/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_ #define ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_ #include <deque> #include <utility> #include <vector> #include "arch/mips64/instruction_set_features_mips64.h" #include "base/arena_containers.h" #include "base/enums.h" #include "base/globals.h" #include "base/macros.h" #include "base/stl_util_identity.h" #include "constants_mips64.h" #include "heap_poisoning.h" #include "managed_register_mips64.h" #include "offsets.h" #include "utils/assembler.h" #include "utils/jni_macro_assembler.h" #include "utils/label.h" namespace art { namespace mips64 { enum LoadConst64Path { kLoadConst64PathZero = 0x0, kLoadConst64PathOri = 0x1, kLoadConst64PathDaddiu = 0x2, kLoadConst64PathLui = 0x4, kLoadConst64PathLuiOri = 0x8, kLoadConst64PathOriDahi = 0x10, kLoadConst64PathOriDati = 0x20, kLoadConst64PathLuiDahi = 0x40, kLoadConst64PathLuiDati = 0x80, kLoadConst64PathDaddiuDsrlX = 0x100, kLoadConst64PathOriDsllX = 0x200, kLoadConst64PathDaddiuDsllX = 0x400, kLoadConst64PathLuiOriDsllX = 0x800, kLoadConst64PathOriDsllXOri = 0x1000, kLoadConst64PathDaddiuDsllXOri = 0x2000, kLoadConst64PathDaddiuDahi = 0x4000, kLoadConst64PathDaddiuDati = 0x8000, kLoadConst64PathDinsu1 = 0x10000, kLoadConst64PathDinsu2 = 0x20000, kLoadConst64PathCatchAll = 0x40000, kLoadConst64PathAllPaths = 0x7ffff, }; template <typename Asm> void TemplateLoadConst32(Asm* a, GpuRegister rd, int32_t value) { if (IsUint<16>(value)) { // Use OR with (unsigned) immediate to encode 16b unsigned int. a->Ori(rd, ZERO, value); } else if (IsInt<16>(value)) { // Use ADD with (signed) immediate to encode 16b signed int. a->Addiu(rd, ZERO, value); } else { // Set 16 most significant bits of value. The "lui" instruction // also clears the 16 least significant bits to zero. a->Lui(rd, value >> 16); if (value & 0xFFFF) { // If the 16 least significant bits are non-zero, set them // here. a->Ori(rd, rd, value); } } } static inline int InstrCountForLoadReplicatedConst32(int64_t value) { int32_t x = Low32Bits(value); int32_t y = High32Bits(value); if (x == y) { return (IsUint<16>(x) || IsInt<16>(x) || ((x & 0xFFFF) == 0)) ? 2 : 3; } return INT_MAX; } template <typename Asm, typename Rtype, typename Vtype> void TemplateLoadConst64(Asm* a, Rtype rd, Vtype value) { int bit31 = (value & UINT64_C(0x80000000)) != 0; int rep32_count = InstrCountForLoadReplicatedConst32(value); // Loads with 1 instruction. if (IsUint<16>(value)) { // 64-bit value can be loaded as an unsigned 16-bit number. a->RecordLoadConst64Path(kLoadConst64PathOri); a->Ori(rd, ZERO, value); } else if (IsInt<16>(value)) { // 64-bit value can be loaded as an signed 16-bit number. a->RecordLoadConst64Path(kLoadConst64PathDaddiu); a->Daddiu(rd, ZERO, value); } else if ((value & 0xFFFF) == 0 && IsInt<16>(value >> 16)) { // 64-bit value can be loaded as an signed 32-bit number which has all // of its 16 least significant bits set to zero. a->RecordLoadConst64Path(kLoadConst64PathLui); a->Lui(rd, value >> 16); } else if (IsInt<32>(value)) { // Loads with 2 instructions. // 64-bit value can be loaded as an signed 32-bit number which has some // or all of its 16 least significant bits set to one. a->RecordLoadConst64Path(kLoadConst64PathLuiOri); a->Lui(rd, value >> 16); a->Ori(rd, rd, value); } else if ((value & 0xFFFF0000) == 0 && IsInt<16>(value >> 32)) { // 64-bit value which consists of an unsigned 16-bit value in its // least significant 32-bits, and a signed 16-bit value in its // most significant 32-bits. a->RecordLoadConst64Path(kLoadConst64PathOriDahi); a->Ori(rd, ZERO, value); a->Dahi(rd, value >> 32); } else if ((value & UINT64_C(0xFFFFFFFF0000)) == 0) { // 64-bit value which consists of an unsigned 16-bit value in its // least significant 48-bits, and a signed 16-bit value in its // most significant 16-bits. a->RecordLoadConst64Path(kLoadConst64PathOriDati); a->Ori(rd, ZERO, value); a->Dati(rd, value >> 48); } else if ((value & 0xFFFF) == 0 && (-32768 - bit31) <= (value >> 32) && (value >> 32) <= (32767 - bit31)) { // 16 LSBs (Least Significant Bits) all set to zero. // 48 MSBs (Most Significant Bits) hold a signed 32-bit value. a->RecordLoadConst64Path(kLoadConst64PathLuiDahi); a->Lui(rd, value >> 16); a->Dahi(rd, (value >> 32) + bit31); } else if ((value & 0xFFFF) == 0 && ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) { // 16 LSBs all set to zero. // 48 MSBs hold a signed value which can't be represented by signed // 32-bit number, and the middle 16 bits are all zero, or all one. a->RecordLoadConst64Path(kLoadConst64PathLuiDati); a->Lui(rd, value >> 16); a->Dati(rd, (value >> 48) + bit31); } else if (IsInt<16>(static_cast<int32_t>(value)) && (-32768 - bit31) <= (value >> 32) && (value >> 32) <= (32767 - bit31)) { // 32 LSBs contain an unsigned 16-bit number. // 32 MSBs contain a signed 16-bit number. a->RecordLoadConst64Path(kLoadConst64PathDaddiuDahi); a->Daddiu(rd, ZERO, value); a->Dahi(rd, (value >> 32) + bit31); } else if (IsInt<16>(static_cast<int32_t>(value)) && ((value >> 31) & 0x1FFFF) == ((0x20000 - bit31) & 0x1FFFF)) { // 48 LSBs contain an unsigned 16-bit number. // 16 MSBs contain a signed 16-bit number. a->RecordLoadConst64Path(kLoadConst64PathDaddiuDati); a->Daddiu(rd, ZERO, value); a->Dati(rd, (value >> 48) + bit31); } else if (IsPowerOfTwo(value + UINT64_C(1))) { // 64-bit values which have their "n" MSBs set to one, and their // "64-n" LSBs set to zero. "n" must meet the restrictions 0 < n < 64. int shift_cnt = 64 - CTZ(value + UINT64_C(1)); a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsrlX); a->Daddiu(rd, ZERO, -1); if (shift_cnt < 32) { a->Dsrl(rd, rd, shift_cnt); } else { a->Dsrl32(rd, rd, shift_cnt & 31); } } else { int shift_cnt = CTZ(value); int64_t tmp = value >> shift_cnt; a->RecordLoadConst64Path(kLoadConst64PathOriDsllX); if (IsUint<16>(tmp)) { // Value can be computed by loading a 16-bit unsigned value, and // then shifting left. a->Ori(rd, ZERO, tmp); if (shift_cnt < 32) { a->Dsll(rd, rd, shift_cnt); } else { a->Dsll32(rd, rd, shift_cnt & 31); } } else if (IsInt<16>(tmp)) { // Value can be computed by loading a 16-bit signed value, and // then shifting left. a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsllX); a->Daddiu(rd, ZERO, tmp); if (shift_cnt < 32) { a->Dsll(rd, rd, shift_cnt); } else { a->Dsll32(rd, rd, shift_cnt & 31); } } else if (rep32_count < 3) { // Value being loaded has 32 LSBs equal to the 32 MSBs, and the // value loaded into the 32 LSBs can be loaded with a single // MIPS instruction. a->LoadConst32(rd, value); a->Dinsu(rd, rd, 32, 32); a->RecordLoadConst64Path(kLoadConst64PathDinsu1); } else if (IsInt<32>(tmp)) { // Loads with 3 instructions. // Value can be computed by loading a 32-bit signed value, and // then shifting left. a->RecordLoadConst64Path(kLoadConst64PathLuiOriDsllX); a->Lui(rd, tmp >> 16); a->Ori(rd, rd, tmp); if (shift_cnt < 32) { a->Dsll(rd, rd, shift_cnt); } else { a->Dsll32(rd, rd, shift_cnt & 31); } } else { shift_cnt = 16 + CTZ(value >> 16); tmp = value >> shift_cnt; if (IsUint<16>(tmp)) { // Value can be computed by loading a 16-bit unsigned value, // shifting left, and "or"ing in another 16-bit unsigned value. a->RecordLoadConst64Path(kLoadConst64PathOriDsllXOri); a->Ori(rd, ZERO, tmp); if (shift_cnt < 32) { a->Dsll(rd, rd, shift_cnt); } else { a->Dsll32(rd, rd, shift_cnt & 31); } a->Ori(rd, rd, value); } else if (IsInt<16>(tmp)) { // Value can be computed by loading a 16-bit signed value, // shifting left, and "or"ing in a 16-bit unsigned value. a->RecordLoadConst64Path(kLoadConst64PathDaddiuDsllXOri); a->Daddiu(rd, ZERO, tmp); if (shift_cnt < 32) { a->Dsll(rd, rd, shift_cnt); } else { a->Dsll32(rd, rd, shift_cnt & 31); } a->Ori(rd, rd, value); } else if (rep32_count < 4) { // Value being loaded has 32 LSBs equal to the 32 MSBs, and the // value in the 32 LSBs requires 2 MIPS instructions to load. a->LoadConst32(rd, value); a->Dinsu(rd, rd, 32, 32); a->RecordLoadConst64Path(kLoadConst64PathDinsu2); } else { // Loads with 3-4 instructions. // Catch-all case to get any other 64-bit values which aren't // handled by special cases above. uint64_t tmp2 = value; a->RecordLoadConst64Path(kLoadConst64PathCatchAll); a->LoadConst32(rd, value); if (bit31) { tmp2 += UINT64_C(0x100000000); } if (((tmp2 >> 32) & 0xFFFF) != 0) { a->Dahi(rd, tmp2 >> 32); } if (tmp2 & UINT64_C(0x800000000000)) { tmp2 += UINT64_C(0x1000000000000); } if ((tmp2 >> 48) != 0) { a->Dati(rd, tmp2 >> 48); } } } } } static constexpr size_t kMips64HalfwordSize = 2; static constexpr size_t kMips64WordSize = 4; static constexpr size_t kMips64DoublewordSize = 8; enum LoadOperandType { kLoadSignedByte, kLoadUnsignedByte, kLoadSignedHalfword, kLoadUnsignedHalfword, kLoadWord, kLoadUnsignedWord, kLoadDoubleword, kLoadQuadword }; enum StoreOperandType { kStoreByte, kStoreHalfword, kStoreWord, kStoreDoubleword, kStoreQuadword }; // Used to test the values returned by ClassS/ClassD. enum FPClassMaskType { kSignalingNaN = 0x001, kQuietNaN = 0x002, kNegativeInfinity = 0x004, kNegativeNormal = 0x008, kNegativeSubnormal = 0x010, kNegativeZero = 0x020, kPositiveInfinity = 0x040, kPositiveNormal = 0x080, kPositiveSubnormal = 0x100, kPositiveZero = 0x200, }; class Mips64Label : public Label { public: Mips64Label() : prev_branch_id_plus_one_(0) {} Mips64Label(Mips64Label&& src) : Label(std::move(src)), prev_branch_id_plus_one_(src.prev_branch_id_plus_one_) {} private: uint32_t prev_branch_id_plus_one_; // To get distance from preceding branch, if any. friend class Mips64Assembler; DISALLOW_COPY_AND_ASSIGN(Mips64Label); }; // Assembler literal is a value embedded in code, retrieved using a PC-relative load. class Literal { public: static constexpr size_t kMaxSize = 8; Literal(uint32_t size, const uint8_t* data) : label_(), size_(size) { DCHECK_LE(size, Literal::kMaxSize); memcpy(data_, data, size); } template <typename T> T GetValue() const { DCHECK_EQ(size_, sizeof(T)); T value; memcpy(&value, data_, sizeof(T)); return value; } uint32_t GetSize() const { return size_; } const uint8_t* GetData() const { return data_; } Mips64Label* GetLabel() { return &label_; } const Mips64Label* GetLabel() const { return &label_; } private: Mips64Label label_; const uint32_t size_; uint8_t data_[kMaxSize]; DISALLOW_COPY_AND_ASSIGN(Literal); }; // Jump table: table of labels emitted after the code and before the literals. Similar to literals. class JumpTable { public: explicit JumpTable(std::vector<Mips64Label*>&& labels) : label_(), labels_(std::move(labels)) { } size_t GetSize() const { return labels_.size() * sizeof(uint32_t); } const std::vector<Mips64Label*>& GetData() const { return labels_; } Mips64Label* GetLabel() { return &label_; } const Mips64Label* GetLabel() const { return &label_; } private: Mips64Label label_; std::vector<Mips64Label*> labels_; DISALLOW_COPY_AND_ASSIGN(JumpTable); }; // Slowpath entered when Thread::Current()->_exception is non-null. class Mips64ExceptionSlowPath { public: explicit Mips64ExceptionSlowPath(Mips64ManagedRegister scratch, size_t stack_adjust) : scratch_(scratch), stack_adjust_(stack_adjust) {} Mips64ExceptionSlowPath(Mips64ExceptionSlowPath&& src) : scratch_(src.scratch_), stack_adjust_(src.stack_adjust_), exception_entry_(std::move(src.exception_entry_)) {} private: Mips64Label* Entry() { return &exception_entry_; } const Mips64ManagedRegister scratch_; const size_t stack_adjust_; Mips64Label exception_entry_; friend class Mips64Assembler; DISALLOW_COPY_AND_ASSIGN(Mips64ExceptionSlowPath); }; class Mips64Assembler final : public Assembler, public JNIMacroAssembler<PointerSize::k64> { public: using JNIBase = JNIMacroAssembler<PointerSize::k64>; explicit Mips64Assembler(ArenaAllocator* allocator, const Mips64InstructionSetFeatures* instruction_set_features = nullptr) : Assembler(allocator), overwriting_(false), overwrite_location_(0), literals_(allocator->Adapter(kArenaAllocAssembler)), long_literals_(allocator->Adapter(kArenaAllocAssembler)), jump_tables_(allocator->Adapter(kArenaAllocAssembler)), last_position_adjustment_(0), last_old_position_(0), last_branch_id_(0), has_msa_(instruction_set_features != nullptr ? instruction_set_features->HasMsa() : false) { cfi().DelayEmittingAdvancePCs(); } virtual ~Mips64Assembler() { for (auto& branch : branches_) { CHECK(branch.IsResolved()); } } size_t CodeSize() const override { return Assembler::CodeSize(); } DebugFrameOpCodeWriterForAssembler& cfi() override { return Assembler::cfi(); } // Emit Machine Instructions. void Addu(GpuRegister rd, GpuRegister rs, GpuRegister rt); void Addiu(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Daddu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 void Daddiu(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64 void Subu(GpuRegister rd, GpuRegister rs, GpuRegister rt); void Dsubu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 void MulR6(GpuRegister rd, GpuRegister rs, GpuRegister rt); void MuhR6(GpuRegister rd, GpuRegister rs, GpuRegister rt); void DivR6(GpuRegister rd, GpuRegister rs, GpuRegister rt); void ModR6(GpuRegister rd, GpuRegister rs, GpuRegister rt); void DivuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt); void ModuR6(GpuRegister rd, GpuRegister rs, GpuRegister rt); void Dmul(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 void Dmuh(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 void Ddiv(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 void Dmod(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 void Ddivu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 void Dmodu(GpuRegister rd, GpuRegister rs, GpuRegister rt); // MIPS64 void And(GpuRegister rd, GpuRegister rs, GpuRegister rt); void Andi(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Or(GpuRegister rd, GpuRegister rs, GpuRegister rt); void Ori(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Xor(GpuRegister rd, GpuRegister rs, GpuRegister rt); void Xori(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Nor(GpuRegister rd, GpuRegister rs, GpuRegister rt); void Bitswap(GpuRegister rd, GpuRegister rt); void Dbitswap(GpuRegister rd, GpuRegister rt); // MIPS64 void Seb(GpuRegister rd, GpuRegister rt); void Seh(GpuRegister rd, GpuRegister rt); void Dsbh(GpuRegister rd, GpuRegister rt); // MIPS64 void Dshd(GpuRegister rd, GpuRegister rt); // MIPS64 void Dext(GpuRegister rs, GpuRegister rt, int pos, int size); // MIPS64 void Ins(GpuRegister rt, GpuRegister rs, int pos, int size); void Dins(GpuRegister rt, GpuRegister rs, int pos, int size); // MIPS64 void Dinsm(GpuRegister rt, GpuRegister rs, int pos, int size); // MIPS64 void Dinsu(GpuRegister rt, GpuRegister rs, int pos, int size); // MIPS64 void DblIns(GpuRegister rt, GpuRegister rs, int pos, int size); // MIPS64 void Lsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne); void Dlsa(GpuRegister rd, GpuRegister rs, GpuRegister rt, int saPlusOne); // MIPS64 void Wsbh(GpuRegister rd, GpuRegister rt); void Sc(GpuRegister rt, GpuRegister base, int16_t imm9 = 0); void Scd(GpuRegister rt, GpuRegister base, int16_t imm9 = 0); // MIPS64 void Ll(GpuRegister rt, GpuRegister base, int16_t imm9 = 0); void Lld(GpuRegister rt, GpuRegister base, int16_t imm9 = 0); // MIPS64 void Sll(GpuRegister rd, GpuRegister rt, int shamt); void Srl(GpuRegister rd, GpuRegister rt, int shamt); void Rotr(GpuRegister rd, GpuRegister rt, int shamt); void Sra(GpuRegister rd, GpuRegister rt, int shamt); void Sllv(GpuRegister rd, GpuRegister rt, GpuRegister rs); void Srlv(GpuRegister rd, GpuRegister rt, GpuRegister rs); void Rotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs); void Srav(GpuRegister rd, GpuRegister rt, GpuRegister rs); void Dsll(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 void Dsrl(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 void Drotr(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 void Dsra(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 void Dsll32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 void Dsrl32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 void Drotr32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 void Dsra32(GpuRegister rd, GpuRegister rt, int shamt); // MIPS64 void Dsllv(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64 void Dsrlv(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64 void Drotrv(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64 void Dsrav(GpuRegister rd, GpuRegister rt, GpuRegister rs); // MIPS64 void Lb(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Lh(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Lw(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Ld(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64 void Lbu(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Lhu(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Lwu(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64 void Lwpc(GpuRegister rs, uint32_t imm19); void Lwupc(GpuRegister rs, uint32_t imm19); // MIPS64 void Ldpc(GpuRegister rs, uint32_t imm18); // MIPS64 void Lui(GpuRegister rt, uint16_t imm16); void Aui(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Daui(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64 void Dahi(GpuRegister rs, uint16_t imm16); // MIPS64 void Dati(GpuRegister rs, uint16_t imm16); // MIPS64 void Sync(uint32_t stype); void Sb(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Sh(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Sw(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Sd(GpuRegister rt, GpuRegister rs, uint16_t imm16); // MIPS64 void Slt(GpuRegister rd, GpuRegister rs, GpuRegister rt); void Sltu(GpuRegister rd, GpuRegister rs, GpuRegister rt); void Slti(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Sltiu(GpuRegister rt, GpuRegister rs, uint16_t imm16); void Seleqz(GpuRegister rd, GpuRegister rs, GpuRegister rt); void Selnez(GpuRegister rd, GpuRegister rs, GpuRegister rt); void Clz(GpuRegister rd, GpuRegister rs); void Clo(GpuRegister rd, GpuRegister rs); void Dclz(GpuRegister rd, GpuRegister rs); // MIPS64 void Dclo(GpuRegister rd, GpuRegister rs); // MIPS64 void Jalr(GpuRegister rd, GpuRegister rs); void Jalr(GpuRegister rs); void Jr(GpuRegister rs); void Auipc(GpuRegister rs, uint16_t imm16); void Addiupc(GpuRegister rs, uint32_t imm19); void Bc(uint32_t imm26); void Balc(uint32_t imm26); void Jic(GpuRegister rt, uint16_t imm16); void Jialc(GpuRegister rt, uint16_t imm16); void Bltc(GpuRegister rs, GpuRegister rt, uint16_t imm16); void Bltzc(GpuRegister rt, uint16_t imm16); void Bgtzc(GpuRegister rt, uint16_t imm16); void Bgec(GpuRegister rs, GpuRegister rt, uint16_t imm16); void Bgezc(GpuRegister rt, uint16_t imm16); void Blezc(GpuRegister rt, uint16_t imm16); void Bltuc(GpuRegister rs, GpuRegister rt, uint16_t imm16); void Bgeuc(GpuRegister rs, GpuRegister rt, uint16_t imm16); void Beqc(GpuRegister rs, GpuRegister rt, uint16_t imm16); void Bnec(GpuRegister rs, GpuRegister rt, uint16_t imm16); void Beqzc(GpuRegister rs, uint32_t imm21); void Bnezc(GpuRegister rs, uint32_t imm21); void Bc1eqz(FpuRegister ft, uint16_t imm16); void Bc1nez(FpuRegister ft, uint16_t imm16); void Beq(GpuRegister rs, GpuRegister rt, uint16_t imm16); // R2 void Bne(GpuRegister rs, GpuRegister rt, uint16_t imm16); // R2 void Beqz(GpuRegister rt, uint16_t imm16); // R2 void Bnez(GpuRegister rt, uint16_t imm16); // R2 void Bltz(GpuRegister rt, uint16_t imm16); // R2 void Bgez(GpuRegister rt, uint16_t imm16); // R2 void Blez(GpuRegister rt, uint16_t imm16); // R2 void Bgtz(GpuRegister rt, uint16_t imm16); // R2 void AddS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void SubS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void MulS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void DivS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void AddD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void SubD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void MulD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void DivD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void SqrtS(FpuRegister fd, FpuRegister fs); void SqrtD(FpuRegister fd, FpuRegister fs); void AbsS(FpuRegister fd, FpuRegister fs); void AbsD(FpuRegister fd, FpuRegister fs); void MovS(FpuRegister fd, FpuRegister fs); void MovD(FpuRegister fd, FpuRegister fs); void NegS(FpuRegister fd, FpuRegister fs); void NegD(FpuRegister fd, FpuRegister fs); void RoundLS(FpuRegister fd, FpuRegister fs); void RoundLD(FpuRegister fd, FpuRegister fs); void RoundWS(FpuRegister fd, FpuRegister fs); void RoundWD(FpuRegister fd, FpuRegister fs); void TruncLS(FpuRegister fd, FpuRegister fs); void TruncLD(FpuRegister fd, FpuRegister fs); void TruncWS(FpuRegister fd, FpuRegister fs); void TruncWD(FpuRegister fd, FpuRegister fs); void CeilLS(FpuRegister fd, FpuRegister fs); void CeilLD(FpuRegister fd, FpuRegister fs); void CeilWS(FpuRegister fd, FpuRegister fs); void CeilWD(FpuRegister fd, FpuRegister fs); void FloorLS(FpuRegister fd, FpuRegister fs); void FloorLD(FpuRegister fd, FpuRegister fs); void FloorWS(FpuRegister fd, FpuRegister fs); void FloorWD(FpuRegister fd, FpuRegister fs); void SelS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void SelD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void SeleqzS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void SeleqzD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void SelnezS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void SelnezD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void RintS(FpuRegister fd, FpuRegister fs); void RintD(FpuRegister fd, FpuRegister fs); void ClassS(FpuRegister fd, FpuRegister fs); void ClassD(FpuRegister fd, FpuRegister fs); void MinS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void MinD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void MaxS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void MaxD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpUnS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpEqS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpUeqS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpLtS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpUltS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpLeS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpUleS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpOrS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpUneS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpNeS(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpUnD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpEqD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpUeqD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpLtD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpUltD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpLeD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpUleD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpOrD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpUneD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void CmpNeD(FpuRegister fd, FpuRegister fs, FpuRegister ft); void Cvtsw(FpuRegister fd, FpuRegister fs); void Cvtdw(FpuRegister fd, FpuRegister fs); void Cvtsd(FpuRegister fd, FpuRegister fs); void Cvtds(FpuRegister fd, FpuRegister fs); void Cvtsl(FpuRegister fd, FpuRegister fs); void Cvtdl(FpuRegister fd, FpuRegister fs); void Mfc1(GpuRegister rt, FpuRegister fs); void Mfhc1(GpuRegister rt, FpuRegister fs); void Mtc1(GpuRegister rt, FpuRegister fs); void Mthc1(GpuRegister rt, FpuRegister fs); void Dmfc1(GpuRegister rt, FpuRegister fs); // MIPS64 void Dmtc1(GpuRegister rt, FpuRegister fs); // MIPS64 void Lwc1(FpuRegister ft, GpuRegister rs, uint16_t imm16); void Ldc1(FpuRegister ft, GpuRegister rs, uint16_t imm16); void Swc1(FpuRegister ft, GpuRegister rs, uint16_t imm16); void Sdc1(FpuRegister ft, GpuRegister rs, uint16_t imm16); void Break(); void Nop(); void Move(GpuRegister rd, GpuRegister rs); void Clear(GpuRegister rd); void Not(GpuRegister rd, GpuRegister rs); // MSA instructions. void AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt); void OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt); void NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt); void XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt); void AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Asub_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Asub_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Asub_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Asub_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Asub_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Asub_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Asub_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Asub_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Ffint_sW(VectorRegister wd, VectorRegister ws); void Ffint_sD(VectorRegister wd, VectorRegister ws); void Ftint_sW(VectorRegister wd, VectorRegister ws); void Ftint_sD(VectorRegister wd, VectorRegister ws); void SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt); // Immediate shift instructions, where shamtN denotes shift amount (must be between 0 and 2^N-1). void SlliB(VectorRegister wd, VectorRegister ws, int shamt3); void SlliH(VectorRegister wd, VectorRegister ws, int shamt4); void SlliW(VectorRegister wd, VectorRegister ws, int shamt5); void SlliD(VectorRegister wd, VectorRegister ws, int shamt6); void SraiB(VectorRegister wd, VectorRegister ws, int shamt3); void SraiH(VectorRegister wd, VectorRegister ws, int shamt4); void SraiW(VectorRegister wd, VectorRegister ws, int shamt5); void SraiD(VectorRegister wd, VectorRegister ws, int shamt6); void SrliB(VectorRegister wd, VectorRegister ws, int shamt3); void SrliH(VectorRegister wd, VectorRegister ws, int shamt4); void SrliW(VectorRegister wd, VectorRegister ws, int shamt5); void SrliD(VectorRegister wd, VectorRegister ws, int shamt6); void MoveV(VectorRegister wd, VectorRegister ws); void SplatiB(VectorRegister wd, VectorRegister ws, int n4); void SplatiH(VectorRegister wd, VectorRegister ws, int n3); void SplatiW(VectorRegister wd, VectorRegister ws, int n2); void SplatiD(VectorRegister wd, VectorRegister ws, int n1); void Copy_sB(GpuRegister rd, VectorRegister ws, int n4); void Copy_sH(GpuRegister rd, VectorRegister ws, int n3); void Copy_sW(GpuRegister rd, VectorRegister ws, int n2); void Copy_sD(GpuRegister rd, VectorRegister ws, int n1); void Copy_uB(GpuRegister rd, VectorRegister ws, int n4); void Copy_uH(GpuRegister rd, VectorRegister ws, int n3); void Copy_uW(GpuRegister rd, VectorRegister ws, int n2); void InsertB(VectorRegister wd, GpuRegister rs, int n4); void InsertH(VectorRegister wd, GpuRegister rs, int n3); void InsertW(VectorRegister wd, GpuRegister rs, int n2); void InsertD(VectorRegister wd, GpuRegister rs, int n1); void FillB(VectorRegister wd, GpuRegister rs); void FillH(VectorRegister wd, GpuRegister rs); void FillW(VectorRegister wd, GpuRegister rs); void FillD(VectorRegister wd, GpuRegister rs); void LdiB(VectorRegister wd, int imm8); void LdiH(VectorRegister wd, int imm10); void LdiW(VectorRegister wd, int imm10); void LdiD(VectorRegister wd, int imm10); void LdB(VectorRegister wd, GpuRegister rs, int offset); void LdH(VectorRegister wd, GpuRegister rs, int offset); void LdW(VectorRegister wd, GpuRegister rs, int offset); void LdD(VectorRegister wd, GpuRegister rs, int offset); void StB(VectorRegister wd, GpuRegister rs, int offset); void StH(VectorRegister wd, GpuRegister rs, int offset); void StW(VectorRegister wd, GpuRegister rs, int offset); void StD(VectorRegister wd, GpuRegister rs, int offset); void IlvlB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvlH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvlW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvlD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvevB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvevH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvevW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvevD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvodB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvodH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvodW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void IlvodD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void MaddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void MaddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void MaddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void MaddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void MsubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt); void MsubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void MsubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void MsubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FmaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FmaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FmsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void FmsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Hadd_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Hadd_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Hadd_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Hadd_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Hadd_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt); void Hadd_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt); void PcntB(VectorRegister wd, VectorRegister ws); void PcntH(VectorRegister wd, VectorRegister ws); void PcntW(VectorRegister wd, VectorRegister ws); void PcntD(VectorRegister wd, VectorRegister ws); // Helper for replicating floating point value in all destination elements. void ReplicateFPToVectorRegister(VectorRegister dst, FpuRegister src, bool is_double); // Higher level composite instructions. int InstrCountForLoadReplicatedConst32(int64_t); void LoadConst32(GpuRegister rd, int32_t value); void LoadConst64(GpuRegister rd, int64_t value); // MIPS64 // This function is only used for testing purposes. void RecordLoadConst64Path(int value); void Addiu32(GpuRegister rt, GpuRegister rs, int32_t value); void Daddiu64(GpuRegister rt, GpuRegister rs, int64_t value, GpuRegister rtmp = AT); // MIPS64 // // Heap poisoning. // // Poison a heap reference contained in `src` and store it in `dst`. void PoisonHeapReference(GpuRegister dst, GpuRegister src) { // dst = -src. // Negate the 32-bit ref. Dsubu(dst, ZERO, src); // And constrain it to 32 bits (zero-extend into bits 32 through 63) as on Arm64 and x86/64. Dext(dst, dst, 0, 32); } // Poison a heap reference contained in `reg`. void PoisonHeapReference(GpuRegister reg) { // reg = -reg. PoisonHeapReference(reg, reg); } // Unpoison a heap reference contained in `reg`. void UnpoisonHeapReference(GpuRegister reg) { // reg = -reg. // Negate the 32-bit ref. Dsubu(reg, ZERO, reg); // And constrain it to 32 bits (zero-extend into bits 32 through 63) as on Arm64 and x86/64. Dext(reg, reg, 0, 32); } // Poison a heap reference contained in `reg` if heap poisoning is enabled. void MaybePoisonHeapReference(GpuRegister reg) { if (kPoisonHeapReferences) { PoisonHeapReference(reg); } } // Unpoison a heap reference contained in `reg` if heap poisoning is enabled. void MaybeUnpoisonHeapReference(GpuRegister reg) { if (kPoisonHeapReferences) { UnpoisonHeapReference(reg); } } void Bind(Label* label) override { Bind(down_cast<Mips64Label*>(label)); } void Jump(Label* label ATTRIBUTE_UNUSED) override { UNIMPLEMENTED(FATAL) << "Do not use Jump for MIPS64"; } void Bind(Mips64Label* label); // Don't warn about a different virtual Bind/Jump in the base class. using JNIBase::Bind; using JNIBase::Jump; // Create a new label that can be used with Jump/Bind calls. std::unique_ptr<JNIMacroLabel> CreateLabel() override { LOG(FATAL) << "Not implemented on MIPS64"; UNREACHABLE(); } // Emit an unconditional jump to the label. void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED) override { LOG(FATAL) << "Not implemented on MIPS64"; UNREACHABLE(); } // Emit a conditional jump to the label by applying a unary condition test to the register. void Jump(JNIMacroLabel* label ATTRIBUTE_UNUSED, JNIMacroUnaryCondition cond ATTRIBUTE_UNUSED, ManagedRegister test ATTRIBUTE_UNUSED) override { LOG(FATAL) << "Not implemented on MIPS64"; UNREACHABLE(); } // Code at this offset will serve as the target for the Jump call. void Bind(JNIMacroLabel* label ATTRIBUTE_UNUSED) override { LOG(FATAL) << "Not implemented on MIPS64"; UNREACHABLE(); } // Create a new literal with a given value. // NOTE: Force the template parameter to be explicitly specified. template <typename T> Literal* NewLiteral(typename Identity<T>::type value) { static_assert(std::is_integral<T>::value, "T must be an integral type."); return NewLiteral(sizeof(value), reinterpret_cast<const uint8_t*>(&value)); } // Load label address using PC-relative loads. To be used with data labels in the literal / // jump table area only and not with regular code labels. void LoadLabelAddress(GpuRegister dest_reg, Mips64Label* label); // Create a new literal with the given data. Literal* NewLiteral(size_t size, const uint8_t* data); // Load literal using PC-relative loads. void LoadLiteral(GpuRegister dest_reg, LoadOperandType load_type, Literal* literal); // Create a jump table for the given labels that will be emitted when finalizing. // When the table is emitted, offsets will be relative to the location of the table. // The table location is determined by the location of its label (the label precedes // the table data) and should be loaded using LoadLabelAddress(). JumpTable* CreateJumpTable(std::vector<Mips64Label*>&& labels); // When `is_bare` is false, the branches will promote to long (if the range // of the individual branch instruction is insufficient) and the delay/ // forbidden slots will be taken care of. // Use `is_bare = false` when the branch target may be out of reach of the // individual branch instruction. IOW, this is for general purpose use. // // When `is_bare` is true, just the branch instructions will be generated // leaving delay/forbidden slot filling up to the caller and the branches // won't promote to long if the range is insufficient (you'll get a // compilation error when the range is exceeded). // Use `is_bare = true` when the branch target is known to be within reach // of the individual branch instruction. This is intended for small local // optimizations around delay/forbidden slots. // Also prefer using `is_bare = true` if the code near the branch is to be // patched or analyzed at run time (e.g. introspection) to // - show the intent and // - fail during compilation rather than during patching/execution if the // bare branch range is insufficent but the code size and layout are // expected to remain unchanged // // R6 compact branches without delay/forbidden slots. void Bc(Mips64Label* label, bool is_bare = false); void Balc(Mips64Label* label, bool is_bare = false); // R6 compact branches with forbidden slots. void Bltc(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); void Bltzc(GpuRegister rt, Mips64Label* label, bool is_bare = false); void Bgtzc(GpuRegister rt, Mips64Label* label, bool is_bare = false); void Bgec(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); void Bgezc(GpuRegister rt, Mips64Label* label, bool is_bare = false); void Blezc(GpuRegister rt, Mips64Label* label, bool is_bare = false); void Bltuc(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); void Bgeuc(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); void Beqc(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); void Bnec(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); void Beqzc(GpuRegister rs, Mips64Label* label, bool is_bare = false); void Bnezc(GpuRegister rs, Mips64Label* label, bool is_bare = false); // R6 branches with delay slots. void Bc1eqz(FpuRegister ft, Mips64Label* label, bool is_bare = false); void Bc1nez(FpuRegister ft, Mips64Label* label, bool is_bare = false); // R2 branches with delay slots that are also available on R6. // The `is_bare` parameter exists and is checked in these branches only to // prevent programming mistakes. These branches never promote to long, not // even if `is_bare` is false. void Bltz(GpuRegister rt, Mips64Label* label, bool is_bare = false); // R2 void Bgtz(GpuRegister rt, Mips64Label* label, bool is_bare = false); // R2 void Bgez(GpuRegister rt, Mips64Label* label, bool is_bare = false); // R2 void Blez(GpuRegister rt, Mips64Label* label, bool is_bare = false); // R2 void Beq(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); // R2 void Bne(GpuRegister rs, GpuRegister rt, Mips64Label* label, bool is_bare = false); // R2 void Beqz(GpuRegister rs, Mips64Label* label, bool is_bare = false); // R2 void Bnez(GpuRegister rs, Mips64Label* label, bool is_bare = false); // R2 void EmitLoad(ManagedRegister m_dst, GpuRegister src_register, int32_t src_offset, size_t size); void AdjustBaseAndOffset(GpuRegister& base, int32_t& offset, bool is_doubleword); // If element_size_shift is negative at entry, its value will be calculated based on the offset. void AdjustBaseOffsetAndElementSizeShift(GpuRegister& base, int32_t& offset, int& element_size_shift); private: // This will be used as an argument for loads/stores // when there is no need for implicit null checks. struct NoImplicitNullChecker { void operator()() const {} }; public: template <typename ImplicitNullChecker = NoImplicitNullChecker> void StoreConstToOffset(StoreOperandType type, int64_t value, GpuRegister base, int32_t offset, GpuRegister temp, ImplicitNullChecker null_checker = NoImplicitNullChecker()) { // We permit `base` and `temp` to coincide (however, we check that neither is AT), // in which case the `base` register may be overwritten in the process. CHECK_NE(temp, AT); // Must not use AT as temp, so as not to overwrite the adjusted base. AdjustBaseAndOffset(base, offset, /* is_doubleword= */ (type == kStoreDoubleword)); GpuRegister reg; // If the adjustment left `base` unchanged and equal to `temp`, we can't use `temp` // to load and hold the value but we can use AT instead as AT hasn't been used yet. // Otherwise, `temp` can be used for the value. And if `temp` is the same as the // original `base` (that is, `base` prior to the adjustment), the original `base` // register will be overwritten. if (base == temp) { temp = AT; } if (type == kStoreDoubleword && IsAligned<kMips64DoublewordSize>(offset)) { if (value == 0) { reg = ZERO; } else { reg = temp; LoadConst64(reg, value); } Sd(reg, base, offset); null_checker(); } else { uint32_t low = Low32Bits(value); uint32_t high = High32Bits(value); if (low == 0) { reg = ZERO; } else { reg = temp; LoadConst32(reg, low); } switch (type) { case kStoreByte: Sb(reg, base, offset); break; case kStoreHalfword: Sh(reg, base, offset); break; case kStoreWord: Sw(reg, base, offset); break; case kStoreDoubleword: // not aligned to kMips64DoublewordSize CHECK_ALIGNED(offset, kMips64WordSize); Sw(reg, base, offset); null_checker(); if (high == 0) { reg = ZERO; } else { reg = temp; if (high != low) { LoadConst32(reg, high); } } Sw(reg, base, offset + kMips64WordSize); break; default: LOG(FATAL) << "UNREACHABLE"; } if (type != kStoreDoubleword) { null_checker(); } } } template <typename ImplicitNullChecker = NoImplicitNullChecker> void LoadFromOffset(LoadOperandType type, GpuRegister reg, GpuRegister base, int32_t offset, ImplicitNullChecker null_checker = NoImplicitNullChecker()) { AdjustBaseAndOffset(base, offset, /* is_doubleword= */ (type == kLoadDoubleword)); switch (type) { case kLoadSignedByte: Lb(reg, base, offset); break; case kLoadUnsignedByte: Lbu(reg, base, offset); break; case kLoadSignedHalfword: Lh(reg, base, offset); break; case kLoadUnsignedHalfword: Lhu(reg, base, offset); break; case kLoadWord: CHECK_ALIGNED(offset, kMips64WordSize); Lw(reg, base, offset); break; case kLoadUnsignedWord: CHECK_ALIGNED(offset, kMips64WordSize); Lwu(reg, base, offset); break; case kLoadDoubleword: if (!IsAligned<kMips64DoublewordSize>(offset)) { CHECK_ALIGNED(offset, kMips64WordSize); Lwu(reg, base, offset); null_checker(); Lwu(TMP2, base, offset + kMips64WordSize); Dinsu(reg, TMP2, 32, 32); } else { Ld(reg, base, offset); null_checker(); } break; default: LOG(FATAL) << "UNREACHABLE"; } if (type != kLoadDoubleword) { null_checker(); } } template <typename ImplicitNullChecker = NoImplicitNullChecker> void LoadFpuFromOffset(LoadOperandType type, FpuRegister reg, GpuRegister base, int32_t offset, ImplicitNullChecker null_checker = NoImplicitNullChecker()) { int element_size_shift = -1; if (type != kLoadQuadword) { AdjustBaseAndOffset(base, offset, /* is_doubleword= */ (type == kLoadDoubleword)); } else { AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift); } switch (type) { case kLoadWord: CHECK_ALIGNED(offset, kMips64WordSize); Lwc1(reg, base, offset); null_checker(); break; case kLoadDoubleword: if (!IsAligned<kMips64DoublewordSize>(offset)) { CHECK_ALIGNED(offset, kMips64WordSize); Lwc1(reg, base, offset); null_checker(); Lw(TMP2, base, offset + kMips64WordSize); Mthc1(TMP2, reg); } else { Ldc1(reg, base, offset); null_checker(); } break; case kLoadQuadword: switch (element_size_shift) { case TIMES_1: LdB(static_cast<VectorRegister>(reg), base, offset); break; case TIMES_2: LdH(static_cast<VectorRegister>(reg), base, offset); break; case TIMES_4: LdW(static_cast<VectorRegister>(reg), base, offset); break; case TIMES_8: LdD(static_cast<VectorRegister>(reg), base, offset); break; default: LOG(FATAL) << "UNREACHABLE"; } null_checker(); break; default: LOG(FATAL) << "UNREACHABLE"; } } template <typename ImplicitNullChecker = NoImplicitNullChecker> void StoreToOffset(StoreOperandType type, GpuRegister reg, GpuRegister base, int32_t offset, ImplicitNullChecker null_checker = NoImplicitNullChecker()) { // Must not use AT as `reg`, so as not to overwrite the value being stored // with the adjusted `base`. CHECK_NE(reg, AT); AdjustBaseAndOffset(base, offset, /* is_doubleword= */ (type == kStoreDoubleword)); switch (type) { case kStoreByte: Sb(reg, base, offset); break; case kStoreHalfword: Sh(reg, base, offset); break; case kStoreWord: CHECK_ALIGNED(offset, kMips64WordSize); Sw(reg, base, offset); break; case kStoreDoubleword: if (!IsAligned<kMips64DoublewordSize>(offset)) { CHECK_ALIGNED(offset, kMips64WordSize); Sw(reg, base, offset); null_checker(); Dsrl32(TMP2, reg, 0); Sw(TMP2, base, offset + kMips64WordSize); } else { Sd(reg, base, offset); null_checker(); } break; default: LOG(FATAL) << "UNREACHABLE"; } if (type != kStoreDoubleword) { null_checker(); } } template <typename ImplicitNullChecker = NoImplicitNullChecker> void StoreFpuToOffset(StoreOperandType type, FpuRegister reg, GpuRegister base, int32_t offset, ImplicitNullChecker null_checker = NoImplicitNullChecker()) { int element_size_shift = -1; if (type != kStoreQuadword) { AdjustBaseAndOffset(base, offset, /* is_doubleword= */ (type == kStoreDoubleword)); } else { AdjustBaseOffsetAndElementSizeShift(base, offset, element_size_shift); } switch (type) { case kStoreWord: CHECK_ALIGNED(offset, kMips64WordSize); Swc1(reg, base, offset); null_checker(); break; case kStoreDoubleword: if (!IsAligned<kMips64DoublewordSize>(offset)) { CHECK_ALIGNED(offset, kMips64WordSize); Mfhc1(TMP2, reg); Swc1(reg, base, offset); null_checker(); Sw(TMP2, base, offset + kMips64WordSize); } else { Sdc1(reg, base, offset); null_checker(); } break; case kStoreQuadword: switch (element_size_shift) { case TIMES_1: StB(static_cast<VectorRegister>(reg), base, offset); break; case TIMES_2: StH(static_cast<VectorRegister>(reg), base, offset); break; case TIMES_4: StW(static_cast<VectorRegister>(reg), base, offset); break; case TIMES_8: StD(static_cast<VectorRegister>(reg), base, offset); break; default: LOG(FATAL) << "UNREACHABLE"; } null_checker(); break; default: LOG(FATAL) << "UNREACHABLE"; } } void LoadFromOffset(LoadOperandType type, GpuRegister reg, GpuRegister base, int32_t offset); void LoadFpuFromOffset(LoadOperandType type, FpuRegister reg, GpuRegister base, int32_t offset); void StoreToOffset(StoreOperandType type, GpuRegister reg, GpuRegister base, int32_t offset); void StoreFpuToOffset(StoreOperandType type, FpuRegister reg, GpuRegister base, int32_t offset); // Emit data (e.g. encoded instruction or immediate) to the instruction stream. void Emit(uint32_t value); // // Overridden common assembler high-level functionality. // // Emit code that will create an activation on the stack. void BuildFrame(size_t frame_size, ManagedRegister method_reg, ArrayRef<const ManagedRegister> callee_save_regs, const ManagedRegisterEntrySpills& entry_spills) override; // Emit code that will remove an activation from the stack. void RemoveFrame(size_t frame_size, ArrayRef<const ManagedRegister> callee_save_regs, bool may_suspend) override; void IncreaseFrameSize(size_t adjust) override; void DecreaseFrameSize(size_t adjust) override; // Store routines. void Store(FrameOffset offs, ManagedRegister msrc, size_t size) override; void StoreRef(FrameOffset dest, ManagedRegister msrc) override; void StoreRawPtr(FrameOffset dest, ManagedRegister msrc) override; void StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) override; void StoreStackOffsetToThread(ThreadOffset64 thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) override; void StoreStackPointerToThread(ThreadOffset64 thr_offs) override; void StoreSpanning(FrameOffset dest, ManagedRegister msrc, FrameOffset in_off, ManagedRegister mscratch) override; // Load routines. void Load(ManagedRegister mdest, FrameOffset src, size_t size) override; void LoadFromThread(ManagedRegister mdest, ThreadOffset64 src, size_t size) override; void LoadRef(ManagedRegister dest, FrameOffset src) override; void LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs, bool unpoison_reference) override; void LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) override; void LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset64 offs) override; // Copying routines. void Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) override; void CopyRawPtrFromThread(FrameOffset fr_offs, ThreadOffset64 thr_offs, ManagedRegister mscratch) override; void CopyRawPtrToThread(ThreadOffset64 thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) override; void CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) override; void Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) override; void Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister mscratch, size_t size) override; void Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, ManagedRegister mscratch, size_t size) override; void Copy(FrameOffset dest, FrameOffset src_base, Offset src_offset, ManagedRegister mscratch, size_t size) override; void Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset, ManagedRegister mscratch, size_t size) override; void Copy(FrameOffset dest, Offset dest_offset, FrameOffset src, Offset src_offset, ManagedRegister mscratch, size_t size) override; void MemoryBarrier(ManagedRegister) override; // Sign extension. void SignExtend(ManagedRegister mreg, size_t size) override; // Zero extension. void ZeroExtend(ManagedRegister mreg, size_t size) override; // Exploit fast access in managed code to Thread::Current(). void GetCurrentThread(ManagedRegister tr) override; void GetCurrentThread(FrameOffset dest_offset, ManagedRegister mscratch) override; // Set up out_reg to hold a Object** into the handle scope, or to be null if the // value is null and null_allowed. in_reg holds a possibly stale reference // that can be used to avoid loading the handle scope entry to see if the value is // null. void CreateHandleScopeEntry(ManagedRegister out_reg, FrameOffset handlescope_offset, ManagedRegister in_reg, bool null_allowed) override; // Set up out_off to hold a Object** into the handle scope, or to be null if the // value is null and null_allowed. void CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handlescope_offset, ManagedRegister mscratch, bool null_allowed) override; // src holds a handle scope entry (Object**) load this into dst. void LoadReferenceFromHandleScope(ManagedRegister dst, ManagedRegister src) override; // Heap::VerifyObject on src. In some cases (such as a reference to this) we // know that src may not be null. void VerifyObject(ManagedRegister src, bool could_be_null) override; void VerifyObject(FrameOffset src, bool could_be_null) override; // Call to address held at [base+offset]. void Call(ManagedRegister base, Offset offset, ManagedRegister mscratch) override; void Call(FrameOffset base, Offset offset, ManagedRegister mscratch) override; void CallFromThread(ThreadOffset64 offset, ManagedRegister mscratch) override; // Generate code to check if Thread::Current()->exception_ is non-null // and branch to a ExceptionSlowPath if it is. void ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) override; // Emit slow paths queued during assembly and promote short branches to long if needed. void FinalizeCode() override; // Emit branches and finalize all instructions. void FinalizeInstructions(const MemoryRegion& region) override; // Returns the (always-)current location of a label (can be used in class CodeGeneratorMIPS64, // must be used instead of Mips64Label::GetPosition()). uint32_t GetLabelLocation(const Mips64Label* label) const; // Get the final position of a label after local fixup based on the old position // recorded before FinalizeCode(). uint32_t GetAdjustedPosition(uint32_t old_position); // Note that PC-relative literal loads are handled as pseudo branches because they need very // similar relocation and may similarly expand in size to accomodate for larger offsets relative // to PC. enum BranchCondition { kCondLT, kCondGE, kCondLE, kCondGT, kCondLTZ, kCondGEZ, kCondLEZ, kCondGTZ, kCondEQ, kCondNE, kCondEQZ, kCondNEZ, kCondLTU, kCondGEU, kCondF, // Floating-point predicate false. kCondT, // Floating-point predicate true. kUncond, }; friend std::ostream& operator<<(std::ostream& os, const BranchCondition& rhs); private: class Branch { public: enum Type { // R6 short branches (can be promoted to long). kUncondBranch, kCondBranch, kCall, // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually. kBareUncondBranch, kBareCondBranch, kBareCall, // R2 short branches (can't be promoted to long), delay slots filled manually. kR2BareCondBranch, // Near label. kLabel, // Near literals. kLiteral, kLiteralUnsigned, kLiteralLong, // Long branches. kLongUncondBranch, kLongCondBranch, kLongCall, // Far label. kFarLabel, // Far literals. kFarLiteral, kFarLiteralUnsigned, kFarLiteralLong, }; // Bit sizes of offsets defined as enums to minimize chance of typos. enum OffsetBits { kOffset16 = 16, kOffset18 = 18, kOffset21 = 21, kOffset23 = 23, kOffset28 = 28, kOffset32 = 32, }; static constexpr uint32_t kUnresolved = 0xffffffff; // Unresolved target_ static constexpr int32_t kMaxBranchLength = 32; static constexpr int32_t kMaxBranchSize = kMaxBranchLength * sizeof(uint32_t); struct BranchInfo { // Branch length as a number of 4-byte-long instructions. uint32_t length; // Ordinal number (0-based) of the first (or the only) instruction that contains the branch's // PC-relative offset (or its most significant 16-bit half, which goes first). uint32_t instr_offset; // Different MIPS instructions with PC-relative offsets apply said offsets to slightly // different origins, e.g. to PC or PC+4. Encode the origin distance (as a number of 4-byte // instructions) from the instruction containing the offset. uint32_t pc_org; // How large (in bits) a PC-relative offset can be for a given type of branch (kCondBranch // and kBareCondBranch are an exception: use kOffset23 for beqzc/bnezc). OffsetBits offset_size; // Some MIPS instructions with PC-relative offsets shift the offset by 2. Encode the shift // count. int offset_shift; }; static const BranchInfo branch_info_[/* Type */]; // Unconditional branch or call. Branch(uint32_t location, uint32_t target, bool is_call, bool is_bare); // Conditional branch. Branch(bool is_r6, uint32_t location, uint32_t target, BranchCondition condition, GpuRegister lhs_reg, GpuRegister rhs_reg, bool is_bare); // Label address (in literal area) or literal. Branch(uint32_t location, GpuRegister dest_reg, Type label_or_literal_type); // Some conditional branches with lhs = rhs are effectively NOPs, while some // others are effectively unconditional. MIPSR6 conditional branches require lhs != rhs. // So, we need a way to identify such branches in order to emit no instructions for them // or change them to unconditional. static bool IsNop(BranchCondition condition, GpuRegister lhs, GpuRegister rhs); static bool IsUncond(BranchCondition condition, GpuRegister lhs, GpuRegister rhs); static BranchCondition OppositeCondition(BranchCondition cond); Type GetType() const; BranchCondition GetCondition() const; GpuRegister GetLeftRegister() const; GpuRegister GetRightRegister() const; uint32_t GetTarget() const; uint32_t GetLocation() const; uint32_t GetOldLocation() const; uint32_t GetLength() const; uint32_t GetOldLength() const; uint32_t GetSize() const; uint32_t GetOldSize() const; uint32_t GetEndLocation() const; uint32_t GetOldEndLocation() const; bool IsBare() const; bool IsLong() const; bool IsResolved() const; // Returns the bit size of the signed offset that the branch instruction can handle. OffsetBits GetOffsetSize() const; // Calculates the distance between two byte locations in the assembler buffer and // returns the number of bits needed to represent the distance as a signed integer. // // Branch instructions have signed offsets of 16, 19 (addiupc), 21 (beqzc/bnezc), // and 26 (bc) bits, which are additionally shifted left 2 positions at run time. // // Composite branches (made of several instructions) with longer reach have 32-bit // offsets encoded as 2 16-bit "halves" in two instructions (high half goes first). // The composite branches cover the range of PC + ~+/-2GB. The range is not end-to-end, // however. Consider the following implementation of a long unconditional branch, for // example: // // auipc at, offset_31_16 // at = pc + sign_extend(offset_31_16) << 16 // jic at, offset_15_0 // pc = at + sign_extend(offset_15_0) // // Both of the above instructions take 16-bit signed offsets as immediate operands. // When bit 15 of offset_15_0 is 1, it effectively causes subtraction of 0x10000 // due to sign extension. This must be compensated for by incrementing offset_31_16 // by 1. offset_31_16 can only be incremented by 1 if it's not 0x7FFF. If it is // 0x7FFF, adding 1 will overflow the positive offset into the negative range. // Therefore, the long branch range is something like from PC - 0x80000000 to // PC + 0x7FFF7FFF, IOW, shorter by 32KB on one side. // // The returned values are therefore: 18, 21, 23, 28 and 32. There's also a special // case with the addiu instruction and a 16 bit offset. static OffsetBits GetOffsetSizeNeeded(uint32_t location, uint32_t target); // Resolve a branch when the target is known. void Resolve(uint32_t target); // Relocate a branch by a given delta if needed due to expansion of this or another // branch at a given location by this delta (just changes location_ and target_). void Relocate(uint32_t expand_location, uint32_t delta); // If the branch is short, changes its type to long. void PromoteToLong(); // If necessary, updates the type by promoting a short branch to a long branch // based on the branch location and target. Returns the amount (in bytes) by // which the branch size has increased. // max_short_distance caps the maximum distance between location_ and target_ // that is allowed for short branches. This is for debugging/testing purposes. // max_short_distance = 0 forces all short branches to become long. // Use the implicit default argument when not debugging/testing. uint32_t PromoteIfNeeded(uint32_t max_short_distance = std::numeric_limits<uint32_t>::max()); // Returns the location of the instruction(s) containing the offset. uint32_t GetOffsetLocation() const; // Calculates and returns the offset ready for encoding in the branch instruction(s). uint32_t GetOffset() const; private: // Completes branch construction by determining and recording its type. void InitializeType(Type initial_type, bool is_r6); // Helper for the above. void InitShortOrLong(OffsetBits ofs_size, Type short_type, Type long_type); uint32_t old_location_; // Offset into assembler buffer in bytes. uint32_t location_; // Offset into assembler buffer in bytes. uint32_t target_; // Offset into assembler buffer in bytes. GpuRegister lhs_reg_; // Left-hand side register in conditional branches or // destination register in literals. GpuRegister rhs_reg_; // Right-hand side register in conditional branches. BranchCondition condition_; // Condition for conditional branches. Type type_; // Current type of the branch. Type old_type_; // Initial type of the branch. }; friend std::ostream& operator<<(std::ostream& os, const Branch::Type& rhs); friend std::ostream& operator<<(std::ostream& os, const Branch::OffsetBits& rhs); void EmitR(int opcode, GpuRegister rs, GpuRegister rt, GpuRegister rd, int shamt, int funct); void EmitRsd(int opcode, GpuRegister rs, GpuRegister rd, int shamt, int funct); void EmitRtd(int opcode, GpuRegister rt, GpuRegister rd, int shamt, int funct); void EmitI(int opcode, GpuRegister rs, GpuRegister rt, uint16_t imm); void EmitI21(int opcode, GpuRegister rs, uint32_t imm21); void EmitI26(int opcode, uint32_t imm26); void EmitFR(int opcode, int fmt, FpuRegister ft, FpuRegister fs, FpuRegister fd, int funct); void EmitFI(int opcode, int fmt, FpuRegister rt, uint16_t imm); void EmitBcondR6(BranchCondition cond, GpuRegister rs, GpuRegister rt, uint32_t imm16_21); void EmitBcondR2(BranchCondition cond, GpuRegister rs, GpuRegister rt, uint16_t imm16); void EmitMsa3R(int operation, int df, VectorRegister wt, VectorRegister ws, VectorRegister wd, int minor_opcode); void EmitMsaBIT(int operation, int df_m, VectorRegister ws, VectorRegister wd, int minor_opcode); void EmitMsaELM(int operation, int df_n, VectorRegister ws, VectorRegister wd, int minor_opcode); void EmitMsaMI10(int s10, GpuRegister rs, VectorRegister wd, int minor_opcode, int df); void EmitMsaI10(int operation, int df, int i10, VectorRegister wd, int minor_opcode); void EmitMsa2R(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode); void EmitMsa2RF(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode); void Buncond(Mips64Label* label, bool is_bare); void Bcond(Mips64Label* label, bool is_r6, bool is_bare, BranchCondition condition, GpuRegister lhs, GpuRegister rhs = ZERO); void Call(Mips64Label* label, bool is_bare); void FinalizeLabeledBranch(Mips64Label* label); Branch* GetBranch(uint32_t branch_id); const Branch* GetBranch(uint32_t branch_id) const; void EmitLiterals(); void ReserveJumpTableSpace(); void EmitJumpTables(); void PromoteBranches(); void EmitBranch(Branch* branch); void EmitBranches(); void PatchCFI(); // Emits exception block. void EmitExceptionPoll(Mips64ExceptionSlowPath* exception); bool HasMsa() const { return has_msa_; } // List of exception blocks to generate at the end of the code cache. std::vector<Mips64ExceptionSlowPath> exception_blocks_; std::vector<Branch> branches_; // Whether appending instructions at the end of the buffer or overwriting the existing ones. bool overwriting_; // The current overwrite location. uint32_t overwrite_location_; // Use std::deque<> for literal labels to allow insertions at the end // without invalidating pointers and references to existing elements. ArenaDeque<Literal> literals_; ArenaDeque<Literal> long_literals_; // 64-bit literals separated for alignment reasons. // Jump table list. ArenaDeque<JumpTable> jump_tables_; // Data for AdjustedPosition(), see the description there. uint32_t last_position_adjustment_; uint32_t last_old_position_; uint32_t last_branch_id_; const bool has_msa_; DISALLOW_COPY_AND_ASSIGN(Mips64Assembler); }; } // namespace mips64 } // namespace art #endif // ART_COMPILER_UTILS_MIPS64_ASSEMBLER_MIPS64_H_