/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_LIBARTBASE_BASE_CASTS_H_ #define ART_LIBARTBASE_BASE_CASTS_H_ #include <assert.h> #include <stdint.h> #include <string.h> #include <limits> #include <type_traits> #include <android-base/logging.h> #include "stl_util_identity.h" namespace art { // Use implicit_cast as a safe version of static_cast or const_cast // for upcasting in the type hierarchy (i.e. casting a pointer to Foo // to a pointer to SuperclassOfFoo or casting a pointer to Foo to // a const pointer to Foo). // When you use implicit_cast, the compiler checks that the cast is safe. // Such explicit implicit_casts are necessary in surprisingly many // situations where C++ demands an exact type match instead of an // argument type convertible to a target type. // // The From type can be inferred, so the preferred syntax for using // implicit_cast is the same as for static_cast etc.: // // implicit_cast<ToType>(expr) // // implicit_cast would have been part of the C++ standard library, // but the proposal was submitted too late. It will probably make // its way into the language in the future. template<typename To, typename From> inline To implicit_cast(From const &f) { return f; } // When you upcast (that is, cast a pointer from type Foo to type // SuperclassOfFoo), it's fine to use implicit_cast<>, since upcasts // always succeed. When you downcast (that is, cast a pointer from // type Foo to type SubclassOfFoo), static_cast<> isn't safe, because // how do you know the pointer is really of type SubclassOfFoo? It // could be a bare Foo, or of type DifferentSubclassOfFoo. Thus, // when you downcast, you should use this macro. In debug mode, we // use dynamic_cast<> to double-check the downcast is legal (we die // if it's not). In normal mode, we do the efficient static_cast<> // instead. Thus, it's important to test in debug mode to make sure // the cast is legal! // This is the only place in the code we should use dynamic_cast<>. // In particular, you SHOULDN'T be using dynamic_cast<> in order to // do RTTI (eg code like this: // if (dynamic_cast<Subclass1>(foo)) HandleASubclass1Object(foo); // if (dynamic_cast<Subclass2>(foo)) HandleASubclass2Object(foo); // You should design the code some other way not to need this. template<typename To, typename From> // use like this: down_cast<T*>(foo); inline To down_cast(From* f) { // so we only accept pointers static_assert(std::is_base_of<From, typename std::remove_pointer<To>::type>::value, "down_cast unsafe as To is not a subtype of From"); return static_cast<To>(f); } template<typename To, typename From> // use like this: down_cast<T&>(foo); inline To down_cast(From& f) { // so we only accept references static_assert(std::is_base_of<From, typename std::remove_reference<To>::type>::value, "down_cast unsafe as To is not a subtype of From"); return static_cast<To>(f); } template <class Dest, class Source> inline Dest bit_cast(const Source& source) { // Compile time assertion: sizeof(Dest) == sizeof(Source) // A compile error here means your Dest and Source have different sizes. static_assert(sizeof(Dest) == sizeof(Source), "sizes should be equal"); Dest dest; memcpy(&dest, &source, sizeof(dest)); return dest; } // A version of static_cast that DCHECKs that the value can be precisely represented // when converting to Dest. template <typename Dest, typename Source> constexpr Dest dchecked_integral_cast(Source source) { DCHECK( // Check that the value is within the lower limit of Dest. (static_cast<intmax_t>(std::numeric_limits<Dest>::min()) <= static_cast<intmax_t>(std::numeric_limits<Source>::min()) || source >= static_cast<Source>(std::numeric_limits<Dest>::min())) && // Check that the value is within the upper limit of Dest. (static_cast<uintmax_t>(std::numeric_limits<Dest>::max()) >= static_cast<uintmax_t>(std::numeric_limits<Source>::max()) || source <= static_cast<Source>(std::numeric_limits<Dest>::max()))) << "dchecked_integral_cast failed for " << source << " (would be " << static_cast<Dest>(source) << ")"; return static_cast<Dest>(source); } // A version of dchecked_integral_cast casting between an integral type and an enum type. // When casting to an enum type, the cast does not check if the value corresponds to an enumerator. // When casting from an enum type, the target type can be omitted and the enum's underlying type // shall be used. template <typename Dest, typename Source> constexpr typename std::enable_if<!std::is_enum<Source>::value, Dest>::type enum_cast(Source value) { return static_cast<Dest>( dchecked_integral_cast<typename std::underlying_type<Dest>::type>(value)); } template <typename Dest = void, typename Source> constexpr typename std::enable_if<std::is_enum<Source>::value, typename std::conditional<std::is_same<Dest, void>::value, std::underlying_type<Source>, Identity<Dest>>::type>::type::type enum_cast(Source value) { using return_type = typename std::conditional<std::is_same<Dest, void>::value, std::underlying_type<Source>, Identity<Dest>>::type::type; return dchecked_integral_cast<return_type>( static_cast<typename std::underlying_type<Source>::type>(value)); } // A version of reinterpret_cast<>() between pointers and int64_t/uint64_t // that goes through uintptr_t to avoid treating the pointer as "signed." template <typename Dest, typename Source> inline Dest reinterpret_cast64(Source source) { // This is the overload for casting from int64_t/uint64_t to a pointer. static_assert(std::is_same<Source, int64_t>::value || std::is_same<Source, uint64_t>::value, "Source must be int64_t or uint64_t."); static_assert(std::is_pointer<Dest>::value, "Dest must be a pointer."); // Check that we don't lose any non-0 bits here. DCHECK_EQ(static_cast<Source>(static_cast<uintptr_t>(source)), source); return reinterpret_cast<Dest>(static_cast<uintptr_t>(source)); } template <typename Dest, typename Source> inline Dest reinterpret_cast64(Source* ptr) { // This is the overload for casting from a pointer to int64_t/uint64_t. static_assert(std::is_same<Dest, int64_t>::value || std::is_same<Dest, uint64_t>::value, "Dest must be int64_t or uint64_t."); static_assert(sizeof(uintptr_t) <= sizeof(Dest), "Expecting at most 64-bit pointers."); return static_cast<Dest>(reinterpret_cast<uintptr_t>(ptr)); } // A version of reinterpret_cast<>() between pointers and int32_t/uint32_t that enforces // zero-extension and checks that the values are converted without loss of precision. template <typename Dest, typename Source> inline Dest reinterpret_cast32(Source source) { // This is the overload for casting from int32_t/uint32_t to a pointer. static_assert(std::is_same<Source, int32_t>::value || std::is_same<Source, uint32_t>::value, "Source must be int32_t or uint32_t."); static_assert(std::is_pointer<Dest>::value, "Dest must be a pointer."); // Check that we don't lose any non-0 bits here. static_assert(sizeof(uintptr_t) >= sizeof(Source), "Expecting at least 32-bit pointers."); return reinterpret_cast<Dest>(static_cast<uintptr_t>(static_cast<uint32_t>(source))); } template <typename Dest, typename Source> inline Dest reinterpret_cast32(Source* ptr) { // This is the overload for casting from a pointer to int32_t/uint32_t. static_assert(std::is_same<Dest, int32_t>::value || std::is_same<Dest, uint32_t>::value, "Dest must be int32_t or uint32_t."); static_assert(sizeof(uintptr_t) >= sizeof(Dest), "Expecting at least 32-bit pointers."); return static_cast<Dest>(dchecked_integral_cast<uint32_t>(reinterpret_cast<uintptr_t>(ptr))); } } // namespace art #endif // ART_LIBARTBASE_BASE_CASTS_H_