break; case hprof_basic_int: if (mirror::kUseStringCompression && klass->IsStringClass() && f->GetOffset().SizeValue() == mirror::String::CountOffset().SizeValue()) { // Store the string length instead of the raw count field with compression flag. __ AddU4(obj->AsString()->GetLength()); break; } FALLTHROUGH_INTENDED; case hprof_basic_float: case hprof_basic_object: __ AddU4(f->Get32(obj)); break; case hprof_basic_double: case hprof_basic_long: __ AddU8(f->Get64(obj)); break; } } // Add value field for String if necessary. if (klass->IsStringClass()) { ObjPtr<mirror::String> s = obj->AsString(); if (s->GetLength() == 0) { // If string is empty, use an object-aligned address within the string for the value. string_value = reinterpret_cast<mirror::Object*>( reinterpret_cast<uintptr_t>(s.Ptr()) + kObjectAlignment); } else { if (s->IsCompressed()) { string_value = reinterpret_cast<mirror::Object*>(s->GetValueCompressed()); } else { string_value = reinterpret_cast<mirror::Object*>(s->GetValue()); } } __ AddObjectId(string_value); } else if (AddRuntimeInternalObjectsField(klass)) { // We need an id that is guaranteed to not be used, use 1/2 of the object alignment. fake_object_array = reinterpret_cast<mirror::Object*>( reinterpret_cast<uintptr_t>(obj) + kObjectAlignment / 2); __ AddObjectId(fake_object_array); } klass = klass->GetSuperClass().Ptr(); } while (klass != nullptr); // Patch the instance field length. __ UpdateU4(size_patch_offset, output_->Length() - (size_patch_offset + 4)); // Output native value character array for strings. CHECK_EQ(obj->IsString(), string_value != nullptr); if (string_value != nullptr) { ObjPtr<mirror::String> s = obj->AsString(); __ AddU1(HPROF_PRIMITIVE_ARRAY_DUMP); __ AddObjectId(string_value); __ AddStackTraceSerialNumber(LookupStackTraceSerialNumber(obj)); __ AddU4(s->GetLength()); if (s->IsCompressed()) { __ AddU1(hprof_basic_byte); __ AddU1List(s->GetValueCompressed(), s->GetLength()); } else { __ AddU1(hprof_basic_char); __ AddU2List(s->GetValue(), s->GetLength()); } } else if (fake_object_array != nullptr) { DumpFakeObjectArray(fake_object_array, fake_roots); } } void Hprof::VisitRoot(mirror::Object* obj, const RootInfo& info) { static const HprofHeapTag xlate[] = { HPROF_ROOT_UNKNOWN, HPROF_ROOT_JNI_GLOBAL, HPROF_ROOT_JNI_LOCAL, HPROF_ROOT_JAVA_FRAME, HPROF_ROOT_NATIVE_STACK, HPROF_ROOT_STICKY_CLASS, HPROF_ROOT_THREAD_BLOCK, HPROF_ROOT_MONITOR_USED, HPROF_ROOT_THREAD_OBJECT, HPROF_ROOT_INTERNED_STRING, HPROF_ROOT_FINALIZING, HPROF_ROOT_DEBUGGER, HPROF_ROOT_REFERENCE_CLEANUP, HPROF_ROOT_VM_INTERNAL, HPROF_ROOT_JNI_MONITOR, }; CHECK_LT(info.GetType(), sizeof(xlate) / sizeof(HprofHeapTag)); if (obj == nullptr) { return; } MarkRootObject(obj, nullptr, xlate[info.GetType()], info.GetThreadId()); } // If "direct_to_ddms" is true, the other arguments are ignored, and data is // sent directly to DDMS. // If "fd" is >= 0, the output will be written to that file descriptor. // Otherwise, "filename" is used to create an output file. void DumpHeap(const char* filename, int fd, bool direct_to_ddms) { CHECK(filename != nullptr); Thread* self = Thread::Current(); // Need to take a heap dump while GC isn't running. See the comment in Heap::VisitObjects(). // Also we need the critical section to avoid visiting the same object twice. See b/34967844 gc::ScopedGCCriticalSection gcs(self, gc::kGcCauseHprof, gc::kCollectorTypeHprof); ScopedSuspendAll ssa(__FUNCTION__, true /* long suspend */); Hprof hprof(filename, fd, direct_to_ddms); hprof.Dump(); } } // namespace hprof } // namespace art