/* * Copyright (C) 2017 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "art_dex_file_loader.h" #include <sys/stat.h> #include "android-base/stringprintf.h" #include "base/file_magic.h" #include "base/file_utils.h" #include "base/mem_map.h" #include "base/mman.h" // For the PROT_* and MAP_* constants. #include "base/stl_util.h" #include "base/systrace.h" #include "base/unix_file/fd_file.h" #include "base/zip_archive.h" #include "dex/compact_dex_file.h" #include "dex/dex_file.h" #include "dex/dex_file_verifier.h" #include "dex/standard_dex_file.h" namespace art { namespace { class MemMapContainer : public DexFileContainer { public: explicit MemMapContainer(MemMap&& mem_map) : mem_map_(std::move(mem_map)) { } ~MemMapContainer() override { } int GetPermissions() override { if (!mem_map_.IsValid()) { return 0; } else { return mem_map_.GetProtect(); } } bool IsReadOnly() override { return GetPermissions() == PROT_READ; } bool EnableWrite() override { CHECK(IsReadOnly()); if (!mem_map_.IsValid()) { return false; } else { return mem_map_.Protect(PROT_READ | PROT_WRITE); } } bool DisableWrite() override { CHECK(!IsReadOnly()); if (!mem_map_.IsValid()) { return false; } else { return mem_map_.Protect(PROT_READ); } } private: MemMap mem_map_; DISALLOW_COPY_AND_ASSIGN(MemMapContainer); }; } // namespace using android::base::StringPrintf; static constexpr OatDexFile* kNoOatDexFile = nullptr; bool ArtDexFileLoader::GetMultiDexChecksums(const char* filename, std::vector<uint32_t>* checksums, std::string* error_msg, int zip_fd, bool* zip_file_only_contains_uncompressed_dex) const { CHECK(checksums != nullptr); uint32_t magic; File fd; if (zip_fd != -1) { if (ReadMagicAndReset(zip_fd, &magic, error_msg)) { fd = File(DupCloexec(zip_fd), /* check_usage= */ false); } } else { fd = OpenAndReadMagic(filename, &magic, error_msg); } if (fd.Fd() == -1) { DCHECK(!error_msg->empty()); return false; } if (IsZipMagic(magic)) { std::unique_ptr<ZipArchive> zip_archive( ZipArchive::OpenFromFd(fd.Release(), filename, error_msg)); if (zip_archive.get() == nullptr) { *error_msg = StringPrintf("Failed to open zip archive '%s' (error msg: %s)", filename, error_msg->c_str()); return false; } uint32_t i = 0; std::string zip_entry_name = GetMultiDexClassesDexName(i++); std::unique_ptr<ZipEntry> zip_entry(zip_archive->Find(zip_entry_name.c_str(), error_msg)); if (zip_entry.get() == nullptr) { *error_msg = StringPrintf("Zip archive '%s' doesn't contain %s (error msg: %s)", filename, zip_entry_name.c_str(), error_msg->c_str()); return false; } if (zip_file_only_contains_uncompressed_dex != nullptr) { // Start by assuming everything is uncompressed. *zip_file_only_contains_uncompressed_dex = true; } do { if (zip_file_only_contains_uncompressed_dex != nullptr) { if (!(zip_entry->IsUncompressed() && zip_entry->IsAlignedTo(alignof(DexFile::Header)))) { *zip_file_only_contains_uncompressed_dex = false; } } checksums->push_back(zip_entry->GetCrc32()); zip_entry_name = GetMultiDexClassesDexName(i++); zip_entry.reset(zip_archive->Find(zip_entry_name.c_str(), error_msg)); } while (zip_entry.get() != nullptr); return true; } if (IsMagicValid(magic)) { std::unique_ptr<const DexFile> dex_file(OpenFile(fd.Release(), filename, /* verify= */ false, /* verify_checksum= */ false, /* mmap_shared= */ false, error_msg)); if (dex_file == nullptr) { return false; } checksums->push_back(dex_file->GetHeader().checksum_); return true; } *error_msg = StringPrintf("Expected valid zip or dex file: '%s'", filename); return false; } std::unique_ptr<const DexFile> ArtDexFileLoader::Open( const uint8_t* base, size_t size, const std::string& location, uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg, std::unique_ptr<DexFileContainer> container) const { ScopedTrace trace(std::string("Open dex file from RAM ") + location); return OpenCommon(base, size, /*data_base=*/ nullptr, /*data_size=*/ 0u, location, location_checksum, oat_dex_file, verify, verify_checksum, error_msg, std::move(container), /*verify_result=*/ nullptr); } std::unique_ptr<const DexFile> ArtDexFileLoader::Open(const std::string& location, uint32_t location_checksum, MemMap&& map, bool verify, bool verify_checksum, std::string* error_msg) const { ScopedTrace trace(std::string("Open dex file from mapped-memory ") + location); CHECK(map.IsValid()); size_t size = map.Size(); if (size < sizeof(DexFile::Header)) { *error_msg = StringPrintf( "DexFile: failed to open dex file '%s' that is too short to have a header", location.c_str()); return nullptr; } uint8_t* begin = map.Begin(); std::unique_ptr<DexFile> dex_file = OpenCommon(begin, size, /*data_base=*/ nullptr, /*data_size=*/ 0u, location, location_checksum, kNoOatDexFile, verify, verify_checksum, error_msg, std::make_unique<MemMapContainer>(std::move(map)), /*verify_result=*/ nullptr); // Opening CompactDex is only supported from vdex files. if (dex_file != nullptr && dex_file->IsCompactDexFile()) { *error_msg = StringPrintf("Opening CompactDex file '%s' is only supported from vdex files", location.c_str()); return nullptr; } return dex_file; } bool ArtDexFileLoader::Open(const char* filename, const std::string& location, bool verify, bool verify_checksum, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) const { uint32_t magic; File fd = OpenAndReadMagic(filename, &magic, error_msg); if (fd.Fd() == -1) { DCHECK(!error_msg->empty()); return false; } return OpenWithMagic( magic, fd.Release(), location, verify, verify_checksum, error_msg, dex_files); } bool ArtDexFileLoader::Open(int fd, const std::string& location, bool verify, bool verify_checksum, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) const { uint32_t magic; if (!ReadMagicAndReset(fd, &magic, error_msg)) { DCHECK(!error_msg->empty()); return false; } return OpenWithMagic(magic, fd, location, verify, verify_checksum, error_msg, dex_files); } bool ArtDexFileLoader::OpenWithMagic(uint32_t magic, int fd, const std::string& location, bool verify, bool verify_checksum, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) const { ScopedTrace trace(std::string("Open dex file ") + std::string(location)); DCHECK(dex_files != nullptr) << "DexFile::Open: out-param is nullptr"; if (IsZipMagic(magic)) { return OpenZip(fd, location, verify, verify_checksum, error_msg, dex_files); } if (IsMagicValid(magic)) { std::unique_ptr<const DexFile> dex_file(OpenFile(fd, location, verify, verify_checksum, /* mmap_shared= */ false, error_msg)); if (dex_file.get() != nullptr) { dex_files->push_back(std::move(dex_file)); return true; } else { return false; } } *error_msg = StringPrintf("Expected valid zip or dex file: '%s'", location.c_str()); return false; } std::unique_ptr<const DexFile> ArtDexFileLoader::OpenDex(int fd, const std::string& location, bool verify, bool verify_checksum, bool mmap_shared, std::string* error_msg) const { ScopedTrace trace("Open dex file " + std::string(location)); return OpenFile(fd, location, verify, verify_checksum, mmap_shared, error_msg); } bool ArtDexFileLoader::OpenZip(int fd, const std::string& location, bool verify, bool verify_checksum, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) const { ScopedTrace trace("Dex file open Zip " + std::string(location)); DCHECK(dex_files != nullptr) << "DexFile::OpenZip: out-param is nullptr"; std::unique_ptr<ZipArchive> zip_archive(ZipArchive::OpenFromFd(fd, location.c_str(), error_msg)); if (zip_archive.get() == nullptr) { DCHECK(!error_msg->empty()); return false; } return OpenAllDexFilesFromZip( *zip_archive, location, verify, verify_checksum, error_msg, dex_files); } std::unique_ptr<const DexFile> ArtDexFileLoader::OpenFile(int fd, const std::string& location, bool verify, bool verify_checksum, bool mmap_shared, std::string* error_msg) const { ScopedTrace trace(std::string("Open dex file ") + std::string(location)); CHECK(!location.empty()); MemMap map; { File delayed_close(fd, /* check_usage= */ false); struct stat sbuf; memset(&sbuf, 0, sizeof(sbuf)); if (fstat(fd, &sbuf) == -1) { *error_msg = StringPrintf("DexFile: fstat '%s' failed: %s", location.c_str(), strerror(errno)); return nullptr; } if (S_ISDIR(sbuf.st_mode)) { *error_msg = StringPrintf("Attempt to mmap directory '%s'", location.c_str()); return nullptr; } size_t length = sbuf.st_size; map = MemMap::MapFile(length, PROT_READ, mmap_shared ? MAP_SHARED : MAP_PRIVATE, fd, 0, /*low_4gb=*/false, location.c_str(), error_msg); if (!map.IsValid()) { DCHECK(!error_msg->empty()); return nullptr; } } const uint8_t* begin = map.Begin(); size_t size = map.Size(); if (size < sizeof(DexFile::Header)) { *error_msg = StringPrintf( "DexFile: failed to open dex file '%s' that is too short to have a header", location.c_str()); return nullptr; } const DexFile::Header* dex_header = reinterpret_cast<const DexFile::Header*>(begin); std::unique_ptr<DexFile> dex_file = OpenCommon(begin, size, /*data_base=*/ nullptr, /*data_size=*/ 0u, location, dex_header->checksum_, kNoOatDexFile, verify, verify_checksum, error_msg, std::make_unique<MemMapContainer>(std::move(map)), /*verify_result=*/ nullptr); // Opening CompactDex is only supported from vdex files. if (dex_file != nullptr && dex_file->IsCompactDexFile()) { *error_msg = StringPrintf("Opening CompactDex file '%s' is only supported from vdex files", location.c_str()); return nullptr; } return dex_file; } std::unique_ptr<const DexFile> ArtDexFileLoader::OpenOneDexFileFromZip( const ZipArchive& zip_archive, const char* entry_name, const std::string& location, bool verify, bool verify_checksum, std::string* error_msg, DexFileLoaderErrorCode* error_code) const { ScopedTrace trace("Dex file open from Zip Archive " + std::string(location)); CHECK(!location.empty()); std::unique_ptr<ZipEntry> zip_entry(zip_archive.Find(entry_name, error_msg)); if (zip_entry == nullptr) { *error_code = DexFileLoaderErrorCode::kEntryNotFound; return nullptr; } if (zip_entry->GetUncompressedLength() == 0) { *error_msg = StringPrintf("Dex file '%s' has zero length", location.c_str()); *error_code = DexFileLoaderErrorCode::kDexFileError; return nullptr; } MemMap map; if (zip_entry->IsUncompressed()) { if (!zip_entry->IsAlignedTo(alignof(DexFile::Header))) { // Do not mmap unaligned ZIP entries because // doing so would fail dex verification which requires 4 byte alignment. LOG(WARNING) << "Can't mmap dex file " << location << "!" << entry_name << " directly; " << "please zipalign to " << alignof(DexFile::Header) << " bytes. " << "Falling back to extracting file."; } else { // Map uncompressed files within zip as file-backed to avoid a dirty copy. map = zip_entry->MapDirectlyFromFile(location.c_str(), /*out*/error_msg); if (!map.IsValid()) { LOG(WARNING) << "Can't mmap dex file " << location << "!" << entry_name << " directly; " << "is your ZIP file corrupted? Falling back to extraction."; // Try again with Extraction which still has a chance of recovery. } } } if (!map.IsValid()) { // Default path for compressed ZIP entries, // and fallback for stored ZIP entries. map = zip_entry->ExtractToMemMap(location.c_str(), entry_name, error_msg); } if (!map.IsValid()) { *error_msg = StringPrintf("Failed to extract '%s' from '%s': %s", entry_name, location.c_str(), error_msg->c_str()); *error_code = DexFileLoaderErrorCode::kExtractToMemoryError; return nullptr; } VerifyResult verify_result; uint8_t* begin = map.Begin(); size_t size = map.Size(); std::unique_ptr<DexFile> dex_file = OpenCommon(begin, size, /*data_base=*/ nullptr, /*data_size=*/ 0u, location, zip_entry->GetCrc32(), kNoOatDexFile, verify, verify_checksum, error_msg, std::make_unique<MemMapContainer>(std::move(map)), &verify_result); if (dex_file != nullptr && dex_file->IsCompactDexFile()) { *error_msg = StringPrintf("Opening CompactDex file '%s' is only supported from vdex files", location.c_str()); return nullptr; } if (dex_file == nullptr) { if (verify_result == VerifyResult::kVerifyNotAttempted) { *error_code = DexFileLoaderErrorCode::kDexFileError; } else { *error_code = DexFileLoaderErrorCode::kVerifyError; } return nullptr; } if (!dex_file->DisableWrite()) { *error_msg = StringPrintf("Failed to make dex file '%s' read only", location.c_str()); *error_code = DexFileLoaderErrorCode::kMakeReadOnlyError; return nullptr; } CHECK(dex_file->IsReadOnly()) << location; if (verify_result != VerifyResult::kVerifySucceeded) { *error_code = DexFileLoaderErrorCode::kVerifyError; return nullptr; } *error_code = DexFileLoaderErrorCode::kNoError; return dex_file; } // Technically we do not have a limitation with respect to the number of dex files that can be in a // multidex APK. However, it's bad practice, as each dex file requires its own tables for symbols // (types, classes, methods, ...) and dex caches. So warn the user that we open a zip with what // seems an excessive number. static constexpr size_t kWarnOnManyDexFilesThreshold = 100; bool ArtDexFileLoader::OpenAllDexFilesFromZip( const ZipArchive& zip_archive, const std::string& location, bool verify, bool verify_checksum, std::string* error_msg, std::vector<std::unique_ptr<const DexFile>>* dex_files) const { ScopedTrace trace("Dex file open from Zip " + std::string(location)); DCHECK(dex_files != nullptr) << "DexFile::OpenFromZip: out-param is nullptr"; DexFileLoaderErrorCode error_code; std::unique_ptr<const DexFile> dex_file(OpenOneDexFileFromZip(zip_archive, kClassesDex, location, verify, verify_checksum, error_msg, &error_code)); if (dex_file.get() == nullptr) { return false; } else { // Had at least classes.dex. dex_files->push_back(std::move(dex_file)); // Now try some more. // We could try to avoid std::string allocations by working on a char array directly. As we // do not expect a lot of iterations, this seems too involved and brittle. for (size_t i = 1; ; ++i) { std::string name = GetMultiDexClassesDexName(i); std::string fake_location = GetMultiDexLocation(i, location.c_str()); std::unique_ptr<const DexFile> next_dex_file(OpenOneDexFileFromZip(zip_archive, name.c_str(), fake_location, verify, verify_checksum, error_msg, &error_code)); if (next_dex_file.get() == nullptr) { if (error_code != DexFileLoaderErrorCode::kEntryNotFound) { LOG(WARNING) << "Zip open failed: " << *error_msg; } break; } else { dex_files->push_back(std::move(next_dex_file)); } if (i == kWarnOnManyDexFilesThreshold) { LOG(WARNING) << location << " has in excess of " << kWarnOnManyDexFilesThreshold << " dex files. Please consider coalescing and shrinking the number to " " avoid runtime overhead."; } if (i == std::numeric_limits<size_t>::max()) { LOG(ERROR) << "Overflow in number of dex files!"; break; } } return true; } } std::unique_ptr<DexFile> ArtDexFileLoader::OpenCommon(const uint8_t* base, size_t size, const uint8_t* data_base, size_t data_size, const std::string& location, uint32_t location_checksum, const OatDexFile* oat_dex_file, bool verify, bool verify_checksum, std::string* error_msg, std::unique_ptr<DexFileContainer> container, VerifyResult* verify_result) { return DexFileLoader::OpenCommon(base, size, data_base, data_size, location, location_checksum, oat_dex_file, verify, verify_checksum, error_msg, std::move(container), verify_result); } } // namespace art