/* * Copyright (C) 2011 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "assembler_mips.h" #include "base/bit_utils.h" #include "base/casts.h" #include "base/memory_region.h" #include "entrypoints/quick/quick_entrypoints.h" #include "entrypoints/quick/quick_entrypoints_enum.h" #include "thread.h" namespace art { namespace mips { static_assert(static_cast<size_t>(kMipsPointerSize) == kMipsWordSize, "Unexpected Mips pointer size."); static_assert(kMipsPointerSize == PointerSize::k32, "Unexpected Mips pointer size."); std::ostream& operator<<(std::ostream& os, const DRegister& rhs) { if (rhs >= D0 && rhs < kNumberOfDRegisters) { os << "d" << static_cast<int>(rhs); } else { os << "DRegister[" << static_cast<int>(rhs) << "]"; } return os; } MipsAssembler::DelaySlot::DelaySlot() : instruction_(0), patcher_label_(nullptr) {} InOutRegMasks& MipsAssembler::DsFsmInstr(uint32_t instruction, MipsLabel* patcher_label) { if (!reordering_) { CHECK_EQ(ds_fsm_state_, kExpectingLabel); CHECK_EQ(delay_slot_.instruction_, 0u); return delay_slot_.masks_; } switch (ds_fsm_state_) { case kExpectingLabel: break; case kExpectingInstruction: CHECK_EQ(ds_fsm_target_pc_ + sizeof(uint32_t), buffer_.Size()); // If the last instruction is not suitable for delay slots, drop // the PC of the label preceding it so that no unconditional branch // uses this instruction to fill its delay slot. if (instruction == 0) { DsFsmDropLabel(); // Sets ds_fsm_state_ = kExpectingLabel. } else { // Otherwise wait for another instruction or label before we can // commit the label PC. The label PC will be dropped if instead // of another instruction or label there's a call from the code // generator to CodePosition() to record the buffer size. // Instructions after which the buffer size is recorded cannot // be moved into delay slots or anywhere else because they may // trigger signals and the signal handlers expect these signals // to be coming from the instructions immediately preceding the // recorded buffer locations. ds_fsm_state_ = kExpectingCommit; } break; case kExpectingCommit: CHECK_EQ(ds_fsm_target_pc_ + 2 * sizeof(uint32_t), buffer_.Size()); DsFsmCommitLabel(); // Sets ds_fsm_state_ = kExpectingLabel. break; } delay_slot_.instruction_ = instruction; delay_slot_.masks_ = InOutRegMasks(); delay_slot_.patcher_label_ = patcher_label; return delay_slot_.masks_; } void MipsAssembler::DsFsmLabel() { if (!reordering_) { CHECK_EQ(ds_fsm_state_, kExpectingLabel); CHECK_EQ(delay_slot_.instruction_, 0u); return; } switch (ds_fsm_state_) { case kExpectingLabel: ds_fsm_target_pc_ = buffer_.Size(); ds_fsm_state_ = kExpectingInstruction; break; case kExpectingInstruction: // Allow consecutive labels. CHECK_EQ(ds_fsm_target_pc_, buffer_.Size()); break; case kExpectingCommit: CHECK_EQ(ds_fsm_target_pc_ + sizeof(uint32_t), buffer_.Size()); DsFsmCommitLabel(); ds_fsm_target_pc_ = buffer_.Size(); ds_fsm_state_ = kExpectingInstruction; break; } // We cannot move instructions into delay slots across labels. delay_slot_.instruction_ = 0; } void MipsAssembler::DsFsmCommitLabel() { if (ds_fsm_state_ == kExpectingCommit) { ds_fsm_target_pcs_.emplace_back(ds_fsm_target_pc_); } ds_fsm_state_ = kExpectingLabel; } void MipsAssembler::DsFsmDropLabel() { ds_fsm_state_ = kExpectingLabel; } bool MipsAssembler::SetReorder(bool enable) { bool last_state = reordering_; if (last_state != enable) { DsFsmCommitLabel(); DsFsmInstrNop(0); } reordering_ = enable; return last_state; } size_t MipsAssembler::CodePosition() { // The last instruction cannot be used in a delay slot, do not commit // the label before it (if any) and clear the delay slot. DsFsmDropLabel(); DsFsmInstrNop(0); size_t size = buffer_.Size(); // In theory we can get the following sequence: // label1: // instr // label2: # label1 gets committed when label2 is seen // CodePosition() call // and we need to uncommit label1. if (ds_fsm_target_pcs_.size() != 0 && ds_fsm_target_pcs_.back() + sizeof(uint32_t) == size) { ds_fsm_target_pcs_.pop_back(); } return size; } void MipsAssembler::DsFsmInstrNop(uint32_t instruction ATTRIBUTE_UNUSED) { DsFsmInstr(0); } void MipsAssembler::FinalizeCode() { for (auto& exception_block : exception_blocks_) { EmitExceptionPoll(&exception_block); } // Commit the last branch target label (if any) and disable instruction reordering. DsFsmCommitLabel(); SetReorder(false); EmitLiterals(); ReserveJumpTableSpace(); PromoteBranches(); } void MipsAssembler::FinalizeInstructions(const MemoryRegion& region) { size_t number_of_delayed_adjust_pcs = cfi().NumberOfDelayedAdvancePCs(); EmitBranches(); EmitJumpTables(); Assembler::FinalizeInstructions(region); PatchCFI(number_of_delayed_adjust_pcs); } void MipsAssembler::PatchCFI(size_t number_of_delayed_adjust_pcs) { if (cfi().NumberOfDelayedAdvancePCs() == 0u) { DCHECK_EQ(number_of_delayed_adjust_pcs, 0u); return; } using DelayedAdvancePC = DebugFrameOpCodeWriterForAssembler::DelayedAdvancePC; const auto data = cfi().ReleaseStreamAndPrepareForDelayedAdvancePC(); const std::vector<uint8_t>& old_stream = data.first; const std::vector<DelayedAdvancePC>& advances = data.second; // PCs recorded before EmitBranches() need to be adjusted. // PCs recorded during EmitBranches() are already adjusted. // Both ranges are separately sorted but they may overlap. if (kIsDebugBuild) { auto cmp = [](const DelayedAdvancePC& lhs, const DelayedAdvancePC& rhs) { return lhs.pc < rhs.pc; }; CHECK(std::is_sorted(advances.begin(), advances.begin() + number_of_delayed_adjust_pcs, cmp)); CHECK(std::is_sorted(advances.begin() + number_of_delayed_adjust_pcs, advances.end(), cmp)); } // Append initial CFI data if any. size_t size = advances.size(); DCHECK_NE(size, 0u); cfi().AppendRawData(old_stream, 0u, advances[0].stream_pos); // Emit PC adjustments interleaved with the old CFI stream. size_t adjust_pos = 0u; size_t late_emit_pos = number_of_delayed_adjust_pcs; while (adjust_pos != number_of_delayed_adjust_pcs || late_emit_pos != size) { size_t adjusted_pc = (adjust_pos != number_of_delayed_adjust_pcs) ? GetAdjustedPosition(advances[adjust_pos].pc) : static_cast<size_t>(-1); size_t late_emit_pc = (late_emit_pos != size) ? advances[late_emit_pos].pc : static_cast<size_t>(-1); size_t advance_pc = std::min(adjusted_pc, late_emit_pc); DCHECK_NE(advance_pc, static_cast<size_t>(-1)); size_t entry = (adjusted_pc <= late_emit_pc) ? adjust_pos : late_emit_pos; if (adjusted_pc <= late_emit_pc) { ++adjust_pos; } else { ++late_emit_pos; } cfi().AdvancePC(advance_pc); size_t end_pos = (entry + 1u == size) ? old_stream.size() : advances[entry + 1u].stream_pos; cfi().AppendRawData(old_stream, advances[entry].stream_pos, end_pos); } } void MipsAssembler::EmitBranches() { CHECK(!overwriting_); CHECK(!reordering_); // Now that everything has its final position in the buffer (the branches have // been promoted), adjust the target label PCs. for (size_t cnt = ds_fsm_target_pcs_.size(), i = 0; i < cnt; i++) { ds_fsm_target_pcs_[i] = GetAdjustedPosition(ds_fsm_target_pcs_[i]); } // Switch from appending instructions at the end of the buffer to overwriting // existing instructions (branch placeholders) in the buffer. overwriting_ = true; for (size_t id = 0; id < branches_.size(); id++) { EmitBranch(id); } overwriting_ = false; } void MipsAssembler::Emit(uint32_t value) { if (overwriting_) { // Branches to labels are emitted into their placeholders here. buffer_.Store<uint32_t>(overwrite_location_, value); overwrite_location_ += sizeof(uint32_t); } else { // Other instructions are simply appended at the end here. AssemblerBuffer::EnsureCapacity ensured(&buffer_); buffer_.Emit<uint32_t>(value); } } uint32_t MipsAssembler::EmitR(int opcode, Register rs, Register rt, Register rd, int shamt, int funct) { CHECK_NE(rs, kNoRegister); CHECK_NE(rt, kNoRegister); CHECK_NE(rd, kNoRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(rs) << kRsShift | static_cast<uint32_t>(rt) << kRtShift | static_cast<uint32_t>(rd) << kRdShift | shamt << kShamtShift | funct; Emit(encoding); return encoding; } uint32_t MipsAssembler::EmitI(int opcode, Register rs, Register rt, uint16_t imm) { CHECK_NE(rs, kNoRegister); CHECK_NE(rt, kNoRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(rs) << kRsShift | static_cast<uint32_t>(rt) << kRtShift | imm; Emit(encoding); return encoding; } uint32_t MipsAssembler::EmitI21(int opcode, Register rs, uint32_t imm21) { CHECK_NE(rs, kNoRegister); CHECK(IsUint<21>(imm21)) << imm21; uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | static_cast<uint32_t>(rs) << kRsShift | imm21; Emit(encoding); return encoding; } uint32_t MipsAssembler::EmitI26(int opcode, uint32_t imm26) { CHECK(IsUint<26>(imm26)) << imm26; uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | imm26; Emit(encoding); return encoding; } uint32_t MipsAssembler::EmitFR(int opcode, int fmt, FRegister ft, FRegister fs, FRegister fd, int funct) { CHECK_NE(ft, kNoFRegister); CHECK_NE(fs, kNoFRegister); CHECK_NE(fd, kNoFRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | fmt << kFmtShift | static_cast<uint32_t>(ft) << kFtShift | static_cast<uint32_t>(fs) << kFsShift | static_cast<uint32_t>(fd) << kFdShift | funct; Emit(encoding); return encoding; } uint32_t MipsAssembler::EmitFI(int opcode, int fmt, FRegister ft, uint16_t imm) { CHECK_NE(ft, kNoFRegister); uint32_t encoding = static_cast<uint32_t>(opcode) << kOpcodeShift | fmt << kFmtShift | static_cast<uint32_t>(ft) << kFtShift | imm; Emit(encoding); return encoding; } uint32_t MipsAssembler::EmitMsa3R(int operation, int df, VectorRegister wt, VectorRegister ws, VectorRegister wd, int minor_opcode) { CHECK_NE(wt, kNoVectorRegister); CHECK_NE(ws, kNoVectorRegister); CHECK_NE(wd, kNoVectorRegister); uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | operation << kMsaOperationShift | df << kDfShift | static_cast<uint32_t>(wt) << kWtShift | static_cast<uint32_t>(ws) << kWsShift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode; Emit(encoding); return encoding; } uint32_t MipsAssembler::EmitMsaBIT(int operation, int df_m, VectorRegister ws, VectorRegister wd, int minor_opcode) { CHECK_NE(ws, kNoVectorRegister); CHECK_NE(wd, kNoVectorRegister); uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | operation << kMsaOperationShift | df_m << kDfMShift | static_cast<uint32_t>(ws) << kWsShift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode; Emit(encoding); return encoding; } uint32_t MipsAssembler::EmitMsaELM(int operation, int df_n, VectorRegister ws, VectorRegister wd, int minor_opcode) { CHECK_NE(ws, kNoVectorRegister); CHECK_NE(wd, kNoVectorRegister); uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | operation << kMsaELMOperationShift | df_n << kDfNShift | static_cast<uint32_t>(ws) << kWsShift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode; Emit(encoding); return encoding; } uint32_t MipsAssembler::EmitMsaMI10(int s10, Register rs, VectorRegister wd, int minor_opcode, int df) { CHECK_NE(rs, kNoRegister); CHECK_NE(wd, kNoVectorRegister); CHECK(IsUint<10>(s10)) << s10; uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | s10 << kS10Shift | static_cast<uint32_t>(rs) << kWsShift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode << kS10MinorShift | df; Emit(encoding); return encoding; } uint32_t MipsAssembler::EmitMsaI10(int operation, int df, int i10, VectorRegister wd, int minor_opcode) { CHECK_NE(wd, kNoVectorRegister); CHECK(IsUint<10>(i10)) << i10; uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | operation << kMsaOperationShift | df << kDfShift | i10 << kI10Shift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode; Emit(encoding); return encoding; } uint32_t MipsAssembler::EmitMsa2R(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode) { CHECK_NE(ws, kNoVectorRegister); CHECK_NE(wd, kNoVectorRegister); uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | operation << kMsa2ROperationShift | df << kDf2RShift | static_cast<uint32_t>(ws) << kWsShift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode; Emit(encoding); return encoding; } uint32_t MipsAssembler::EmitMsa2RF(int operation, int df, VectorRegister ws, VectorRegister wd, int minor_opcode) { CHECK_NE(ws, kNoVectorRegister); CHECK_NE(wd, kNoVectorRegister); uint32_t encoding = static_cast<uint32_t>(kMsaMajorOpcode) << kOpcodeShift | operation << kMsa2RFOperationShift | df << kDf2RShift | static_cast<uint32_t>(ws) << kWsShift | static_cast<uint32_t>(wd) << kWdShift | minor_opcode; Emit(encoding); return encoding; } void MipsAssembler::Addu(Register rd, Register rs, Register rt) { DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x21)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::Addiu(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label) { if (patcher_label != nullptr) { Bind(patcher_label); } DsFsmInstr(EmitI(0x9, rs, rt, imm16), patcher_label).GprOuts(rt).GprIns(rs); } void MipsAssembler::Addiu(Register rt, Register rs, uint16_t imm16) { Addiu(rt, rs, imm16, /* patcher_label= */ nullptr); } void MipsAssembler::Subu(Register rd, Register rs, Register rt) { DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x23)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::MultR2(Register rs, Register rt) { CHECK(!IsR6()); DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x18)).GprIns(rs, rt); } void MipsAssembler::MultuR2(Register rs, Register rt) { CHECK(!IsR6()); DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x19)).GprIns(rs, rt); } void MipsAssembler::DivR2(Register rs, Register rt) { CHECK(!IsR6()); DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x1a)).GprIns(rs, rt); } void MipsAssembler::DivuR2(Register rs, Register rt) { CHECK(!IsR6()); DsFsmInstr(EmitR(0, rs, rt, static_cast<Register>(0), 0, 0x1b)).GprIns(rs, rt); } void MipsAssembler::MulR2(Register rd, Register rs, Register rt) { CHECK(!IsR6()); DsFsmInstr(EmitR(0x1c, rs, rt, rd, 0, 2)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::DivR2(Register rd, Register rs, Register rt) { CHECK(!IsR6()); DivR2(rs, rt); Mflo(rd); } void MipsAssembler::ModR2(Register rd, Register rs, Register rt) { CHECK(!IsR6()); DivR2(rs, rt); Mfhi(rd); } void MipsAssembler::DivuR2(Register rd, Register rs, Register rt) { CHECK(!IsR6()); DivuR2(rs, rt); Mflo(rd); } void MipsAssembler::ModuR2(Register rd, Register rs, Register rt) { CHECK(!IsR6()); DivuR2(rs, rt); Mfhi(rd); } void MipsAssembler::MulR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); DsFsmInstr(EmitR(0, rs, rt, rd, 2, 0x18)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::MuhR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x18)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::MuhuR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x19)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::DivR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); DsFsmInstr(EmitR(0, rs, rt, rd, 2, 0x1a)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::ModR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x1a)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::DivuR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); DsFsmInstr(EmitR(0, rs, rt, rd, 2, 0x1b)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::ModuR6(Register rd, Register rs, Register rt) { CHECK(IsR6()); DsFsmInstr(EmitR(0, rs, rt, rd, 3, 0x1b)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::And(Register rd, Register rs, Register rt) { DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x24)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::Andi(Register rt, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0xc, rs, rt, imm16)).GprOuts(rt).GprIns(rs); } void MipsAssembler::Or(Register rd, Register rs, Register rt) { DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x25)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::Ori(Register rt, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0xd, rs, rt, imm16)).GprOuts(rt).GprIns(rs); } void MipsAssembler::Xor(Register rd, Register rs, Register rt) { DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x26)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::Xori(Register rt, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0xe, rs, rt, imm16)).GprOuts(rt).GprIns(rs); } void MipsAssembler::Nor(Register rd, Register rs, Register rt) { DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x27)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::Movz(Register rd, Register rs, Register rt) { CHECK(!IsR6()); DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x0A)).GprInOuts(rd).GprIns(rs, rt); } void MipsAssembler::Movn(Register rd, Register rs, Register rt) { CHECK(!IsR6()); DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x0B)).GprInOuts(rd).GprIns(rs, rt); } void MipsAssembler::Seleqz(Register rd, Register rs, Register rt) { CHECK(IsR6()); DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x35)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::Selnez(Register rd, Register rs, Register rt) { CHECK(IsR6()); DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x37)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::ClzR6(Register rd, Register rs) { CHECK(IsR6()); DsFsmInstr(EmitR(0, rs, static_cast<Register>(0), rd, 0x01, 0x10)).GprOuts(rd).GprIns(rs); } void MipsAssembler::ClzR2(Register rd, Register rs) { CHECK(!IsR6()); DsFsmInstr(EmitR(0x1C, rs, rd, rd, 0, 0x20)).GprOuts(rd).GprIns(rs); } void MipsAssembler::CloR6(Register rd, Register rs) { CHECK(IsR6()); DsFsmInstr(EmitR(0, rs, static_cast<Register>(0), rd, 0x01, 0x11)).GprOuts(rd).GprIns(rs); } void MipsAssembler::CloR2(Register rd, Register rs) { CHECK(!IsR6()); DsFsmInstr(EmitR(0x1C, rs, rd, rd, 0, 0x21)).GprOuts(rd).GprIns(rs); } void MipsAssembler::Seb(Register rd, Register rt) { DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x10, 0x20)).GprOuts(rd).GprIns(rt); } void MipsAssembler::Seh(Register rd, Register rt) { DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x18, 0x20)).GprOuts(rd).GprIns(rt); } void MipsAssembler::Wsbh(Register rd, Register rt) { DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 2, 0x20)).GprOuts(rd).GprIns(rt); } void MipsAssembler::Bitswap(Register rd, Register rt) { CHECK(IsR6()); DsFsmInstr(EmitR(0x1f, static_cast<Register>(0), rt, rd, 0x0, 0x20)).GprOuts(rd).GprIns(rt); } void MipsAssembler::Sll(Register rd, Register rt, int shamt) { CHECK(IsUint<5>(shamt)) << shamt; DsFsmInstr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x00)).GprOuts(rd).GprIns(rt); } void MipsAssembler::Srl(Register rd, Register rt, int shamt) { CHECK(IsUint<5>(shamt)) << shamt; DsFsmInstr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x02)).GprOuts(rd).GprIns(rt); } void MipsAssembler::Rotr(Register rd, Register rt, int shamt) { CHECK(IsUint<5>(shamt)) << shamt; DsFsmInstr(EmitR(0, static_cast<Register>(1), rt, rd, shamt, 0x02)).GprOuts(rd).GprIns(rt); } void MipsAssembler::Sra(Register rd, Register rt, int shamt) { CHECK(IsUint<5>(shamt)) << shamt; DsFsmInstr(EmitR(0, static_cast<Register>(0), rt, rd, shamt, 0x03)).GprOuts(rd).GprIns(rt); } void MipsAssembler::Sllv(Register rd, Register rt, Register rs) { DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x04)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::Srlv(Register rd, Register rt, Register rs) { DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x06)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::Rotrv(Register rd, Register rt, Register rs) { DsFsmInstr(EmitR(0, rs, rt, rd, 1, 0x06)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::Srav(Register rd, Register rt, Register rs) { DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x07)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::Ext(Register rd, Register rt, int pos, int size) { CHECK(IsUint<5>(pos)) << pos; CHECK(0 < size && size <= 32) << size; CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size; DsFsmInstr(EmitR(0x1f, rt, rd, static_cast<Register>(size - 1), pos, 0x00)) .GprOuts(rd).GprIns(rt); } void MipsAssembler::Ins(Register rd, Register rt, int pos, int size) { CHECK(IsUint<5>(pos)) << pos; CHECK(0 < size && size <= 32) << size; CHECK(0 < pos + size && pos + size <= 32) << pos << " + " << size; DsFsmInstr(EmitR(0x1f, rt, rd, static_cast<Register>(pos + size - 1), pos, 0x04)) .GprInOuts(rd).GprIns(rt); } void MipsAssembler::Lsa(Register rd, Register rs, Register rt, int saPlusOne) { CHECK(IsR6() || HasMsa()); CHECK(1 <= saPlusOne && saPlusOne <= 4) << saPlusOne; int sa = saPlusOne - 1; DsFsmInstr(EmitR(0x0, rs, rt, rd, sa, 0x05)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::ShiftAndAdd(Register dst, Register src_idx, Register src_base, int shamt, Register tmp) { CHECK(0 <= shamt && shamt <= 4) << shamt; CHECK_NE(src_base, tmp); if (shamt == TIMES_1) { // Catch the special case where the shift amount is zero (0). Addu(dst, src_base, src_idx); } else if (IsR6() || HasMsa()) { Lsa(dst, src_idx, src_base, shamt); } else { Sll(tmp, src_idx, shamt); Addu(dst, src_base, tmp); } } void MipsAssembler::Lb(Register rt, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0x20, rs, rt, imm16)).GprOuts(rt).GprIns(rs); } void MipsAssembler::Lh(Register rt, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0x21, rs, rt, imm16)).GprOuts(rt).GprIns(rs); } void MipsAssembler::Lw(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label) { if (patcher_label != nullptr) { Bind(patcher_label); } DsFsmInstr(EmitI(0x23, rs, rt, imm16), patcher_label).GprOuts(rt).GprIns(rs); } void MipsAssembler::Lw(Register rt, Register rs, uint16_t imm16) { Lw(rt, rs, imm16, /* patcher_label= */ nullptr); } void MipsAssembler::Lwl(Register rt, Register rs, uint16_t imm16) { CHECK(!IsR6()); DsFsmInstr(EmitI(0x22, rs, rt, imm16)).GprInOuts(rt).GprIns(rs); } void MipsAssembler::Lwr(Register rt, Register rs, uint16_t imm16) { CHECK(!IsR6()); DsFsmInstr(EmitI(0x26, rs, rt, imm16)).GprInOuts(rt).GprIns(rs); } void MipsAssembler::Lbu(Register rt, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0x24, rs, rt, imm16)).GprOuts(rt).GprIns(rs); } void MipsAssembler::Lhu(Register rt, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0x25, rs, rt, imm16)).GprOuts(rt).GprIns(rs); } void MipsAssembler::Lwpc(Register rs, uint32_t imm19) { CHECK(IsR6()); CHECK(IsUint<19>(imm19)) << imm19; DsFsmInstrNop(EmitI21(0x3B, rs, (0x01 << 19) | imm19)); } void MipsAssembler::Lui(Register rt, uint16_t imm16) { DsFsmInstr(EmitI(0xf, static_cast<Register>(0), rt, imm16)).GprOuts(rt); } void MipsAssembler::Aui(Register rt, Register rs, uint16_t imm16) { CHECK(IsR6()); DsFsmInstr(EmitI(0xf, rs, rt, imm16)).GprOuts(rt).GprIns(rs); } void MipsAssembler::AddUpper(Register rt, Register rs, uint16_t imm16, Register tmp) { bool increment = (rs == rt); if (increment) { CHECK_NE(rs, tmp); } if (IsR6()) { Aui(rt, rs, imm16); } else if (increment) { Lui(tmp, imm16); Addu(rt, rs, tmp); } else { Lui(rt, imm16); Addu(rt, rs, rt); } } void MipsAssembler::Sync(uint32_t stype) { DsFsmInstrNop(EmitR(0, ZERO, ZERO, ZERO, stype & 0x1f, 0xf)); } void MipsAssembler::Mfhi(Register rd) { CHECK(!IsR6()); DsFsmInstr(EmitR(0, ZERO, ZERO, rd, 0, 0x10)).GprOuts(rd); } void MipsAssembler::Mflo(Register rd) { CHECK(!IsR6()); DsFsmInstr(EmitR(0, ZERO, ZERO, rd, 0, 0x12)).GprOuts(rd); } void MipsAssembler::Sb(Register rt, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0x28, rs, rt, imm16)).GprIns(rt, rs); } void MipsAssembler::Sh(Register rt, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0x29, rs, rt, imm16)).GprIns(rt, rs); } void MipsAssembler::Sw(Register rt, Register rs, uint16_t imm16, MipsLabel* patcher_label) { if (patcher_label != nullptr) { Bind(patcher_label); } DsFsmInstr(EmitI(0x2b, rs, rt, imm16), patcher_label).GprIns(rt, rs); } void MipsAssembler::Sw(Register rt, Register rs, uint16_t imm16) { Sw(rt, rs, imm16, /* patcher_label= */ nullptr); } void MipsAssembler::Swl(Register rt, Register rs, uint16_t imm16) { CHECK(!IsR6()); DsFsmInstr(EmitI(0x2a, rs, rt, imm16)).GprIns(rt, rs); } void MipsAssembler::Swr(Register rt, Register rs, uint16_t imm16) { CHECK(!IsR6()); DsFsmInstr(EmitI(0x2e, rs, rt, imm16)).GprIns(rt, rs); } void MipsAssembler::LlR2(Register rt, Register base, int16_t imm16) { CHECK(!IsR6()); DsFsmInstr(EmitI(0x30, base, rt, imm16)).GprOuts(rt).GprIns(base); } void MipsAssembler::ScR2(Register rt, Register base, int16_t imm16) { CHECK(!IsR6()); DsFsmInstr(EmitI(0x38, base, rt, imm16)).GprInOuts(rt).GprIns(base); } void MipsAssembler::LlR6(Register rt, Register base, int16_t imm9) { CHECK(IsR6()); CHECK(IsInt<9>(imm9)); DsFsmInstr(EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x36)).GprOuts(rt).GprIns(base); } void MipsAssembler::ScR6(Register rt, Register base, int16_t imm9) { CHECK(IsR6()); CHECK(IsInt<9>(imm9)); DsFsmInstr(EmitI(0x1f, base, rt, ((imm9 & 0x1ff) << 7) | 0x26)).GprInOuts(rt).GprIns(base); } void MipsAssembler::Slt(Register rd, Register rs, Register rt) { DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x2a)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::Sltu(Register rd, Register rs, Register rt) { DsFsmInstr(EmitR(0, rs, rt, rd, 0, 0x2b)).GprOuts(rd).GprIns(rs, rt); } void MipsAssembler::Slti(Register rt, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0xa, rs, rt, imm16)).GprOuts(rt).GprIns(rs); } void MipsAssembler::Sltiu(Register rt, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0xb, rs, rt, imm16)).GprOuts(rt).GprIns(rs); } void MipsAssembler::B(uint16_t imm16) { DsFsmInstrNop(EmitI(0x4, static_cast<Register>(0), static_cast<Register>(0), imm16)); } void MipsAssembler::Bal(uint16_t imm16) { DsFsmInstrNop(EmitI(0x1, static_cast<Register>(0), static_cast<Register>(0x11), imm16)); } void MipsAssembler::Beq(Register rs, Register rt, uint16_t imm16) { DsFsmInstrNop(EmitI(0x4, rs, rt, imm16)); } void MipsAssembler::Bne(Register rs, Register rt, uint16_t imm16) { DsFsmInstrNop(EmitI(0x5, rs, rt, imm16)); } void MipsAssembler::Beqz(Register rt, uint16_t imm16) { Beq(rt, ZERO, imm16); } void MipsAssembler::Bnez(Register rt, uint16_t imm16) { Bne(rt, ZERO, imm16); } void MipsAssembler::Bltz(Register rt, uint16_t imm16) { DsFsmInstrNop(EmitI(0x1, rt, static_cast<Register>(0), imm16)); } void MipsAssembler::Bgez(Register rt, uint16_t imm16) { DsFsmInstrNop(EmitI(0x1, rt, static_cast<Register>(0x1), imm16)); } void MipsAssembler::Blez(Register rt, uint16_t imm16) { DsFsmInstrNop(EmitI(0x6, rt, static_cast<Register>(0), imm16)); } void MipsAssembler::Bgtz(Register rt, uint16_t imm16) { DsFsmInstrNop(EmitI(0x7, rt, static_cast<Register>(0), imm16)); } void MipsAssembler::Bc1f(uint16_t imm16) { Bc1f(0, imm16); } void MipsAssembler::Bc1f(int cc, uint16_t imm16) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstrNop(EmitI(0x11, static_cast<Register>(0x8), static_cast<Register>(cc << 2), imm16)); } void MipsAssembler::Bc1t(uint16_t imm16) { Bc1t(0, imm16); } void MipsAssembler::Bc1t(int cc, uint16_t imm16) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstrNop(EmitI(0x11, static_cast<Register>(0x8), static_cast<Register>((cc << 2) | 1), imm16)); } void MipsAssembler::J(uint32_t addr26) { DsFsmInstrNop(EmitI26(0x2, addr26)); } void MipsAssembler::Jal(uint32_t addr26) { DsFsmInstrNop(EmitI26(0x3, addr26)); } void MipsAssembler::Jalr(Register rd, Register rs) { uint32_t last_instruction = delay_slot_.instruction_; MipsLabel* patcher_label = delay_slot_.patcher_label_; bool exchange = (last_instruction != 0 && (delay_slot_.masks_.gpr_outs_ & (1u << rs)) == 0 && ((delay_slot_.masks_.gpr_ins_ | delay_slot_.masks_.gpr_outs_) & (1u << rd)) == 0); if (exchange) { // The last instruction cannot be used in a different delay slot, // do not commit the label before it (if any). DsFsmDropLabel(); } DsFsmInstrNop(EmitR(0, rs, static_cast<Register>(0), rd, 0, 0x09)); if (exchange) { // Exchange the last two instructions in the assembler buffer. size_t size = buffer_.Size(); CHECK_GE(size, 2 * sizeof(uint32_t)); size_t pos1 = size - 2 * sizeof(uint32_t); size_t pos2 = size - sizeof(uint32_t); uint32_t instr1 = buffer_.Load<uint32_t>(pos1); uint32_t instr2 = buffer_.Load<uint32_t>(pos2); CHECK_EQ(instr1, last_instruction); buffer_.Store<uint32_t>(pos1, instr2); buffer_.Store<uint32_t>(pos2, instr1); // Move the patcher label along with the patched instruction. if (patcher_label != nullptr) { patcher_label->AdjustBoundPosition(sizeof(uint32_t)); } } else if (reordering_) { Nop(); } } void MipsAssembler::Jalr(Register rs) { Jalr(RA, rs); } void MipsAssembler::Jr(Register rs) { Jalr(ZERO, rs); } void MipsAssembler::Nal() { DsFsmInstrNop(EmitI(0x1, static_cast<Register>(0), static_cast<Register>(0x10), 0)); } void MipsAssembler::Auipc(Register rs, uint16_t imm16) { CHECK(IsR6()); DsFsmInstrNop(EmitI(0x3B, rs, static_cast<Register>(0x1E), imm16)); } void MipsAssembler::Addiupc(Register rs, uint32_t imm19) { CHECK(IsR6()); CHECK(IsUint<19>(imm19)) << imm19; DsFsmInstrNop(EmitI21(0x3B, rs, imm19)); } void MipsAssembler::Bc(uint32_t imm26) { CHECK(IsR6()); DsFsmInstrNop(EmitI26(0x32, imm26)); } void MipsAssembler::Balc(uint32_t imm26) { CHECK(IsR6()); DsFsmInstrNop(EmitI26(0x3A, imm26)); } void MipsAssembler::Jic(Register rt, uint16_t imm16) { CHECK(IsR6()); DsFsmInstrNop(EmitI(0x36, static_cast<Register>(0), rt, imm16)); } void MipsAssembler::Jialc(Register rt, uint16_t imm16) { CHECK(IsR6()); DsFsmInstrNop(EmitI(0x3E, static_cast<Register>(0), rt, imm16)); } void MipsAssembler::Bltc(Register rs, Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); DsFsmInstrNop(EmitI(0x17, rs, rt, imm16)); } void MipsAssembler::Bltzc(Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rt, ZERO); DsFsmInstrNop(EmitI(0x17, rt, rt, imm16)); } void MipsAssembler::Bgtzc(Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rt, ZERO); DsFsmInstrNop(EmitI(0x17, static_cast<Register>(0), rt, imm16)); } void MipsAssembler::Bgec(Register rs, Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); DsFsmInstrNop(EmitI(0x16, rs, rt, imm16)); } void MipsAssembler::Bgezc(Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rt, ZERO); DsFsmInstrNop(EmitI(0x16, rt, rt, imm16)); } void MipsAssembler::Blezc(Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rt, ZERO); DsFsmInstrNop(EmitI(0x16, static_cast<Register>(0), rt, imm16)); } void MipsAssembler::Bltuc(Register rs, Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); DsFsmInstrNop(EmitI(0x7, rs, rt, imm16)); } void MipsAssembler::Bgeuc(Register rs, Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); DsFsmInstrNop(EmitI(0x6, rs, rt, imm16)); } void MipsAssembler::Beqc(Register rs, Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); DsFsmInstrNop(EmitI(0x8, std::min(rs, rt), std::max(rs, rt), imm16)); } void MipsAssembler::Bnec(Register rs, Register rt, uint16_t imm16) { CHECK(IsR6()); CHECK_NE(rs, ZERO); CHECK_NE(rt, ZERO); CHECK_NE(rs, rt); DsFsmInstrNop(EmitI(0x18, std::min(rs, rt), std::max(rs, rt), imm16)); } void MipsAssembler::Beqzc(Register rs, uint32_t imm21) { CHECK(IsR6()); CHECK_NE(rs, ZERO); DsFsmInstrNop(EmitI21(0x36, rs, imm21)); } void MipsAssembler::Bnezc(Register rs, uint32_t imm21) { CHECK(IsR6()); CHECK_NE(rs, ZERO); DsFsmInstrNop(EmitI21(0x3E, rs, imm21)); } void MipsAssembler::Bc1eqz(FRegister ft, uint16_t imm16) { CHECK(IsR6()); DsFsmInstrNop(EmitFI(0x11, 0x9, ft, imm16)); } void MipsAssembler::Bc1nez(FRegister ft, uint16_t imm16) { CHECK(IsR6()); DsFsmInstrNop(EmitFI(0x11, 0xD, ft, imm16)); } void MipsAssembler::EmitBcondR2(BranchCondition cond, Register rs, Register rt, uint16_t imm16) { switch (cond) { case kCondLTZ: CHECK_EQ(rt, ZERO); Bltz(rs, imm16); break; case kCondGEZ: CHECK_EQ(rt, ZERO); Bgez(rs, imm16); break; case kCondLEZ: CHECK_EQ(rt, ZERO); Blez(rs, imm16); break; case kCondGTZ: CHECK_EQ(rt, ZERO); Bgtz(rs, imm16); break; case kCondEQ: Beq(rs, rt, imm16); break; case kCondNE: Bne(rs, rt, imm16); break; case kCondEQZ: CHECK_EQ(rt, ZERO); Beqz(rs, imm16); break; case kCondNEZ: CHECK_EQ(rt, ZERO); Bnez(rs, imm16); break; case kCondF: CHECK_EQ(rt, ZERO); Bc1f(static_cast<int>(rs), imm16); break; case kCondT: CHECK_EQ(rt, ZERO); Bc1t(static_cast<int>(rs), imm16); break; case kCondLT: case kCondGE: case kCondLE: case kCondGT: case kCondLTU: case kCondGEU: case kUncond: // We don't support synthetic R2 branches (preceded with slt[u]) at this level // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >). LOG(FATAL) << "Unexpected branch condition " << cond; UNREACHABLE(); } } void MipsAssembler::EmitBcondR6(BranchCondition cond, Register rs, Register rt, uint32_t imm16_21) { switch (cond) { case kCondLT: Bltc(rs, rt, imm16_21); break; case kCondGE: Bgec(rs, rt, imm16_21); break; case kCondLE: Bgec(rt, rs, imm16_21); break; case kCondGT: Bltc(rt, rs, imm16_21); break; case kCondLTZ: CHECK_EQ(rt, ZERO); Bltzc(rs, imm16_21); break; case kCondGEZ: CHECK_EQ(rt, ZERO); Bgezc(rs, imm16_21); break; case kCondLEZ: CHECK_EQ(rt, ZERO); Blezc(rs, imm16_21); break; case kCondGTZ: CHECK_EQ(rt, ZERO); Bgtzc(rs, imm16_21); break; case kCondEQ: Beqc(rs, rt, imm16_21); break; case kCondNE: Bnec(rs, rt, imm16_21); break; case kCondEQZ: CHECK_EQ(rt, ZERO); Beqzc(rs, imm16_21); break; case kCondNEZ: CHECK_EQ(rt, ZERO); Bnezc(rs, imm16_21); break; case kCondLTU: Bltuc(rs, rt, imm16_21); break; case kCondGEU: Bgeuc(rs, rt, imm16_21); break; case kCondF: CHECK_EQ(rt, ZERO); Bc1eqz(static_cast<FRegister>(rs), imm16_21); break; case kCondT: CHECK_EQ(rt, ZERO); Bc1nez(static_cast<FRegister>(rs), imm16_21); break; case kUncond: LOG(FATAL) << "Unexpected branch condition " << cond; UNREACHABLE(); } } void MipsAssembler::AddS(FRegister fd, FRegister fs, FRegister ft) { DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x0)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::SubS(FRegister fd, FRegister fs, FRegister ft) { DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x1)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::MulS(FRegister fd, FRegister fs, FRegister ft) { DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x2)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::DivS(FRegister fd, FRegister fs, FRegister ft) { DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x3)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::AddD(FRegister fd, FRegister fs, FRegister ft) { DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x0)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::SubD(FRegister fd, FRegister fs, FRegister ft) { DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x1)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::MulD(FRegister fd, FRegister fs, FRegister ft) { DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x2)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::DivD(FRegister fd, FRegister fs, FRegister ft) { DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x3)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::SqrtS(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x4)).FprOuts(fd).FprIns(fs); } void MipsAssembler::SqrtD(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x4)).FprOuts(fd).FprIns(fs); } void MipsAssembler::AbsS(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x5)).FprOuts(fd).FprIns(fs); } void MipsAssembler::AbsD(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x5)).FprOuts(fd).FprIns(fs); } void MipsAssembler::MovS(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x6)).FprOuts(fd).FprIns(fs); } void MipsAssembler::MovD(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x6)).FprOuts(fd).FprIns(fs); } void MipsAssembler::NegS(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x7)).FprOuts(fd).FprIns(fs); } void MipsAssembler::NegD(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x7)).FprOuts(fd).FprIns(fs); } void MipsAssembler::CunS(FRegister fs, FRegister ft) { CunS(0, fs, ft); } void MipsAssembler::CunS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x31)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::CeqS(FRegister fs, FRegister ft) { CeqS(0, fs, ft); } void MipsAssembler::CeqS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x32)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::CueqS(FRegister fs, FRegister ft) { CueqS(0, fs, ft); } void MipsAssembler::CueqS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x33)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::ColtS(FRegister fs, FRegister ft) { ColtS(0, fs, ft); } void MipsAssembler::ColtS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x34)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::CultS(FRegister fs, FRegister ft) { CultS(0, fs, ft); } void MipsAssembler::CultS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x35)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::ColeS(FRegister fs, FRegister ft) { ColeS(0, fs, ft); } void MipsAssembler::ColeS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x36)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::CuleS(FRegister fs, FRegister ft) { CuleS(0, fs, ft); } void MipsAssembler::CuleS(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, static_cast<FRegister>(cc << 2), 0x37)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::CunD(FRegister fs, FRegister ft) { CunD(0, fs, ft); } void MipsAssembler::CunD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x31)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::CeqD(FRegister fs, FRegister ft) { CeqD(0, fs, ft); } void MipsAssembler::CeqD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x32)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::CueqD(FRegister fs, FRegister ft) { CueqD(0, fs, ft); } void MipsAssembler::CueqD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x33)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::ColtD(FRegister fs, FRegister ft) { ColtD(0, fs, ft); } void MipsAssembler::ColtD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x34)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::CultD(FRegister fs, FRegister ft) { CultD(0, fs, ft); } void MipsAssembler::CultD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x35)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::ColeD(FRegister fs, FRegister ft) { ColeD(0, fs, ft); } void MipsAssembler::ColeD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x36)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::CuleD(FRegister fs, FRegister ft) { CuleD(0, fs, ft); } void MipsAssembler::CuleD(int cc, FRegister fs, FRegister ft) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, static_cast<FRegister>(cc << 2), 0x37)) .CcOuts(cc).FprIns(fs, ft); } void MipsAssembler::CmpUnS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x01)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpEqS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x02)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpUeqS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x03)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpLtS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x04)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpUltS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x05)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpLeS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x06)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpUleS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x07)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpOrS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x11)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpUneS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x12)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpNeS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x14, ft, fs, fd, 0x13)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpUnD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x01)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpEqD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x02)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpUeqD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x03)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpLtD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x04)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpUltD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x05)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpLeD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x06)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpUleD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x07)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpOrD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x11)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpUneD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x12)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::CmpNeD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x15, ft, fs, fd, 0x13)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::Movf(Register rd, Register rs, int cc) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitR(0, rs, static_cast<Register>(cc << 2), rd, 0, 0x01)) .GprInOuts(rd).GprIns(rs).CcIns(cc); } void MipsAssembler::Movt(Register rd, Register rs, int cc) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitR(0, rs, static_cast<Register>((cc << 2) | 1), rd, 0, 0x01)) .GprInOuts(rd).GprIns(rs).CcIns(cc); } void MipsAssembler::MovfS(FRegister fd, FRegister fs, int cc) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(cc << 2), fs, fd, 0x11)) .FprInOuts(fd).FprIns(fs).CcIns(cc); } void MipsAssembler::MovfD(FRegister fd, FRegister fs, int cc) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(cc << 2), fs, fd, 0x11)) .FprInOuts(fd).FprIns(fs).CcIns(cc); } void MipsAssembler::MovtS(FRegister fd, FRegister fs, int cc) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>((cc << 2) | 1), fs, fd, 0x11)) .FprInOuts(fd).FprIns(fs).CcIns(cc); } void MipsAssembler::MovtD(FRegister fd, FRegister fs, int cc) { CHECK(!IsR6()); CHECK(IsUint<3>(cc)) << cc; DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>((cc << 2) | 1), fs, fd, 0x11)) .FprInOuts(fd).FprIns(fs).CcIns(cc); } void MipsAssembler::MovzS(FRegister fd, FRegister fs, Register rt) { CHECK(!IsR6()); DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(rt), fs, fd, 0x12)) .FprInOuts(fd).FprIns(fs).GprIns(rt); } void MipsAssembler::MovzD(FRegister fd, FRegister fs, Register rt) { CHECK(!IsR6()); DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(rt), fs, fd, 0x12)) .FprInOuts(fd).FprIns(fs).GprIns(rt); } void MipsAssembler::MovnS(FRegister fd, FRegister fs, Register rt) { CHECK(!IsR6()); DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(rt), fs, fd, 0x13)) .FprInOuts(fd).FprIns(fs).GprIns(rt); } void MipsAssembler::MovnD(FRegister fd, FRegister fs, Register rt) { CHECK(!IsR6()); DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(rt), fs, fd, 0x13)) .FprInOuts(fd).FprIns(fs).GprIns(rt); } void MipsAssembler::SelS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x10)).FprInOuts(fd).FprIns(fs, ft); } void MipsAssembler::SelD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x10)).FprInOuts(fd).FprIns(fs, ft); } void MipsAssembler::SeleqzS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x14)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::SeleqzD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x14)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::SelnezS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x17)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::SelnezD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x17)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::ClassS(FRegister fd, FRegister fs) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x1b)).FprOuts(fd).FprIns(fs); } void MipsAssembler::ClassD(FRegister fd, FRegister fs) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x1b)).FprOuts(fd).FprIns(fs); } void MipsAssembler::MinS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x1c)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::MinD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x1c)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::MaxS(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x10, ft, fs, fd, 0x1e)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::MaxD(FRegister fd, FRegister fs, FRegister ft) { CHECK(IsR6()); DsFsmInstr(EmitFR(0x11, 0x11, ft, fs, fd, 0x1e)).FprOuts(fd).FprIns(fs, ft); } void MipsAssembler::TruncLS(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x09)).FprOuts(fd).FprIns(fs); } void MipsAssembler::TruncLD(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x09)).FprOuts(fd).FprIns(fs); } void MipsAssembler::TruncWS(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x0D)).FprOuts(fd).FprIns(fs); } void MipsAssembler::TruncWD(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x0D)).FprOuts(fd).FprIns(fs); } void MipsAssembler::Cvtsw(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x14, static_cast<FRegister>(0), fs, fd, 0x20)).FprOuts(fd).FprIns(fs); } void MipsAssembler::Cvtdw(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x14, static_cast<FRegister>(0), fs, fd, 0x21)).FprOuts(fd).FprIns(fs); } void MipsAssembler::Cvtsd(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0x20)).FprOuts(fd).FprIns(fs); } void MipsAssembler::Cvtds(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0x21)).FprOuts(fd).FprIns(fs); } void MipsAssembler::Cvtsl(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x15, static_cast<FRegister>(0), fs, fd, 0x20)).FprOuts(fd).FprIns(fs); } void MipsAssembler::Cvtdl(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x15, static_cast<FRegister>(0), fs, fd, 0x21)).FprOuts(fd).FprIns(fs); } void MipsAssembler::FloorWS(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x10, static_cast<FRegister>(0), fs, fd, 0xf)).FprOuts(fd).FprIns(fs); } void MipsAssembler::FloorWD(FRegister fd, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x11, static_cast<FRegister>(0), fs, fd, 0xf)).FprOuts(fd).FprIns(fs); } FRegister MipsAssembler::GetFpuRegLow(FRegister reg) { // If FPRs are 32-bit (and get paired to hold 64-bit values), accesses to // odd-numbered FPRs are reattributed to even-numbered FPRs. This lets us // use only even-numbered FPRs irrespective of whether we're doing single- // or double-precision arithmetic. (We don't use odd-numbered 32-bit FPRs // to hold single-precision values). return Is32BitFPU() ? static_cast<FRegister>(reg & ~1u) : reg; } void MipsAssembler::Mfc1(Register rt, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x00, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0)) .GprOuts(rt).FprIns(GetFpuRegLow(fs)); } // Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs // when loading the value as 32-bit halves. void MipsAssembler::Mtc1(Register rt, FRegister fs) { uint32_t encoding = EmitFR(0x11, 0x04, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0); if (Is32BitFPU() && (fs % 2 != 0)) { // If mtc1 is used to simulate mthc1 by writing to the odd-numbered FPR in // a pair of 32-bit FPRs, the associated even-numbered FPR is an in/out. DsFsmInstr(encoding).FprInOuts(GetFpuRegLow(fs)).GprIns(rt); } else { // Otherwise (the FPR is 64-bit or even-numbered), the FPR is an out. DsFsmInstr(encoding).FprOuts(fs).GprIns(rt); } } void MipsAssembler::Mfhc1(Register rt, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x03, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0)) .GprOuts(rt).FprIns(fs); } // Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs // when loading the value as 32-bit halves. void MipsAssembler::Mthc1(Register rt, FRegister fs) { DsFsmInstr(EmitFR(0x11, 0x07, static_cast<FRegister>(rt), fs, static_cast<FRegister>(0), 0x0)) .FprInOuts(fs).GprIns(rt); } void MipsAssembler::MoveFromFpuHigh(Register rt, FRegister fs) { if (Is32BitFPU()) { CHECK_EQ(fs % 2, 0) << fs; Mfc1(rt, static_cast<FRegister>(fs + 1)); } else { Mfhc1(rt, fs); } } void MipsAssembler::MoveToFpuHigh(Register rt, FRegister fs) { if (Is32BitFPU()) { CHECK_EQ(fs % 2, 0) << fs; Mtc1(rt, static_cast<FRegister>(fs + 1)); } else { Mthc1(rt, fs); } } // Note, the 32 LSBs of a 64-bit value must be loaded into an FPR before the 32 MSBs // when loading the value as 32-bit halves. void MipsAssembler::Lwc1(FRegister ft, Register rs, uint16_t imm16) { uint32_t encoding = EmitI(0x31, rs, static_cast<Register>(ft), imm16); if (Is32BitFPU() && (ft % 2 != 0)) { // If lwc1 is used to load the odd-numbered FPR in a pair of 32-bit FPRs, // the associated even-numbered FPR is an in/out. DsFsmInstr(encoding).FprInOuts(GetFpuRegLow(ft)).GprIns(rs); } else { // Otherwise (the FPR is 64-bit or even-numbered), the FPR is an out. DsFsmInstr(encoding).FprOuts(ft).GprIns(rs); } } void MipsAssembler::Ldc1(FRegister ft, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0x35, rs, static_cast<Register>(ft), imm16)).FprOuts(ft).GprIns(rs); } void MipsAssembler::Swc1(FRegister ft, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0x39, rs, static_cast<Register>(ft), imm16)).FprIns(GetFpuRegLow(ft)).GprIns(rs); } void MipsAssembler::Sdc1(FRegister ft, Register rs, uint16_t imm16) { DsFsmInstr(EmitI(0x3d, rs, static_cast<Register>(ft), imm16)).FprIns(ft).GprIns(rs); } void MipsAssembler::Break() { DsFsmInstrNop(EmitR(0, ZERO, ZERO, ZERO, 0, 0xD)); } void MipsAssembler::Nop() { DsFsmInstrNop(EmitR(0x0, ZERO, ZERO, ZERO, 0, 0x0)); } void MipsAssembler::NopIfNoReordering() { if (!reordering_) { Nop(); } } void MipsAssembler::Move(Register rd, Register rs) { Or(rd, rs, ZERO); } void MipsAssembler::Clear(Register rd) { Move(rd, ZERO); } void MipsAssembler::Not(Register rd, Register rs) { Nor(rd, rs, ZERO); } void MipsAssembler::Push(Register rs) { IncreaseFrameSize(kStackAlignment); Sw(rs, SP, 0); } void MipsAssembler::Pop(Register rd) { Lw(rd, SP, 0); DecreaseFrameSize(kStackAlignment); } void MipsAssembler::PopAndReturn(Register rd, Register rt) { bool reordering = SetReorder(false); Lw(rd, SP, 0); Jr(rt); DecreaseFrameSize(kStackAlignment); // Single instruction in delay slot. SetReorder(reordering); } void MipsAssembler::AndV(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::OrV(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::NorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::XorV(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::AddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::AddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::AddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::AddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::MulvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::MulvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::MulvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::MulvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Div_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Div_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Div_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Div_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Div_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Div_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Div_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Div_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Mod_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Mod_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Mod_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Mod_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Mod_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Mod_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Mod_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Mod_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x12)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Add_aB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Add_aH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Add_aW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Add_aD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Ave_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Ave_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Ave_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Ave_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Ave_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Ave_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Ave_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Ave_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Aver_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Aver_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Aver_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Aver_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Aver_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Aver_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Aver_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Aver_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x10)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Max_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Max_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Max_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Max_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Max_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x3, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Max_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x3, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Max_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x3, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Max_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x3, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Min_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Min_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Min_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Min_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Min_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Min_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Min_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Min_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0xe)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FmulW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FmulD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FdivW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FdivD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FmaxW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FmaxD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FminW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FminD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x1b)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Ffint_sW(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); DsFsmInstr(EmitMsa2RF(0x19e, 0x0, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); } void MipsAssembler::Ffint_sD(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); DsFsmInstr(EmitMsa2RF(0x19e, 0x1, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); } void MipsAssembler::Ftint_sW(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); DsFsmInstr(EmitMsa2RF(0x19c, 0x0, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); } void MipsAssembler::Ftint_sD(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); DsFsmInstr(EmitMsa2RF(0x19c, 0x1, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SllB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x0, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SllH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x1, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SllW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x2, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SllD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x0, 0x3, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SraB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SraH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SraW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SraD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SrlB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SrlH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SrlW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SrlD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0xd)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::SlliB(VectorRegister wd, VectorRegister ws, int shamt3) { CHECK(HasMsa()); CHECK(IsUint<3>(shamt3)) << shamt3; DsFsmInstr(EmitMsaBIT(0x0, shamt3 | kMsaDfMByteMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SlliH(VectorRegister wd, VectorRegister ws, int shamt4) { CHECK(HasMsa()); CHECK(IsUint<4>(shamt4)) << shamt4; DsFsmInstr(EmitMsaBIT(0x0, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SlliW(VectorRegister wd, VectorRegister ws, int shamt5) { CHECK(HasMsa()); CHECK(IsUint<5>(shamt5)) << shamt5; DsFsmInstr(EmitMsaBIT(0x0, shamt5 | kMsaDfMWordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SlliD(VectorRegister wd, VectorRegister ws, int shamt6) { CHECK(HasMsa()); CHECK(IsUint<6>(shamt6)) << shamt6; DsFsmInstr(EmitMsaBIT(0x0, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SraiB(VectorRegister wd, VectorRegister ws, int shamt3) { CHECK(HasMsa()); CHECK(IsUint<3>(shamt3)) << shamt3; DsFsmInstr(EmitMsaBIT(0x1, shamt3 | kMsaDfMByteMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SraiH(VectorRegister wd, VectorRegister ws, int shamt4) { CHECK(HasMsa()); CHECK(IsUint<4>(shamt4)) << shamt4; DsFsmInstr(EmitMsaBIT(0x1, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SraiW(VectorRegister wd, VectorRegister ws, int shamt5) { CHECK(HasMsa()); CHECK(IsUint<5>(shamt5)) << shamt5; DsFsmInstr(EmitMsaBIT(0x1, shamt5 | kMsaDfMWordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SraiD(VectorRegister wd, VectorRegister ws, int shamt6) { CHECK(HasMsa()); CHECK(IsUint<6>(shamt6)) << shamt6; DsFsmInstr(EmitMsaBIT(0x1, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SrliB(VectorRegister wd, VectorRegister ws, int shamt3) { CHECK(HasMsa()); CHECK(IsUint<3>(shamt3)) << shamt3; DsFsmInstr(EmitMsaBIT(0x2, shamt3 | kMsaDfMByteMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SrliH(VectorRegister wd, VectorRegister ws, int shamt4) { CHECK(HasMsa()); CHECK(IsUint<4>(shamt4)) << shamt4; DsFsmInstr(EmitMsaBIT(0x2, shamt4 | kMsaDfMHalfwordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SrliW(VectorRegister wd, VectorRegister ws, int shamt5) { CHECK(HasMsa()); CHECK(IsUint<5>(shamt5)) << shamt5; DsFsmInstr(EmitMsaBIT(0x2, shamt5 | kMsaDfMWordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SrliD(VectorRegister wd, VectorRegister ws, int shamt6) { CHECK(HasMsa()); CHECK(IsUint<6>(shamt6)) << shamt6; DsFsmInstr(EmitMsaBIT(0x2, shamt6 | kMsaDfMDoublewordMask, ws, wd, 0x9)).FprOuts(wd).FprIns(ws); } void MipsAssembler::MoveV(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); DsFsmInstr(EmitMsaBIT(0x1, 0x3e, ws, wd, 0x19)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SplatiB(VectorRegister wd, VectorRegister ws, int n4) { CHECK(HasMsa()); CHECK(IsUint<4>(n4)) << n4; DsFsmInstr(EmitMsaELM(0x1, n4 | kMsaDfNByteMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SplatiH(VectorRegister wd, VectorRegister ws, int n3) { CHECK(HasMsa()); CHECK(IsUint<3>(n3)) << n3; DsFsmInstr(EmitMsaELM(0x1, n3 | kMsaDfNHalfwordMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SplatiW(VectorRegister wd, VectorRegister ws, int n2) { CHECK(HasMsa()); CHECK(IsUint<2>(n2)) << n2; DsFsmInstr(EmitMsaELM(0x1, n2 | kMsaDfNWordMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws); } void MipsAssembler::SplatiD(VectorRegister wd, VectorRegister ws, int n1) { CHECK(HasMsa()); CHECK(IsUint<1>(n1)) << n1; DsFsmInstr(EmitMsaELM(0x1, n1 | kMsaDfNDoublewordMask, ws, wd, 0x19)).FprOuts(wd).FprIns(ws); } void MipsAssembler::Copy_sB(Register rd, VectorRegister ws, int n4) { CHECK(HasMsa()); CHECK(IsUint<4>(n4)) << n4; DsFsmInstr(EmitMsaELM(0x2, n4 | kMsaDfNByteMask, ws, static_cast<VectorRegister>(rd), 0x19)) .GprOuts(rd).FprIns(ws); } void MipsAssembler::Copy_sH(Register rd, VectorRegister ws, int n3) { CHECK(HasMsa()); CHECK(IsUint<3>(n3)) << n3; DsFsmInstr(EmitMsaELM(0x2, n3 | kMsaDfNHalfwordMask, ws, static_cast<VectorRegister>(rd), 0x19)) .GprOuts(rd).FprIns(ws); } void MipsAssembler::Copy_sW(Register rd, VectorRegister ws, int n2) { CHECK(HasMsa()); CHECK(IsUint<2>(n2)) << n2; DsFsmInstr(EmitMsaELM(0x2, n2 | kMsaDfNWordMask, ws, static_cast<VectorRegister>(rd), 0x19)) .GprOuts(rd).FprIns(ws); } void MipsAssembler::Copy_uB(Register rd, VectorRegister ws, int n4) { CHECK(HasMsa()); CHECK(IsUint<4>(n4)) << n4; DsFsmInstr(EmitMsaELM(0x3, n4 | kMsaDfNByteMask, ws, static_cast<VectorRegister>(rd), 0x19)) .GprOuts(rd).FprIns(ws); } void MipsAssembler::Copy_uH(Register rd, VectorRegister ws, int n3) { CHECK(HasMsa()); CHECK(IsUint<3>(n3)) << n3; DsFsmInstr(EmitMsaELM(0x3, n3 | kMsaDfNHalfwordMask, ws, static_cast<VectorRegister>(rd), 0x19)) .GprOuts(rd).FprIns(ws); } void MipsAssembler::InsertB(VectorRegister wd, Register rs, int n4) { CHECK(HasMsa()); CHECK(IsUint<4>(n4)) << n4; DsFsmInstr(EmitMsaELM(0x4, n4 | kMsaDfNByteMask, static_cast<VectorRegister>(rs), wd, 0x19)) .FprInOuts(wd).GprIns(rs); } void MipsAssembler::InsertH(VectorRegister wd, Register rs, int n3) { CHECK(HasMsa()); CHECK(IsUint<3>(n3)) << n3; DsFsmInstr(EmitMsaELM(0x4, n3 | kMsaDfNHalfwordMask, static_cast<VectorRegister>(rs), wd, 0x19)) .FprInOuts(wd).GprIns(rs); } void MipsAssembler::InsertW(VectorRegister wd, Register rs, int n2) { CHECK(HasMsa()); CHECK(IsUint<2>(n2)) << n2; DsFsmInstr(EmitMsaELM(0x4, n2 | kMsaDfNWordMask, static_cast<VectorRegister>(rs), wd, 0x19)) .FprInOuts(wd).GprIns(rs); } void MipsAssembler::FillB(VectorRegister wd, Register rs) { CHECK(HasMsa()); DsFsmInstr(EmitMsa2R(0xc0, 0x0, static_cast<VectorRegister>(rs), wd, 0x1e)) .FprOuts(wd).GprIns(rs); } void MipsAssembler::FillH(VectorRegister wd, Register rs) { CHECK(HasMsa()); DsFsmInstr(EmitMsa2R(0xc0, 0x1, static_cast<VectorRegister>(rs), wd, 0x1e)) .FprOuts(wd).GprIns(rs); } void MipsAssembler::FillW(VectorRegister wd, Register rs) { CHECK(HasMsa()); DsFsmInstr(EmitMsa2R(0xc0, 0x2, static_cast<VectorRegister>(rs), wd, 0x1e)) .FprOuts(wd).GprIns(rs); } void MipsAssembler::LdiB(VectorRegister wd, int imm8) { CHECK(HasMsa()); CHECK(IsInt<8>(imm8)) << imm8; DsFsmInstr(EmitMsaI10(0x6, 0x0, imm8 & kMsaS10Mask, wd, 0x7)).FprOuts(wd); } void MipsAssembler::LdiH(VectorRegister wd, int imm10) { CHECK(HasMsa()); CHECK(IsInt<10>(imm10)) << imm10; DsFsmInstr(EmitMsaI10(0x6, 0x1, imm10 & kMsaS10Mask, wd, 0x7)).FprOuts(wd); } void MipsAssembler::LdiW(VectorRegister wd, int imm10) { CHECK(HasMsa()); CHECK(IsInt<10>(imm10)) << imm10; DsFsmInstr(EmitMsaI10(0x6, 0x2, imm10 & kMsaS10Mask, wd, 0x7)).FprOuts(wd); } void MipsAssembler::LdiD(VectorRegister wd, int imm10) { CHECK(HasMsa()); CHECK(IsInt<10>(imm10)) << imm10; DsFsmInstr(EmitMsaI10(0x6, 0x3, imm10 & kMsaS10Mask, wd, 0x7)).FprOuts(wd); } void MipsAssembler::LdB(VectorRegister wd, Register rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<10>(offset)) << offset; DsFsmInstr(EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x8, 0x0)).FprOuts(wd).GprIns(rs); } void MipsAssembler::LdH(VectorRegister wd, Register rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<11>(offset)) << offset; CHECK_ALIGNED(offset, kMipsHalfwordSize); DsFsmInstr(EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x8, 0x1)) .FprOuts(wd).GprIns(rs); } void MipsAssembler::LdW(VectorRegister wd, Register rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<12>(offset)) << offset; CHECK_ALIGNED(offset, kMipsWordSize); DsFsmInstr(EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x8, 0x2)) .FprOuts(wd).GprIns(rs); } void MipsAssembler::LdD(VectorRegister wd, Register rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<13>(offset)) << offset; CHECK_ALIGNED(offset, kMipsDoublewordSize); DsFsmInstr(EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x8, 0x3)) .FprOuts(wd).GprIns(rs); } void MipsAssembler::StB(VectorRegister wd, Register rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<10>(offset)) << offset; DsFsmInstr(EmitMsaMI10(offset & kMsaS10Mask, rs, wd, 0x9, 0x0)).FprIns(wd).GprIns(rs); } void MipsAssembler::StH(VectorRegister wd, Register rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<11>(offset)) << offset; CHECK_ALIGNED(offset, kMipsHalfwordSize); DsFsmInstr(EmitMsaMI10((offset >> TIMES_2) & kMsaS10Mask, rs, wd, 0x9, 0x1)) .FprIns(wd).GprIns(rs); } void MipsAssembler::StW(VectorRegister wd, Register rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<12>(offset)) << offset; CHECK_ALIGNED(offset, kMipsWordSize); DsFsmInstr(EmitMsaMI10((offset >> TIMES_4) & kMsaS10Mask, rs, wd, 0x9, 0x2)) .FprIns(wd).GprIns(rs); } void MipsAssembler::StD(VectorRegister wd, Register rs, int offset) { CHECK(HasMsa()); CHECK(IsInt<13>(offset)) << offset; CHECK_ALIGNED(offset, kMipsDoublewordSize); DsFsmInstr(EmitMsaMI10((offset >> TIMES_8) & kMsaS10Mask, rs, wd, 0x9, 0x3)) .FprIns(wd).GprIns(rs); } void MipsAssembler::IlvlB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvlH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvlW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvlD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvrB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvrH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvrW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvrD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvevB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvevH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvevW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvevD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x6, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvodB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x0, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvodH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x1, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvodW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x2, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::IlvodD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x7, 0x3, wt, ws, wd, 0x14)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::MaddvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x0, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); } void MipsAssembler::MaddvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x1, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); } void MipsAssembler::MaddvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x2, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); } void MipsAssembler::MaddvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x1, 0x3, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); } void MipsAssembler::MsubvB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); } void MipsAssembler::MsubvH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); } void MipsAssembler::MsubvW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); } void MipsAssembler::MsubvD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0x12)).FprInOuts(wd).FprIns(ws, wt); } void MipsAssembler::Asub_sB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x0, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Asub_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Asub_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Asub_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Asub_uB(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x0, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Asub_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Asub_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Asub_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x11)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::FmaddW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x0, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt); } void MipsAssembler::FmaddD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x1, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt); } void MipsAssembler::FmsubW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x2, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt); } void MipsAssembler::FmsubD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x2, 0x3, wt, ws, wd, 0x1b)).FprInOuts(wd).FprIns(ws, wt); } void MipsAssembler::Hadd_sH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x1, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Hadd_sW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x2, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Hadd_sD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x4, 0x3, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Hadd_uH(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x1, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Hadd_uW(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x2, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::Hadd_uD(VectorRegister wd, VectorRegister ws, VectorRegister wt) { CHECK(HasMsa()); DsFsmInstr(EmitMsa3R(0x5, 0x3, wt, ws, wd, 0x15)).FprOuts(wd).FprIns(ws, wt); } void MipsAssembler::PcntB(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); DsFsmInstr(EmitMsa2R(0xc1, 0x0, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); } void MipsAssembler::PcntH(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); DsFsmInstr(EmitMsa2R(0xc1, 0x1, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); } void MipsAssembler::PcntW(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); DsFsmInstr(EmitMsa2R(0xc1, 0x2, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); } void MipsAssembler::PcntD(VectorRegister wd, VectorRegister ws) { CHECK(HasMsa()); DsFsmInstr(EmitMsa2R(0xc1, 0x3, ws, wd, 0x1e)).FprOuts(wd).FprIns(ws); } void MipsAssembler::ReplicateFPToVectorRegister(VectorRegister dst, FRegister src, bool is_double) { // Float or double in FPU register Fx can be considered as 0th element in vector register Wx. if (is_double) { SplatiD(dst, static_cast<VectorRegister>(src), 0); } else { SplatiW(dst, static_cast<VectorRegister>(src), 0); } } void MipsAssembler::LoadConst32(Register rd, int32_t value) { if (IsUint<16>(value)) { // Use OR with (unsigned) immediate to encode 16b unsigned int. Ori(rd, ZERO, value); } else if (IsInt<16>(value)) { // Use ADD with (signed) immediate to encode 16b signed int. Addiu(rd, ZERO, value); } else { Lui(rd, High16Bits(value)); if (value & 0xFFFF) Ori(rd, rd, Low16Bits(value)); } } void MipsAssembler::LoadConst64(Register reg_hi, Register reg_lo, int64_t value) { uint32_t low = Low32Bits(value); uint32_t high = High32Bits(value); LoadConst32(reg_lo, low); if (high != low) { LoadConst32(reg_hi, high); } else { Move(reg_hi, reg_lo); } } void MipsAssembler::LoadSConst32(FRegister r, int32_t value, Register temp) { if (value == 0) { temp = ZERO; } else { LoadConst32(temp, value); } Mtc1(temp, r); } void MipsAssembler::LoadDConst64(FRegister rd, int64_t value, Register temp) { uint32_t low = Low32Bits(value); uint32_t high = High32Bits(value); if (low == 0) { Mtc1(ZERO, rd); } else { LoadConst32(temp, low); Mtc1(temp, rd); } if (high == 0) { MoveToFpuHigh(ZERO, rd); } else { LoadConst32(temp, high); MoveToFpuHigh(temp, rd); } } void MipsAssembler::Addiu32(Register rt, Register rs, int32_t value, Register temp) { CHECK_NE(rs, temp); // Must not overwrite the register `rs` while loading `value`. if (IsInt<16>(value)) { Addiu(rt, rs, value); } else if (IsR6()) { int16_t high = High16Bits(value); int16_t low = Low16Bits(value); high += (low < 0) ? 1 : 0; // Account for sign extension in addiu. if (low != 0) { Aui(temp, rs, high); Addiu(rt, temp, low); } else { Aui(rt, rs, high); } } else { // Do not load the whole 32-bit `value` if it can be represented as // a sum of two 16-bit signed values. This can save an instruction. constexpr int32_t kMinValueForSimpleAdjustment = std::numeric_limits<int16_t>::min() * 2; constexpr int32_t kMaxValueForSimpleAdjustment = std::numeric_limits<int16_t>::max() * 2; if (0 <= value && value <= kMaxValueForSimpleAdjustment) { Addiu(temp, rs, kMaxValueForSimpleAdjustment / 2); Addiu(rt, temp, value - kMaxValueForSimpleAdjustment / 2); } else if (kMinValueForSimpleAdjustment <= value && value < 0) { Addiu(temp, rs, kMinValueForSimpleAdjustment / 2); Addiu(rt, temp, value - kMinValueForSimpleAdjustment / 2); } else { // Now that all shorter options have been exhausted, load the full 32-bit value. LoadConst32(temp, value); Addu(rt, rs, temp); } } } void MipsAssembler::Branch::InitShortOrLong(MipsAssembler::Branch::OffsetBits offset_size, MipsAssembler::Branch::Type short_type, MipsAssembler::Branch::Type long_type) { type_ = (offset_size <= branch_info_[short_type].offset_size) ? short_type : long_type; } void MipsAssembler::Branch::InitializeType(Type initial_type, bool is_r6) { OffsetBits offset_size_needed = GetOffsetSizeNeeded(location_, target_); if (is_r6) { // R6 switch (initial_type) { case kLabel: CHECK(!IsResolved()); type_ = kR6Label; break; case kLiteral: CHECK(!IsResolved()); type_ = kR6Literal; break; case kCall: InitShortOrLong(offset_size_needed, kR6Call, kR6LongCall); break; case kCondBranch: switch (condition_) { case kUncond: InitShortOrLong(offset_size_needed, kR6UncondBranch, kR6LongUncondBranch); break; case kCondEQZ: case kCondNEZ: // Special case for beqzc/bnezc with longer offset than in other b<cond>c instructions. type_ = (offset_size_needed <= kOffset23) ? kR6CondBranch : kR6LongCondBranch; break; default: InitShortOrLong(offset_size_needed, kR6CondBranch, kR6LongCondBranch); break; } break; case kBareCall: type_ = kR6BareCall; CHECK_LE(offset_size_needed, GetOffsetSize()); break; case kBareCondBranch: type_ = (condition_ == kUncond) ? kR6BareUncondBranch : kR6BareCondBranch; CHECK_LE(offset_size_needed, GetOffsetSize()); break; default: LOG(FATAL) << "Unexpected branch type " << initial_type; UNREACHABLE(); } } else { // R2 switch (initial_type) { case kLabel: CHECK(!IsResolved()); type_ = kLabel; break; case kLiteral: CHECK(!IsResolved()); type_ = kLiteral; break; case kCall: InitShortOrLong(offset_size_needed, kCall, kLongCall); break; case kCondBranch: switch (condition_) { case kUncond: InitShortOrLong(offset_size_needed, kUncondBranch, kLongUncondBranch); break; default: InitShortOrLong(offset_size_needed, kCondBranch, kLongCondBranch); break; } break; case kBareCall: type_ = kBareCall; CHECK_LE(offset_size_needed, GetOffsetSize()); break; case kBareCondBranch: type_ = (condition_ == kUncond) ? kBareUncondBranch : kBareCondBranch; CHECK_LE(offset_size_needed, GetOffsetSize()); break; default: LOG(FATAL) << "Unexpected branch type " << initial_type; UNREACHABLE(); } } old_type_ = type_; } bool MipsAssembler::Branch::IsNop(BranchCondition condition, Register lhs, Register rhs) { switch (condition) { case kCondLT: case kCondGT: case kCondNE: case kCondLTU: return lhs == rhs; default: return false; } } bool MipsAssembler::Branch::IsUncond(BranchCondition condition, Register lhs, Register rhs) { switch (condition) { case kUncond: return true; case kCondGE: case kCondLE: case kCondEQ: case kCondGEU: return lhs == rhs; default: return false; } } MipsAssembler::Branch::Branch(bool is_r6, uint32_t location, uint32_t target, bool is_call, bool is_bare) : old_location_(location), location_(location), target_(target), lhs_reg_(0), rhs_reg_(0), condition_(kUncond), delayed_instruction_(kUnfilledDelaySlot), patcher_label_(nullptr) { InitializeType( (is_call ? (is_bare ? kBareCall : kCall) : (is_bare ? kBareCondBranch : kCondBranch)), is_r6); } MipsAssembler::Branch::Branch(bool is_r6, uint32_t location, uint32_t target, MipsAssembler::BranchCondition condition, Register lhs_reg, Register rhs_reg, bool is_bare) : old_location_(location), location_(location), target_(target), lhs_reg_(lhs_reg), rhs_reg_(rhs_reg), condition_(condition), delayed_instruction_(kUnfilledDelaySlot), patcher_label_(nullptr) { CHECK_NE(condition, kUncond); switch (condition) { case kCondLT: case kCondGE: case kCondLE: case kCondGT: case kCondLTU: case kCondGEU: // We don't support synthetic R2 branches (preceded with slt[u]) at this level // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >). // We leave this up to the caller. CHECK(is_r6); FALLTHROUGH_INTENDED; case kCondEQ: case kCondNE: // Require registers other than 0 not only for R6, but also for R2 to catch errors. // To compare with 0, use dedicated kCond*Z conditions. CHECK_NE(lhs_reg, ZERO); CHECK_NE(rhs_reg, ZERO); break; case kCondLTZ: case kCondGEZ: case kCondLEZ: case kCondGTZ: case kCondEQZ: case kCondNEZ: // Require registers other than 0 not only for R6, but also for R2 to catch errors. CHECK_NE(lhs_reg, ZERO); CHECK_EQ(rhs_reg, ZERO); break; case kCondF: case kCondT: CHECK_EQ(rhs_reg, ZERO); break; case kUncond: UNREACHABLE(); } CHECK(!IsNop(condition, lhs_reg, rhs_reg)); if (IsUncond(condition, lhs_reg, rhs_reg)) { // Branch condition is always true, make the branch unconditional. condition_ = kUncond; } InitializeType((is_bare ? kBareCondBranch : kCondBranch), is_r6); } MipsAssembler::Branch::Branch(bool is_r6, uint32_t location, Register dest_reg, Register base_reg, Type label_or_literal_type) : old_location_(location), location_(location), target_(kUnresolved), lhs_reg_(dest_reg), rhs_reg_(base_reg), condition_(kUncond), delayed_instruction_(kUnfilledDelaySlot), patcher_label_(nullptr) { CHECK_NE(dest_reg, ZERO); if (is_r6) { CHECK_EQ(base_reg, ZERO); } InitializeType(label_or_literal_type, is_r6); } MipsAssembler::BranchCondition MipsAssembler::Branch::OppositeCondition( MipsAssembler::BranchCondition cond) { switch (cond) { case kCondLT: return kCondGE; case kCondGE: return kCondLT; case kCondLE: return kCondGT; case kCondGT: return kCondLE; case kCondLTZ: return kCondGEZ; case kCondGEZ: return kCondLTZ; case kCondLEZ: return kCondGTZ; case kCondGTZ: return kCondLEZ; case kCondEQ: return kCondNE; case kCondNE: return kCondEQ; case kCondEQZ: return kCondNEZ; case kCondNEZ: return kCondEQZ; case kCondLTU: return kCondGEU; case kCondGEU: return kCondLTU; case kCondF: return kCondT; case kCondT: return kCondF; case kUncond: LOG(FATAL) << "Unexpected branch condition " << cond; } UNREACHABLE(); } MipsAssembler::Branch::Type MipsAssembler::Branch::GetType() const { return type_; } MipsAssembler::BranchCondition MipsAssembler::Branch::GetCondition() const { return condition_; } Register MipsAssembler::Branch::GetLeftRegister() const { return static_cast<Register>(lhs_reg_); } Register MipsAssembler::Branch::GetRightRegister() const { return static_cast<Register>(rhs_reg_); } uint32_t MipsAssembler::Branch::GetTarget() const { return target_; } uint32_t MipsAssembler::Branch::GetLocation() const { return location_; } uint32_t MipsAssembler::Branch::GetOldLocation() const { return old_location_; } uint32_t MipsAssembler::Branch::GetPrecedingInstructionLength(Type type) const { // Short branches with delay slots always consist of two instructions, the branch // and the delay slot, irrespective of whether the delay slot is filled with a // useful instruction or not. // Long composite branches may have a length longer by one instruction than // specified in branch_info_[].length. This happens when an instruction is taken // to fill the short branch delay slot, but the branch eventually becomes long // and formally has no delay slot to fill. This instruction is placed at the // beginning of the long composite branch and this needs to be accounted for in // the branch length and the location of the offset encoded in the branch. switch (type) { case kLongUncondBranch: case kLongCondBranch: case kLongCall: case kR6LongCondBranch: return (delayed_instruction_ != kUnfilledDelaySlot && delayed_instruction_ != kUnfillableDelaySlot) ? 1 : 0; default: return 0; } } uint32_t MipsAssembler::Branch::GetPrecedingInstructionSize(Type type) const { return GetPrecedingInstructionLength(type) * sizeof(uint32_t); } uint32_t MipsAssembler::Branch::GetLength() const { return GetPrecedingInstructionLength(type_) + branch_info_[type_].length; } uint32_t MipsAssembler::Branch::GetOldLength() const { return GetPrecedingInstructionLength(old_type_) + branch_info_[old_type_].length; } uint32_t MipsAssembler::Branch::GetSize() const { return GetLength() * sizeof(uint32_t); } uint32_t MipsAssembler::Branch::GetOldSize() const { return GetOldLength() * sizeof(uint32_t); } uint32_t MipsAssembler::Branch::GetEndLocation() const { return GetLocation() + GetSize(); } uint32_t MipsAssembler::Branch::GetOldEndLocation() const { return GetOldLocation() + GetOldSize(); } bool MipsAssembler::Branch::IsBare() const { switch (type_) { // R2 short branches (can't be promoted to long), delay slots filled manually. case kBareUncondBranch: case kBareCondBranch: case kBareCall: // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually. case kR6BareUncondBranch: case kR6BareCondBranch: case kR6BareCall: return true; default: return false; } } bool MipsAssembler::Branch::IsLong() const { switch (type_) { // R2 short branches (can be promoted to long). case kUncondBranch: case kCondBranch: case kCall: // R2 short branches (can't be promoted to long), delay slots filled manually. case kBareUncondBranch: case kBareCondBranch: case kBareCall: // R2 near label. case kLabel: // R2 near literal. case kLiteral: // R6 short branches (can be promoted to long). case kR6UncondBranch: case kR6CondBranch: case kR6Call: // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually. case kR6BareUncondBranch: case kR6BareCondBranch: case kR6BareCall: // R6 near label. case kR6Label: // R6 near literal. case kR6Literal: return false; // R2 long branches. case kLongUncondBranch: case kLongCondBranch: case kLongCall: // R2 far label. case kFarLabel: // R2 far literal. case kFarLiteral: // R6 long branches. case kR6LongUncondBranch: case kR6LongCondBranch: case kR6LongCall: // R6 far label. case kR6FarLabel: // R6 far literal. case kR6FarLiteral: return true; } UNREACHABLE(); } bool MipsAssembler::Branch::IsResolved() const { return target_ != kUnresolved; } MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSize() const { bool r6_cond_branch = (type_ == kR6CondBranch || type_ == kR6BareCondBranch); OffsetBits offset_size = (r6_cond_branch && (condition_ == kCondEQZ || condition_ == kCondNEZ)) ? kOffset23 : branch_info_[type_].offset_size; return offset_size; } MipsAssembler::Branch::OffsetBits MipsAssembler::Branch::GetOffsetSizeNeeded(uint32_t location, uint32_t target) { // For unresolved targets assume the shortest encoding // (later it will be made longer if needed). if (target == kUnresolved) return kOffset16; int64_t distance = static_cast<int64_t>(target) - location; // To simplify calculations in composite branches consisting of multiple instructions // bump up the distance by a value larger than the max byte size of a composite branch. distance += (distance >= 0) ? kMaxBranchSize : -kMaxBranchSize; if (IsInt<kOffset16>(distance)) return kOffset16; else if (IsInt<kOffset18>(distance)) return kOffset18; else if (IsInt<kOffset21>(distance)) return kOffset21; else if (IsInt<kOffset23>(distance)) return kOffset23; else if (IsInt<kOffset28>(distance)) return kOffset28; return kOffset32; } void MipsAssembler::Branch::Resolve(uint32_t target) { target_ = target; } void MipsAssembler::Branch::Relocate(uint32_t expand_location, uint32_t delta) { if (location_ > expand_location) { location_ += delta; } if (!IsResolved()) { return; // Don't know the target yet. } if (target_ > expand_location) { target_ += delta; } } void MipsAssembler::Branch::PromoteToLong() { CHECK(!IsBare()); // Bare branches do not promote. switch (type_) { // R2 short branches (can be promoted to long). case kUncondBranch: type_ = kLongUncondBranch; break; case kCondBranch: type_ = kLongCondBranch; break; case kCall: type_ = kLongCall; break; // R2 near label. case kLabel: type_ = kFarLabel; break; // R2 near literal. case kLiteral: type_ = kFarLiteral; break; // R6 short branches (can be promoted to long). case kR6UncondBranch: type_ = kR6LongUncondBranch; break; case kR6CondBranch: type_ = kR6LongCondBranch; break; case kR6Call: type_ = kR6LongCall; break; // R6 near label. case kR6Label: type_ = kR6FarLabel; break; // R6 near literal. case kR6Literal: type_ = kR6FarLiteral; break; default: // Note: 'type_' is already long. break; } CHECK(IsLong()); } uint32_t MipsAssembler::GetBranchLocationOrPcRelBase(const MipsAssembler::Branch* branch) const { switch (branch->GetType()) { case Branch::kLabel: case Branch::kFarLabel: case Branch::kLiteral: case Branch::kFarLiteral: if (branch->GetRightRegister() != ZERO) { return GetLabelLocation(&pc_rel_base_label_); } // For those label/literal loads which come with their own NAL instruction // and don't depend on `pc_rel_base_label_` we can simply use the location // of the "branch" (the NAL precedes the "branch" immediately). The location // is close enough for the user of the returned location, PromoteIfNeeded(), // to not miss needed promotion to a far load. // (GetOffsetSizeNeeded() provides a little leeway by means of kMaxBranchSize, // which is larger than all composite branches and label/literal loads: it's // OK to promote a bit earlier than strictly necessary, it makes things // simpler.) FALLTHROUGH_INTENDED; default: return branch->GetLocation(); } } uint32_t MipsAssembler::Branch::PromoteIfNeeded(uint32_t location, uint32_t max_short_distance) { // `location` comes from GetBranchLocationOrPcRelBase() and is either the location // of the PC-relative branch or (for some R2 label and literal loads) the location // of `pc_rel_base_label_`. The PC-relative offset of the branch/load is relative // to this location. // If the branch is still unresolved or already long, nothing to do. if (IsLong() || !IsResolved()) { return 0; } // Promote the short branch to long if the offset size is too small // to hold the distance between location and target_. if (GetOffsetSizeNeeded(location, target_) > GetOffsetSize()) { PromoteToLong(); uint32_t old_size = GetOldSize(); uint32_t new_size = GetSize(); CHECK_GT(new_size, old_size); return new_size - old_size; } // The following logic is for debugging/testing purposes. // Promote some short branches to long when it's not really required. if (UNLIKELY(max_short_distance != std::numeric_limits<uint32_t>::max() && !IsBare())) { int64_t distance = static_cast<int64_t>(target_) - location; distance = (distance >= 0) ? distance : -distance; if (distance >= max_short_distance) { PromoteToLong(); uint32_t old_size = GetOldSize(); uint32_t new_size = GetSize(); CHECK_GT(new_size, old_size); return new_size - old_size; } } return 0; } uint32_t MipsAssembler::Branch::GetOffsetLocation() const { return location_ + GetPrecedingInstructionSize(type_) + branch_info_[type_].instr_offset * sizeof(uint32_t); } uint32_t MipsAssembler::GetBranchOrPcRelBaseForEncoding(const MipsAssembler::Branch* branch) const { switch (branch->GetType()) { case Branch::kLabel: case Branch::kFarLabel: case Branch::kLiteral: case Branch::kFarLiteral: if (branch->GetRightRegister() == ZERO) { // These loads don't use `pc_rel_base_label_` and instead rely on their own // NAL instruction (it immediately precedes the "branch"). Therefore the // effective PC-relative base register is RA and it corresponds to the 2nd // instruction after the NAL. return branch->GetLocation() + sizeof(uint32_t); } else { return GetLabelLocation(&pc_rel_base_label_); } default: return branch->GetOffsetLocation() + Branch::branch_info_[branch->GetType()].pc_org * sizeof(uint32_t); } } uint32_t MipsAssembler::Branch::GetOffset(uint32_t location) const { // `location` comes from GetBranchOrPcRelBaseForEncoding() and is either a location // within/near the PC-relative branch or (for some R2 label and literal loads) the // location of `pc_rel_base_label_`. The PC-relative offset of the branch/load is // relative to this location. CHECK(IsResolved()); uint32_t ofs_mask = 0xFFFFFFFF >> (32 - GetOffsetSize()); // Calculate the byte distance between instructions and also account for // different PC-relative origins. uint32_t offset = target_ - location; // Prepare the offset for encoding into the instruction(s). offset = (offset & ofs_mask) >> branch_info_[type_].offset_shift; return offset; } MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) { CHECK_LT(branch_id, branches_.size()); return &branches_[branch_id]; } const MipsAssembler::Branch* MipsAssembler::GetBranch(uint32_t branch_id) const { CHECK_LT(branch_id, branches_.size()); return &branches_[branch_id]; } void MipsAssembler::BindRelativeToPrecedingBranch(MipsLabel* label, uint32_t prev_branch_id_plus_one, uint32_t position) { if (prev_branch_id_plus_one != 0) { const Branch* branch = GetBranch(prev_branch_id_plus_one - 1); position -= branch->GetEndLocation(); } label->prev_branch_id_plus_one_ = prev_branch_id_plus_one; label->BindTo(position); } void MipsAssembler::Bind(MipsLabel* label) { CHECK(!label->IsBound()); uint32_t bound_pc = buffer_.Size(); // Make the delay slot FSM aware of the new label. DsFsmLabel(); // Walk the list of branches referring to and preceding this label. // Store the previously unknown target addresses in them. while (label->IsLinked()) { uint32_t branch_id = label->Position(); Branch* branch = GetBranch(branch_id); branch->Resolve(bound_pc); uint32_t branch_location = branch->GetLocation(); // Extract the location of the previous branch in the list (walking the list backwards; // the previous branch ID was stored in the space reserved for this branch). uint32_t prev = buffer_.Load<uint32_t>(branch_location); // On to the previous branch in the list... label->position_ = prev; } // Now make the label object contain its own location (relative to the end of the preceding // branch, if any; it will be used by the branches referring to and following this label). BindRelativeToPrecedingBranch(label, branches_.size(), bound_pc); } uint32_t MipsAssembler::GetLabelLocation(const MipsLabel* label) const { CHECK(label->IsBound()); uint32_t target = label->Position(); if (label->prev_branch_id_plus_one_ != 0) { // Get label location based on the branch preceding it. const Branch* branch = GetBranch(label->prev_branch_id_plus_one_ - 1); target += branch->GetEndLocation(); } return target; } uint32_t MipsAssembler::GetAdjustedPosition(uint32_t old_position) { // We can reconstruct the adjustment by going through all the branches from the beginning // up to the old_position. Since we expect AdjustedPosition() to be called in a loop // with increasing old_position, we can use the data from last AdjustedPosition() to // continue where we left off and the whole loop should be O(m+n) where m is the number // of positions to adjust and n is the number of branches. if (old_position < last_old_position_) { last_position_adjustment_ = 0; last_old_position_ = 0; last_branch_id_ = 0; } while (last_branch_id_ != branches_.size()) { const Branch* branch = GetBranch(last_branch_id_); if (branch->GetLocation() >= old_position + last_position_adjustment_) { break; } last_position_adjustment_ += branch->GetSize() - branch->GetOldSize(); ++last_branch_id_; } last_old_position_ = old_position; return old_position + last_position_adjustment_; } void MipsAssembler::BindPcRelBaseLabel() { Bind(&pc_rel_base_label_); } uint32_t MipsAssembler::GetPcRelBaseLabelLocation() const { return GetLabelLocation(&pc_rel_base_label_); } void MipsAssembler::FinalizeLabeledBranch(MipsLabel* label) { uint32_t length = branches_.back().GetLength(); // Commit the last branch target label (if any). DsFsmCommitLabel(); if (!label->IsBound()) { // Branch forward (to a following label), distance is unknown. // The first branch forward will contain 0, serving as the terminator of // the list of forward-reaching branches. Emit(label->position_); // Nothing for the delay slot (yet). DsFsmInstrNop(0); length--; // Now make the label object point to this branch // (this forms a linked list of branches preceding this label). uint32_t branch_id = branches_.size() - 1; label->LinkTo(branch_id); } // Reserve space for the branch. for (; length != 0u; --length) { Nop(); } } bool MipsAssembler::Branch::CanHaveDelayedInstruction(const DelaySlot& delay_slot) const { if (delay_slot.instruction_ == 0) { // NOP or no instruction for the delay slot. return false; } switch (type_) { // R2 unconditional branches. case kUncondBranch: case kLongUncondBranch: // There are no register interdependencies. return true; // R2 calls. case kCall: case kLongCall: // Instructions depending on or modifying RA should not be moved into delay slots // of branches modifying RA. return ((delay_slot.masks_.gpr_ins_ | delay_slot.masks_.gpr_outs_) & (1u << RA)) == 0; // R2 conditional branches. case kCondBranch: case kLongCondBranch: switch (condition_) { // Branches with one GPR source. case kCondLTZ: case kCondGEZ: case kCondLEZ: case kCondGTZ: case kCondEQZ: case kCondNEZ: return (delay_slot.masks_.gpr_outs_ & (1u << lhs_reg_)) == 0; // Branches with two GPR sources. case kCondEQ: case kCondNE: return (delay_slot.masks_.gpr_outs_ & ((1u << lhs_reg_) | (1u << rhs_reg_))) == 0; // Branches with one FPU condition code source. case kCondF: case kCondT: return (delay_slot.masks_.cc_outs_ & (1u << lhs_reg_)) == 0; default: // We don't support synthetic R2 branches (preceded with slt[u]) at this level // (R2 doesn't have branches to compare 2 registers using <, <=, >=, >). LOG(FATAL) << "Unexpected branch condition " << condition_; UNREACHABLE(); } // R6 unconditional branches. case kR6UncondBranch: case kR6LongUncondBranch: // R6 calls. case kR6Call: case kR6LongCall: // There are no delay slots. return false; // R6 conditional branches. case kR6CondBranch: case kR6LongCondBranch: switch (condition_) { // Branches with one FPU register source. case kCondF: case kCondT: return (delay_slot.masks_.fpr_outs_ & (1u << lhs_reg_)) == 0; // Others have a forbidden slot instead of a delay slot. default: return false; } // Literals. default: LOG(FATAL) << "Unexpected branch type " << type_; UNREACHABLE(); } } uint32_t MipsAssembler::Branch::GetDelayedInstruction() const { return delayed_instruction_; } MipsLabel* MipsAssembler::Branch::GetPatcherLabel() const { return patcher_label_; } void MipsAssembler::Branch::SetDelayedInstruction(uint32_t instruction, MipsLabel* patcher_label) { CHECK_NE(instruction, kUnfilledDelaySlot); CHECK_EQ(delayed_instruction_, kUnfilledDelaySlot); delayed_instruction_ = instruction; patcher_label_ = patcher_label; } void MipsAssembler::Branch::DecrementLocations() { // We first create a branch object, which gets its type and locations initialized, // and then we check if the branch can actually have the preceding instruction moved // into its delay slot. If it can, the branch locations need to be decremented. // // We could make the check before creating the branch object and avoid the location // adjustment, but the check is cleaner when performed on an initialized branch // object. // // If the branch is backwards (to a previously bound label), reducing the locations // cannot cause a short branch to exceed its offset range because the offset reduces. // And this is not at all a problem for a long branch backwards. // // If the branch is forward (not linked to any label yet), reducing the locations // is harmless. The branch will be promoted to long if needed when the target is known. CHECK_EQ(location_, old_location_); CHECK_GE(old_location_, sizeof(uint32_t)); old_location_ -= sizeof(uint32_t); location_ = old_location_; } void MipsAssembler::MoveInstructionToDelaySlot(Branch& branch) { if (branch.IsBare()) { // Delay slots are filled manually in bare branches. return; } if (branch.CanHaveDelayedInstruction(delay_slot_)) { // The last instruction cannot be used in a different delay slot, // do not commit the label before it (if any). DsFsmDropLabel(); // Remove the last emitted instruction. size_t size = buffer_.Size(); CHECK_GE(size, sizeof(uint32_t)); size -= sizeof(uint32_t); CHECK_EQ(buffer_.Load<uint32_t>(size), delay_slot_.instruction_); buffer_.Resize(size); // Attach it to the branch and adjust the branch locations. branch.DecrementLocations(); branch.SetDelayedInstruction(delay_slot_.instruction_, delay_slot_.patcher_label_); } else if (!reordering_ && branch.GetType() == Branch::kUncondBranch) { // If reordefing is disabled, prevent absorption of the target instruction. branch.SetDelayedInstruction(Branch::kUnfillableDelaySlot); } } void MipsAssembler::Buncond(MipsLabel* label, bool is_r6, bool is_bare) { uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; branches_.emplace_back(is_r6, buffer_.Size(), target, /* is_call= */ false, is_bare); MoveInstructionToDelaySlot(branches_.back()); FinalizeLabeledBranch(label); } void MipsAssembler::Bcond(MipsLabel* label, bool is_r6, bool is_bare, BranchCondition condition, Register lhs, Register rhs) { // If lhs = rhs, this can be a NOP. if (Branch::IsNop(condition, lhs, rhs)) { return; } uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; branches_.emplace_back(is_r6, buffer_.Size(), target, condition, lhs, rhs, is_bare); MoveInstructionToDelaySlot(branches_.back()); FinalizeLabeledBranch(label); } void MipsAssembler::Call(MipsLabel* label, bool is_r6, bool is_bare) { uint32_t target = label->IsBound() ? GetLabelLocation(label) : Branch::kUnresolved; branches_.emplace_back(is_r6, buffer_.Size(), target, /* is_call= */ true, is_bare); MoveInstructionToDelaySlot(branches_.back()); FinalizeLabeledBranch(label); } void MipsAssembler::LoadLabelAddress(Register dest_reg, Register base_reg, MipsLabel* label) { // Label address loads are treated as pseudo branches since they require very similar handling. DCHECK(!label->IsBound()); // If `pc_rel_base_label_` isn't bound or none of registers contains its address, we // may generate an individual NAL instruction to simulate PC-relative addressing on R2 // by specifying `base_reg` of `ZERO`. Check for it. if (base_reg == ZERO && !IsR6()) { Nal(); } branches_.emplace_back(IsR6(), buffer_.Size(), dest_reg, base_reg, Branch::kLabel); FinalizeLabeledBranch(label); } Literal* MipsAssembler::NewLiteral(size_t size, const uint8_t* data) { DCHECK(size == 4u || size == 8u) << size; literals_.emplace_back(size, data); return &literals_.back(); } void MipsAssembler::LoadLiteral(Register dest_reg, Register base_reg, Literal* literal) { // Literal loads are treated as pseudo branches since they require very similar handling. DCHECK_EQ(literal->GetSize(), 4u); MipsLabel* label = literal->GetLabel(); DCHECK(!label->IsBound()); // If `pc_rel_base_label_` isn't bound or none of registers contains its address, we // may generate an individual NAL instruction to simulate PC-relative addressing on R2 // by specifying `base_reg` of `ZERO`. Check for it. if (base_reg == ZERO && !IsR6()) { Nal(); } branches_.emplace_back(IsR6(), buffer_.Size(), dest_reg, base_reg, Branch::kLiteral); FinalizeLabeledBranch(label); } JumpTable* MipsAssembler::CreateJumpTable(std::vector<MipsLabel*>&& labels) { jump_tables_.emplace_back(std::move(labels)); JumpTable* table = &jump_tables_.back(); DCHECK(!table->GetLabel()->IsBound()); return table; } void MipsAssembler::EmitLiterals() { if (!literals_.empty()) { // We don't support byte and half-word literals. // TODO: proper alignment for 64-bit literals when they're implemented. for (Literal& literal : literals_) { MipsLabel* label = literal.GetLabel(); Bind(label); AssemblerBuffer::EnsureCapacity ensured(&buffer_); DCHECK(literal.GetSize() == 4u || literal.GetSize() == 8u); for (size_t i = 0, size = literal.GetSize(); i != size; ++i) { buffer_.Emit<uint8_t>(literal.GetData()[i]); } } } } void MipsAssembler::ReserveJumpTableSpace() { if (!jump_tables_.empty()) { for (JumpTable& table : jump_tables_) { MipsLabel* label = table.GetLabel(); Bind(label); // Bulk ensure capacity, as this may be large. size_t orig_size = buffer_.Size(); size_t required_capacity = orig_size + table.GetSize(); if (required_capacity > buffer_.Capacity()) { buffer_.ExtendCapacity(required_capacity); } #ifndef NDEBUG buffer_.has_ensured_capacity_ = true; #endif // Fill the space with dummy data as the data is not final // until the branches have been promoted. And we shouldn't // be moving uninitialized data during branch promotion. for (size_t cnt = table.GetData().size(), i = 0; i < cnt; i++) { buffer_.Emit<uint32_t>(0x1abe1234u); } #ifndef NDEBUG buffer_.has_ensured_capacity_ = false; #endif } } } void MipsAssembler::EmitJumpTables() { if (!jump_tables_.empty()) { CHECK(!overwriting_); // Switch from appending instructions at the end of the buffer to overwriting // existing instructions (here, jump tables) in the buffer. overwriting_ = true; for (JumpTable& table : jump_tables_) { MipsLabel* table_label = table.GetLabel(); uint32_t start = GetLabelLocation(table_label); overwrite_location_ = start; for (MipsLabel* target : table.GetData()) { CHECK_EQ(buffer_.Load<uint32_t>(overwrite_location_), 0x1abe1234u); // The table will contain target addresses relative to the table start. uint32_t offset = GetLabelLocation(target) - start; Emit(offset); } } overwriting_ = false; } } void MipsAssembler::PromoteBranches() { // Promote short branches to long as necessary. bool changed; do { changed = false; for (auto& branch : branches_) { CHECK(branch.IsResolved()); uint32_t base = GetBranchLocationOrPcRelBase(&branch); uint32_t delta = branch.PromoteIfNeeded(base); // If this branch has been promoted and needs to expand in size, // relocate all branches by the expansion size. if (delta) { changed = true; uint32_t expand_location = branch.GetLocation(); for (auto& branch2 : branches_) { branch2.Relocate(expand_location, delta); } } } } while (changed); // Account for branch expansion by resizing the code buffer // and moving the code in it to its final location. size_t branch_count = branches_.size(); if (branch_count > 0) { // Resize. Branch& last_branch = branches_[branch_count - 1]; uint32_t size_delta = last_branch.GetEndLocation() - last_branch.GetOldEndLocation(); uint32_t old_size = buffer_.Size(); buffer_.Resize(old_size + size_delta); // Move the code residing between branch placeholders. uint32_t end = old_size; for (size_t i = branch_count; i > 0; ) { Branch& branch = branches_[--i]; CHECK_GE(end, branch.GetOldEndLocation()); uint32_t size = end - branch.GetOldEndLocation(); buffer_.Move(branch.GetEndLocation(), branch.GetOldEndLocation(), size); end = branch.GetOldLocation(); } } } // Note: make sure branch_info_[] and EmitBranch() are kept synchronized. const MipsAssembler::Branch::BranchInfo MipsAssembler::Branch::branch_info_[] = { // R2 short branches (can be promoted to long). { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kUncondBranch { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kCondBranch { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kCall // R2 short branches (can't be promoted to long), delay slots filled manually. { 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kBareUncondBranch { 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kBareCondBranch { 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kBareCall // R2 near label. { 1, 0, 0, MipsAssembler::Branch::kOffset16, 0 }, // kLabel // R2 near literal. { 1, 0, 0, MipsAssembler::Branch::kOffset16, 0 }, // kLiteral // R2 long branches. { 9, 3, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongUncondBranch { 10, 4, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongCondBranch { 6, 1, 1, MipsAssembler::Branch::kOffset32, 0 }, // kLongCall // R2 far label. { 3, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kFarLabel // R2 far literal. { 3, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kFarLiteral // R6 short branches (can be promoted to long). { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6UncondBranch { 2, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kR6CondBranch // Exception: kOffset23 for beqzc/bnezc. { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6Call // R6 short branches (can't be promoted to long), forbidden/delay slots filled manually. { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6BareUncondBranch { 1, 0, 1, MipsAssembler::Branch::kOffset18, 2 }, // kR6BareCondBranch // Exception: kOffset23 for beqzc/bnezc. { 1, 0, 1, MipsAssembler::Branch::kOffset28, 2 }, // kR6BareCall // R6 near label. { 1, 0, 0, MipsAssembler::Branch::kOffset21, 2 }, // kR6Label // R6 near literal. { 1, 0, 0, MipsAssembler::Branch::kOffset21, 2 }, // kR6Literal // R6 long branches. { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongUncondBranch { 3, 1, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongCondBranch { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6LongCall // R6 far label. { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6FarLabel // R6 far literal. { 2, 0, 0, MipsAssembler::Branch::kOffset32, 0 }, // kR6FarLiteral }; static inline bool IsAbsorbableInstruction(uint32_t instruction) { // The relative patcher patches addiu, lw and sw with an immediate operand of 0x5678. // We want to make sure that these instructions do not get absorbed into delay slots // of unconditional branches on R2. Absorption would otherwise make copies of // unpatched instructions. if ((instruction & 0xFFFF) != 0x5678) { return true; } switch (instruction >> kOpcodeShift) { case 0x09: // Addiu. case 0x23: // Lw. case 0x2B: // Sw. return false; default: return true; } } static inline Register GetR2PcRelBaseRegister(Register reg) { // LoadLabelAddress() and LoadLiteral() generate individual NAL // instructions on R2 when the specified base register is ZERO // and so the effective PC-relative base register is RA, not ZERO. return (reg == ZERO) ? RA : reg; } // Note: make sure branch_info_[] and EmitBranch() are kept synchronized. void MipsAssembler::EmitBranch(uint32_t branch_id) { CHECK_EQ(overwriting_, true); Branch* branch = GetBranch(branch_id); overwrite_location_ = branch->GetLocation(); uint32_t offset = branch->GetOffset(GetBranchOrPcRelBaseForEncoding(branch)); BranchCondition condition = branch->GetCondition(); Register lhs = branch->GetLeftRegister(); Register rhs = branch->GetRightRegister(); uint32_t delayed_instruction = branch->GetDelayedInstruction(); MipsLabel* patcher_label = branch->GetPatcherLabel(); if (patcher_label != nullptr) { // Update the patcher label location to account for branch promotion and // delay slot filling. CHECK(patcher_label->IsBound()); uint32_t bound_pc = branch->GetLocation(); if (!branch->IsLong()) { // Short branches precede delay slots. // Long branches follow "delay slots". bound_pc += sizeof(uint32_t); } // Rebind the label. patcher_label->Reinitialize(); BindRelativeToPrecedingBranch(patcher_label, branch_id, bound_pc); } switch (branch->GetType()) { // R2 short branches. case Branch::kUncondBranch: if (delayed_instruction == Branch::kUnfillableDelaySlot) { // The branch was created when reordering was disabled, do not absorb the target // instruction. delayed_instruction = 0; // NOP. } else if (delayed_instruction == Branch::kUnfilledDelaySlot) { // Try to absorb the target instruction into the delay slot. delayed_instruction = 0; // NOP. // Incrementing the signed 16-bit offset past the target instruction must not // cause overflow into the negative subrange, check for the max offset. if (offset != 0x7FFF) { uint32_t target = branch->GetTarget(); if (std::binary_search(ds_fsm_target_pcs_.begin(), ds_fsm_target_pcs_.end(), target)) { uint32_t target_instruction = buffer_.Load<uint32_t>(target); if (IsAbsorbableInstruction(target_instruction)) { delayed_instruction = target_instruction; offset++; } } } } CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); B(offset); Emit(delayed_instruction); break; case Branch::kCondBranch: DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot); if (delayed_instruction == Branch::kUnfilledDelaySlot) { delayed_instruction = 0; // NOP. } CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); EmitBcondR2(condition, lhs, rhs, offset); Emit(delayed_instruction); break; case Branch::kCall: DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot); if (delayed_instruction == Branch::kUnfilledDelaySlot) { delayed_instruction = 0; // NOP. } CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Bal(offset); Emit(delayed_instruction); break; case Branch::kBareUncondBranch: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); B(offset); break; case Branch::kBareCondBranch: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); EmitBcondR2(condition, lhs, rhs, offset); break; case Branch::kBareCall: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Bal(offset); break; // R2 near label. case Branch::kLabel: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Addiu(lhs, GetR2PcRelBaseRegister(rhs), offset); break; // R2 near literal. case Branch::kLiteral: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Lw(lhs, GetR2PcRelBaseRegister(rhs), offset); break; // R2 long branches. case Branch::kLongUncondBranch: // To get the value of the PC register we need to use the NAL instruction. // NAL clobbers the RA register. However, RA must be preserved if the // method is compiled without the entry/exit sequences that would take care // of preserving RA (typically, leaf methods don't preserve RA explicitly). // So, we need to preserve RA in some temporary storage ourselves. The AT // register can't be used for this because we need it to load a constant // which will be added to the value that NAL stores in RA. And we can't // use T9 for this in the context of the JNI compiler, which uses it // as a scratch register (see InterproceduralScratchRegister()). // If we were to add a 32-bit constant to RA using two ADDIU instructions, // we'd also need to use the ROTR instruction, which requires no less than // MIPSR2. // Perhaps, we could use T8 or one of R2's multiplier/divider registers // (LO or HI) or even a floating-point register, but that doesn't seem // like a nice solution. We may want this to work on both R6 and pre-R6. // For now simply use the stack for RA. This should be OK since for the // vast majority of code a short PC-relative branch is sufficient. // TODO: can this be improved? // TODO: consider generation of a shorter sequence when we know that RA // is explicitly preserved by the method entry/exit code. if (delayed_instruction != Branch::kUnfilledDelaySlot && delayed_instruction != Branch::kUnfillableDelaySlot) { Emit(delayed_instruction); } Push(RA); Nal(); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Lui(AT, High16Bits(offset)); Ori(AT, AT, Low16Bits(offset)); Addu(AT, AT, RA); Lw(RA, SP, 0); Jr(AT); DecreaseFrameSize(kStackAlignment); break; case Branch::kLongCondBranch: // The comment on case 'Branch::kLongUncondBranch' applies here as well. DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot); if (delayed_instruction != Branch::kUnfilledDelaySlot) { Emit(delayed_instruction); } // Note: the opposite condition branch encodes 8 as the distance, which is equal to the // number of instructions skipped: // (PUSH(IncreaseFrameSize(ADDIU) + SW) + NAL + LUI + ORI + ADDU + LW + JR). EmitBcondR2(Branch::OppositeCondition(condition), lhs, rhs, 8); Push(RA); Nal(); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Lui(AT, High16Bits(offset)); Ori(AT, AT, Low16Bits(offset)); Addu(AT, AT, RA); Lw(RA, SP, 0); Jr(AT); DecreaseFrameSize(kStackAlignment); break; case Branch::kLongCall: DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot); if (delayed_instruction != Branch::kUnfilledDelaySlot) { Emit(delayed_instruction); } Nal(); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Lui(AT, High16Bits(offset)); Ori(AT, AT, Low16Bits(offset)); Addu(AT, AT, RA); Jalr(AT); Nop(); break; // R2 far label. case Branch::kFarLabel: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Lui(AT, High16Bits(offset)); Ori(AT, AT, Low16Bits(offset)); Addu(lhs, AT, GetR2PcRelBaseRegister(rhs)); break; // R2 far literal. case Branch::kFarLiteral: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); offset += (offset & 0x8000) << 1; // Account for sign extension in lw. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Lui(AT, High16Bits(offset)); Addu(AT, AT, GetR2PcRelBaseRegister(rhs)); Lw(lhs, AT, Low16Bits(offset)); break; // R6 short branches. case Branch::kR6UncondBranch: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Bc(offset); break; case Branch::kR6CondBranch: CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); EmitBcondR6(condition, lhs, rhs, offset); DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot); if (delayed_instruction != Branch::kUnfilledDelaySlot) { Emit(delayed_instruction); } else { // TODO: improve by filling the forbidden slot (IFF this is // a forbidden and not a delay slot). Nop(); } break; case Branch::kR6Call: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Balc(offset); break; case Branch::kR6BareUncondBranch: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Bc(offset); break; case Branch::kR6BareCondBranch: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); EmitBcondR6(condition, lhs, rhs, offset); break; case Branch::kR6BareCall: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Balc(offset); break; // R6 near label. case Branch::kR6Label: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Addiupc(lhs, offset); break; // R6 near literal. case Branch::kR6Literal: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Lwpc(lhs, offset); break; // R6 long branches. case Branch::kR6LongUncondBranch: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); offset += (offset & 0x8000) << 1; // Account for sign extension in jic. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Jic(AT, Low16Bits(offset)); break; case Branch::kR6LongCondBranch: DCHECK_NE(delayed_instruction, Branch::kUnfillableDelaySlot); if (delayed_instruction != Branch::kUnfilledDelaySlot) { Emit(delayed_instruction); } EmitBcondR6(Branch::OppositeCondition(condition), lhs, rhs, 2); offset += (offset & 0x8000) << 1; // Account for sign extension in jic. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Jic(AT, Low16Bits(offset)); break; case Branch::kR6LongCall: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); offset += (offset & 0x8000) << 1; // Account for sign extension in jialc. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Jialc(AT, Low16Bits(offset)); break; // R6 far label. case Branch::kR6FarLabel: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); offset += (offset & 0x8000) << 1; // Account for sign extension in addiu. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Addiu(lhs, AT, Low16Bits(offset)); break; // R6 far literal. case Branch::kR6FarLiteral: DCHECK_EQ(delayed_instruction, Branch::kUnfilledDelaySlot); offset += (offset & 0x8000) << 1; // Account for sign extension in lw. CHECK_EQ(overwrite_location_, branch->GetOffsetLocation()); Auipc(AT, High16Bits(offset)); Lw(lhs, AT, Low16Bits(offset)); break; } CHECK_EQ(overwrite_location_, branch->GetEndLocation()); CHECK_LT(branch->GetSize(), static_cast<uint32_t>(Branch::kMaxBranchSize)); if (patcher_label != nullptr) { // The patched instruction should look like one. uint32_t patched_instruction = buffer_.Load<uint32_t>(GetLabelLocation(patcher_label)); CHECK(!IsAbsorbableInstruction(patched_instruction)); } } void MipsAssembler::B(MipsLabel* label, bool is_bare) { Buncond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare); } void MipsAssembler::Bal(MipsLabel* label, bool is_bare) { Call(label, /* is_r6= */ (IsR6() && !is_bare), is_bare); } void MipsAssembler::Beq(Register rs, Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondEQ, rs, rt); } void MipsAssembler::Bne(Register rs, Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondNE, rs, rt); } void MipsAssembler::Beqz(Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondEQZ, rt); } void MipsAssembler::Bnez(Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondNEZ, rt); } void MipsAssembler::Bltz(Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondLTZ, rt); } void MipsAssembler::Bgez(Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondGEZ, rt); } void MipsAssembler::Blez(Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondLEZ, rt); } void MipsAssembler::Bgtz(Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ (IsR6() && !is_bare), is_bare, kCondGTZ, rt); } bool MipsAssembler::CanExchangeWithSlt(Register rs, Register rt) const { // If the instruction modifies AT, `rs` or `rt`, it can't be exchanged with the slt[u] // instruction because either slt[u] depends on `rs` or `rt` or the following // conditional branch depends on AT set by slt[u]. // Likewise, if the instruction depends on AT, it can't be exchanged with slt[u] // because slt[u] changes AT. return (delay_slot_.instruction_ != 0 && (delay_slot_.masks_.gpr_outs_ & ((1u << AT) | (1u << rs) | (1u << rt))) == 0 && (delay_slot_.masks_.gpr_ins_ & (1u << AT)) == 0); } void MipsAssembler::ExchangeWithSlt(const DelaySlot& forwarded_slot) { // Exchange the last two instructions in the assembler buffer. size_t size = buffer_.Size(); CHECK_GE(size, 2 * sizeof(uint32_t)); size_t pos1 = size - 2 * sizeof(uint32_t); size_t pos2 = size - sizeof(uint32_t); uint32_t instr1 = buffer_.Load<uint32_t>(pos1); uint32_t instr2 = buffer_.Load<uint32_t>(pos2); CHECK_EQ(instr1, forwarded_slot.instruction_); CHECK_EQ(instr2, delay_slot_.instruction_); buffer_.Store<uint32_t>(pos1, instr2); buffer_.Store<uint32_t>(pos2, instr1); // Set the current delay slot information to that of the last instruction // in the buffer. delay_slot_ = forwarded_slot; } void MipsAssembler::GenerateSltForCondBranch(bool unsigned_slt, Register rs, Register rt) { // If possible, exchange the slt[u] instruction with the preceding instruction, // so it can fill the delay slot. DelaySlot forwarded_slot = delay_slot_; bool exchange = CanExchangeWithSlt(rs, rt); if (exchange) { // The last instruction cannot be used in a different delay slot, // do not commit the label before it (if any). DsFsmDropLabel(); } if (unsigned_slt) { Sltu(AT, rs, rt); } else { Slt(AT, rs, rt); } if (exchange) { ExchangeWithSlt(forwarded_slot); } } void MipsAssembler::Blt(Register rs, Register rt, MipsLabel* label, bool is_bare) { if (IsR6() && !is_bare) { Bcond(label, IsR6(), is_bare, kCondLT, rs, rt); } else if (!Branch::IsNop(kCondLT, rs, rt)) { // Synthesize the instruction (not available on R2). GenerateSltForCondBranch(/* unsigned_slt= */ false, rs, rt); Bnez(AT, label, is_bare); } } void MipsAssembler::Bge(Register rs, Register rt, MipsLabel* label, bool is_bare) { if (IsR6() && !is_bare) { Bcond(label, IsR6(), is_bare, kCondGE, rs, rt); } else if (Branch::IsUncond(kCondGE, rs, rt)) { B(label, is_bare); } else { // Synthesize the instruction (not available on R2). GenerateSltForCondBranch(/* unsigned_slt= */ false, rs, rt); Beqz(AT, label, is_bare); } } void MipsAssembler::Bltu(Register rs, Register rt, MipsLabel* label, bool is_bare) { if (IsR6() && !is_bare) { Bcond(label, IsR6(), is_bare, kCondLTU, rs, rt); } else if (!Branch::IsNop(kCondLTU, rs, rt)) { // Synthesize the instruction (not available on R2). GenerateSltForCondBranch(/* unsigned_slt= */ true, rs, rt); Bnez(AT, label, is_bare); } } void MipsAssembler::Bgeu(Register rs, Register rt, MipsLabel* label, bool is_bare) { if (IsR6() && !is_bare) { Bcond(label, IsR6(), is_bare, kCondGEU, rs, rt); } else if (Branch::IsUncond(kCondGEU, rs, rt)) { B(label, is_bare); } else { // Synthesize the instruction (not available on R2). GenerateSltForCondBranch(/* unsigned_slt= */ true, rs, rt); Beqz(AT, label, is_bare); } } void MipsAssembler::Bc1f(MipsLabel* label, bool is_bare) { Bc1f(0, label, is_bare); } void MipsAssembler::Bc1f(int cc, MipsLabel* label, bool is_bare) { CHECK(IsUint<3>(cc)) << cc; Bcond(label, /* is_r6= */ false, is_bare, kCondF, static_cast<Register>(cc), ZERO); } void MipsAssembler::Bc1t(MipsLabel* label, bool is_bare) { Bc1t(0, label, is_bare); } void MipsAssembler::Bc1t(int cc, MipsLabel* label, bool is_bare) { CHECK(IsUint<3>(cc)) << cc; Bcond(label, /* is_r6= */ false, is_bare, kCondT, static_cast<Register>(cc), ZERO); } void MipsAssembler::Bc(MipsLabel* label, bool is_bare) { Buncond(label, /* is_r6= */ true, is_bare); } void MipsAssembler::Balc(MipsLabel* label, bool is_bare) { Call(label, /* is_r6= */ true, is_bare); } void MipsAssembler::Beqc(Register rs, Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondEQ, rs, rt); } void MipsAssembler::Bnec(Register rs, Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondNE, rs, rt); } void MipsAssembler::Beqzc(Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondEQZ, rt); } void MipsAssembler::Bnezc(Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondNEZ, rt); } void MipsAssembler::Bltzc(Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondLTZ, rt); } void MipsAssembler::Bgezc(Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondGEZ, rt); } void MipsAssembler::Blezc(Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondLEZ, rt); } void MipsAssembler::Bgtzc(Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondGTZ, rt); } void MipsAssembler::Bltc(Register rs, Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondLT, rs, rt); } void MipsAssembler::Bgec(Register rs, Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondGE, rs, rt); } void MipsAssembler::Bltuc(Register rs, Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondLTU, rs, rt); } void MipsAssembler::Bgeuc(Register rs, Register rt, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondGEU, rs, rt); } void MipsAssembler::Bc1eqz(FRegister ft, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondF, static_cast<Register>(ft), ZERO); } void MipsAssembler::Bc1nez(FRegister ft, MipsLabel* label, bool is_bare) { Bcond(label, /* is_r6= */ true, is_bare, kCondT, static_cast<Register>(ft), ZERO); } void MipsAssembler::AdjustBaseAndOffset(Register& base, int32_t& offset, bool is_doubleword, bool is_float) { // This method is used to adjust the base register and offset pair // for a load/store when the offset doesn't fit into int16_t. // It is assumed that `base + offset` is sufficiently aligned for memory // operands that are machine word in size or smaller. For doubleword-sized // operands it's assumed that `base` is a multiple of 8, while `offset` // may be a multiple of 4 (e.g. 4-byte-aligned long and double arguments // and spilled variables on the stack accessed relative to the stack // pointer register). // We preserve the "alignment" of `offset` by adjusting it by a multiple of 8. CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`. bool doubleword_aligned = IsAligned<kMipsDoublewordSize>(offset); bool two_accesses = is_doubleword && (!is_float || !doubleword_aligned); // IsInt<16> must be passed a signed value, hence the static cast below. if (IsInt<16>(offset) && (!two_accesses || IsInt<16>(static_cast<int32_t>(offset + kMipsWordSize)))) { // Nothing to do: `offset` (and, if needed, `offset + 4`) fits into int16_t. return; } // Remember the "(mis)alignment" of `offset`, it will be checked at the end. uint32_t misalignment = offset & (kMipsDoublewordSize - 1); // Do not load the whole 32-bit `offset` if it can be represented as // a sum of two 16-bit signed offsets. This can save an instruction or two. // To simplify matters, only do this for a symmetric range of offsets from // about -64KB to about +64KB, allowing further addition of 4 when accessing // 64-bit variables with two 32-bit accesses. constexpr int32_t kMinOffsetForSimpleAdjustment = 0x7ff8; // Max int16_t that's a multiple of 8. constexpr int32_t kMaxOffsetForSimpleAdjustment = 2 * kMinOffsetForSimpleAdjustment; if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) { Addiu(AT, base, kMinOffsetForSimpleAdjustment); offset -= kMinOffsetForSimpleAdjustment; } else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) { Addiu(AT, base, -kMinOffsetForSimpleAdjustment); offset += kMinOffsetForSimpleAdjustment; } else if (IsR6()) { // On R6 take advantage of the aui instruction, e.g.: // aui AT, base, offset_high // lw reg_lo, offset_low(AT) // lw reg_hi, (offset_low+4)(AT) // or when offset_low+4 overflows int16_t: // aui AT, base, offset_high // addiu AT, AT, 8 // lw reg_lo, (offset_low-8)(AT) // lw reg_hi, (offset_low-4)(AT) int16_t offset_high = High16Bits(offset); int16_t offset_low = Low16Bits(offset); offset_high += (offset_low < 0) ? 1 : 0; // Account for offset sign extension in load/store. Aui(AT, base, offset_high); if (two_accesses && !IsInt<16>(static_cast<int32_t>(offset_low + kMipsWordSize))) { // Avoid overflow in the 16-bit offset of the load/store instruction when adding 4. Addiu(AT, AT, kMipsDoublewordSize); offset_low -= kMipsDoublewordSize; } offset = offset_low; } else { // Do not load the whole 32-bit `offset` if it can be represented as // a sum of three 16-bit signed offsets. This can save an instruction. // To simplify matters, only do this for a symmetric range of offsets from // about -96KB to about +96KB, allowing further addition of 4 when accessing // 64-bit variables with two 32-bit accesses. constexpr int32_t kMinOffsetForMediumAdjustment = 2 * kMinOffsetForSimpleAdjustment; constexpr int32_t kMaxOffsetForMediumAdjustment = 3 * kMinOffsetForSimpleAdjustment; if (0 <= offset && offset <= kMaxOffsetForMediumAdjustment) { Addiu(AT, base, kMinOffsetForMediumAdjustment / 2); Addiu(AT, AT, kMinOffsetForMediumAdjustment / 2); offset -= kMinOffsetForMediumAdjustment; } else if (-kMaxOffsetForMediumAdjustment <= offset && offset < 0) { Addiu(AT, base, -kMinOffsetForMediumAdjustment / 2); Addiu(AT, AT, -kMinOffsetForMediumAdjustment / 2); offset += kMinOffsetForMediumAdjustment; } else { // Now that all shorter options have been exhausted, load the full 32-bit offset. int32_t loaded_offset = RoundDown(offset, kMipsDoublewordSize); LoadConst32(AT, loaded_offset); Addu(AT, AT, base); offset -= loaded_offset; } } base = AT; CHECK(IsInt<16>(offset)); if (two_accesses) { CHECK(IsInt<16>(static_cast<int32_t>(offset + kMipsWordSize))); } CHECK_EQ(misalignment, offset & (kMipsDoublewordSize - 1)); } void MipsAssembler::AdjustBaseOffsetAndElementSizeShift(Register& base, int32_t& offset, int& element_size_shift) { // This method is used to adjust the base register, offset and element_size_shift // for a vector load/store when the offset doesn't fit into allowed number of bits. // MSA ld.df and st.df instructions take signed offsets as arguments, but maximum // offset is dependant on the size of the data format df (10-bit offsets for ld.b, // 11-bit for ld.h, 12-bit for ld.w and 13-bit for ld.d). // If element_size_shift is non-negative at entry, it won't be changed, but offset // will be checked for appropriate alignment. If negative at entry, it will be // adjusted based on offset for maximum fit. // It's assumed that `base` is a multiple of 8. CHECK_NE(base, AT); // Must not overwrite the register `base` while loading `offset`. if (element_size_shift >= 0) { CHECK_LE(element_size_shift, TIMES_8); CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift); } else if (IsAligned<kMipsDoublewordSize>(offset)) { element_size_shift = TIMES_8; } else if (IsAligned<kMipsWordSize>(offset)) { element_size_shift = TIMES_4; } else if (IsAligned<kMipsHalfwordSize>(offset)) { element_size_shift = TIMES_2; } else { element_size_shift = TIMES_1; } const int low_len = 10 + element_size_shift; // How many low bits of `offset` ld.df/st.df // will take. int16_t low = offset & ((1 << low_len) - 1); // Isolate these bits. low -= (low & (1 << (low_len - 1))) << 1; // Sign-extend these bits. if (low == offset) { return; // `offset` fits into ld.df/st.df. } // First, see if `offset` can be represented as a sum of two or three signed offsets. // This can save an instruction or two. // Max int16_t that's a multiple of element size. const int32_t kMaxDeltaForSimpleAdjustment = 0x8000 - (1 << element_size_shift); // Max ld.df/st.df offset that's a multiple of element size. const int32_t kMaxLoadStoreOffset = 0x1ff << element_size_shift; const int32_t kMaxOffsetForSimpleAdjustment = kMaxDeltaForSimpleAdjustment + kMaxLoadStoreOffset; const int32_t kMinOffsetForMediumAdjustment = 2 * kMaxDeltaForSimpleAdjustment; const int32_t kMaxOffsetForMediumAdjustment = kMinOffsetForMediumAdjustment + kMaxLoadStoreOffset; if (IsInt<16>(offset)) { Addiu(AT, base, offset); offset = 0; } else if (0 <= offset && offset <= kMaxOffsetForSimpleAdjustment) { Addiu(AT, base, kMaxDeltaForSimpleAdjustment); offset -= kMaxDeltaForSimpleAdjustment; } else if (-kMaxOffsetForSimpleAdjustment <= offset && offset < 0) { Addiu(AT, base, -kMaxDeltaForSimpleAdjustment); offset += kMaxDeltaForSimpleAdjustment; } else if (!IsR6() && 0 <= offset && offset <= kMaxOffsetForMediumAdjustment) { Addiu(AT, base, kMaxDeltaForSimpleAdjustment); if (offset <= kMinOffsetForMediumAdjustment) { Addiu(AT, AT, offset - kMaxDeltaForSimpleAdjustment); offset = 0; } else { Addiu(AT, AT, kMaxDeltaForSimpleAdjustment); offset -= kMinOffsetForMediumAdjustment; } } else if (!IsR6() && -kMaxOffsetForMediumAdjustment <= offset && offset < 0) { Addiu(AT, base, -kMaxDeltaForSimpleAdjustment); if (-kMinOffsetForMediumAdjustment <= offset) { Addiu(AT, AT, offset + kMaxDeltaForSimpleAdjustment); offset = 0; } else { Addiu(AT, AT, -kMaxDeltaForSimpleAdjustment); offset += kMinOffsetForMediumAdjustment; } } else { // 16-bit or smaller parts of `offset`: // |31 hi 16|15 mid 13-10|12-9 low 0| // // Instructions that supply each part as a signed integer addend: // |aui |addiu |ld.df/st.df | uint32_t tmp = static_cast<uint32_t>(offset) - low; // Exclude `low` from the rest of `offset` // (accounts for sign of `low`). tmp += (tmp & (UINT32_C(1) << 15)) << 1; // Account for sign extension in addiu. int16_t mid = Low16Bits(tmp); int16_t hi = High16Bits(tmp); if (IsR6()) { Aui(AT, base, hi); } else { Lui(AT, hi); Addu(AT, AT, base); } if (mid != 0) { Addiu(AT, AT, mid); } offset = low; } base = AT; CHECK_GE(JAVASTYLE_CTZ(offset), element_size_shift); CHECK(IsInt<10>(offset >> element_size_shift)); } void MipsAssembler::LoadFromOffset(LoadOperandType type, Register reg, Register base, int32_t offset) { LoadFromOffset<>(type, reg, base, offset); } void MipsAssembler::LoadSFromOffset(FRegister reg, Register base, int32_t offset) { LoadSFromOffset<>(reg, base, offset); } void MipsAssembler::LoadDFromOffset(FRegister reg, Register base, int32_t offset) { LoadDFromOffset<>(reg, base, offset); } void MipsAssembler::LoadQFromOffset(FRegister reg, Register base, int32_t offset) { LoadQFromOffset<>(reg, base, offset); } void MipsAssembler::EmitLoad(ManagedRegister m_dst, Register src_register, int32_t src_offset, size_t size) { MipsManagedRegister dst = m_dst.AsMips(); if (dst.IsNoRegister()) { CHECK_EQ(0u, size) << dst; } else if (dst.IsCoreRegister()) { CHECK_EQ(kMipsWordSize, size) << dst; LoadFromOffset(kLoadWord, dst.AsCoreRegister(), src_register, src_offset); } else if (dst.IsRegisterPair()) { CHECK_EQ(kMipsDoublewordSize, size) << dst; LoadFromOffset(kLoadDoubleword, dst.AsRegisterPairLow(), src_register, src_offset); } else if (dst.IsFRegister()) { if (size == kMipsWordSize) { LoadSFromOffset(dst.AsFRegister(), src_register, src_offset); } else { CHECK_EQ(kMipsDoublewordSize, size) << dst; LoadDFromOffset(dst.AsFRegister(), src_register, src_offset); } } else if (dst.IsDRegister()) { CHECK_EQ(kMipsDoublewordSize, size) << dst; LoadDFromOffset(dst.AsOverlappingDRegisterLow(), src_register, src_offset); } } void MipsAssembler::StoreToOffset(StoreOperandType type, Register reg, Register base, int32_t offset) { StoreToOffset<>(type, reg, base, offset); } void MipsAssembler::StoreSToOffset(FRegister reg, Register base, int32_t offset) { StoreSToOffset<>(reg, base, offset); } void MipsAssembler::StoreDToOffset(FRegister reg, Register base, int32_t offset) { StoreDToOffset<>(reg, base, offset); } void MipsAssembler::StoreQToOffset(FRegister reg, Register base, int32_t offset) { StoreQToOffset<>(reg, base, offset); } static dwarf::Reg DWARFReg(Register reg) { return dwarf::Reg::MipsCore(static_cast<int>(reg)); } constexpr size_t kFramePointerSize = 4; void MipsAssembler::BuildFrame(size_t frame_size, ManagedRegister method_reg, ArrayRef<const ManagedRegister> callee_save_regs, const ManagedRegisterEntrySpills& entry_spills) { CHECK_ALIGNED(frame_size, kStackAlignment); DCHECK(!overwriting_); // Increase frame to required size. IncreaseFrameSize(frame_size); // Push callee saves and return address. int stack_offset = frame_size - kFramePointerSize; StoreToOffset(kStoreWord, RA, SP, stack_offset); cfi_.RelOffset(DWARFReg(RA), stack_offset); for (int i = callee_save_regs.size() - 1; i >= 0; --i) { stack_offset -= kFramePointerSize; Register reg = callee_save_regs[i].AsMips().AsCoreRegister(); StoreToOffset(kStoreWord, reg, SP, stack_offset); cfi_.RelOffset(DWARFReg(reg), stack_offset); } // Write out Method*. StoreToOffset(kStoreWord, method_reg.AsMips().AsCoreRegister(), SP, 0); // Write out entry spills. int32_t offset = frame_size + kFramePointerSize; for (const ManagedRegisterSpill& spill : entry_spills) { MipsManagedRegister reg = spill.AsMips(); if (reg.IsNoRegister()) { offset += spill.getSize(); } else if (reg.IsCoreRegister()) { StoreToOffset(kStoreWord, reg.AsCoreRegister(), SP, offset); offset += kMipsWordSize; } else if (reg.IsFRegister()) { StoreSToOffset(reg.AsFRegister(), SP, offset); offset += kMipsWordSize; } else if (reg.IsDRegister()) { StoreDToOffset(reg.AsOverlappingDRegisterLow(), SP, offset); offset += kMipsDoublewordSize; } } } void MipsAssembler::RemoveFrame(size_t frame_size, ArrayRef<const ManagedRegister> callee_save_regs, bool may_suspend ATTRIBUTE_UNUSED) { CHECK_ALIGNED(frame_size, kStackAlignment); DCHECK(!overwriting_); cfi_.RememberState(); // Pop callee saves and return address. int stack_offset = frame_size - (callee_save_regs.size() * kFramePointerSize) - kFramePointerSize; for (size_t i = 0; i < callee_save_regs.size(); ++i) { Register reg = callee_save_regs[i].AsMips().AsCoreRegister(); LoadFromOffset(kLoadWord, reg, SP, stack_offset); cfi_.Restore(DWARFReg(reg)); stack_offset += kFramePointerSize; } LoadFromOffset(kLoadWord, RA, SP, stack_offset); cfi_.Restore(DWARFReg(RA)); // Adjust the stack pointer in the delay slot if doing so doesn't break CFI. bool exchange = IsInt<16>(static_cast<int32_t>(frame_size)); bool reordering = SetReorder(false); if (exchange) { // Jump to the return address. Jr(RA); // Decrease frame to required size. DecreaseFrameSize(frame_size); // Single instruction in delay slot. } else { // Decrease frame to required size. DecreaseFrameSize(frame_size); // Jump to the return address. Jr(RA); Nop(); // In delay slot. } SetReorder(reordering); // The CFI should be restored for any code that follows the exit block. cfi_.RestoreState(); cfi_.DefCFAOffset(frame_size); } void MipsAssembler::IncreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kFramePointerSize); Addiu32(SP, SP, -adjust); cfi_.AdjustCFAOffset(adjust); if (overwriting_) { cfi_.OverrideDelayedPC(overwrite_location_); } } void MipsAssembler::DecreaseFrameSize(size_t adjust) { CHECK_ALIGNED(adjust, kFramePointerSize); Addiu32(SP, SP, adjust); cfi_.AdjustCFAOffset(-adjust); if (overwriting_) { cfi_.OverrideDelayedPC(overwrite_location_); } } void MipsAssembler::Store(FrameOffset dest, ManagedRegister msrc, size_t size) { MipsManagedRegister src = msrc.AsMips(); if (src.IsNoRegister()) { CHECK_EQ(0u, size); } else if (src.IsCoreRegister()) { CHECK_EQ(kMipsWordSize, size); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); } else if (src.IsRegisterPair()) { CHECK_EQ(kMipsDoublewordSize, size); StoreToOffset(kStoreWord, src.AsRegisterPairLow(), SP, dest.Int32Value()); StoreToOffset(kStoreWord, src.AsRegisterPairHigh(), SP, dest.Int32Value() + kMipsWordSize); } else if (src.IsFRegister()) { if (size == kMipsWordSize) { StoreSToOffset(src.AsFRegister(), SP, dest.Int32Value()); } else { CHECK_EQ(kMipsDoublewordSize, size); StoreDToOffset(src.AsFRegister(), SP, dest.Int32Value()); } } else if (src.IsDRegister()) { CHECK_EQ(kMipsDoublewordSize, size); StoreDToOffset(src.AsOverlappingDRegisterLow(), SP, dest.Int32Value()); } } void MipsAssembler::StoreRef(FrameOffset dest, ManagedRegister msrc) { MipsManagedRegister src = msrc.AsMips(); CHECK(src.IsCoreRegister()); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); } void MipsAssembler::StoreRawPtr(FrameOffset dest, ManagedRegister msrc) { MipsManagedRegister src = msrc.AsMips(); CHECK(src.IsCoreRegister()); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); } void MipsAssembler::StoreImmediateToFrame(FrameOffset dest, uint32_t imm, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadConst32(scratch.AsCoreRegister(), imm); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); } void MipsAssembler::StoreStackOffsetToThread(ThreadOffset32 thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; Addiu32(scratch.AsCoreRegister(), SP, fr_offs.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), S1, thr_offs.Int32Value()); } void MipsAssembler::StoreStackPointerToThread(ThreadOffset32 thr_offs) { StoreToOffset(kStoreWord, SP, S1, thr_offs.Int32Value()); } void MipsAssembler::StoreSpanning(FrameOffset dest, ManagedRegister msrc, FrameOffset in_off, ManagedRegister mscratch) { MipsManagedRegister src = msrc.AsMips(); MipsManagedRegister scratch = mscratch.AsMips(); StoreToOffset(kStoreWord, src.AsCoreRegister(), SP, dest.Int32Value()); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, in_off.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize); } void MipsAssembler::Load(ManagedRegister mdest, FrameOffset src, size_t size) { return EmitLoad(mdest, SP, src.Int32Value(), size); } void MipsAssembler::LoadFromThread(ManagedRegister mdest, ThreadOffset32 src, size_t size) { return EmitLoad(mdest, S1, src.Int32Value(), size); } void MipsAssembler::LoadRef(ManagedRegister mdest, FrameOffset src) { MipsManagedRegister dest = mdest.AsMips(); CHECK(dest.IsCoreRegister()); LoadFromOffset(kLoadWord, dest.AsCoreRegister(), SP, src.Int32Value()); } void MipsAssembler::LoadRef(ManagedRegister mdest, ManagedRegister base, MemberOffset offs, bool unpoison_reference) { MipsManagedRegister dest = mdest.AsMips(); CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister()); LoadFromOffset(kLoadWord, dest.AsCoreRegister(), base.AsMips().AsCoreRegister(), offs.Int32Value()); if (unpoison_reference) { MaybeUnpoisonHeapReference(dest.AsCoreRegister()); } } void MipsAssembler::LoadRawPtr(ManagedRegister mdest, ManagedRegister base, Offset offs) { MipsManagedRegister dest = mdest.AsMips(); CHECK(dest.IsCoreRegister() && base.AsMips().IsCoreRegister()); LoadFromOffset(kLoadWord, dest.AsCoreRegister(), base.AsMips().AsCoreRegister(), offs.Int32Value()); } void MipsAssembler::LoadRawPtrFromThread(ManagedRegister mdest, ThreadOffset32 offs) { MipsManagedRegister dest = mdest.AsMips(); CHECK(dest.IsCoreRegister()); LoadFromOffset(kLoadWord, dest.AsCoreRegister(), S1, offs.Int32Value()); } void MipsAssembler::SignExtend(ManagedRegister /*mreg*/, size_t /*size*/) { UNIMPLEMENTED(FATAL) << "no sign extension necessary for mips"; } void MipsAssembler::ZeroExtend(ManagedRegister /*mreg*/, size_t /*size*/) { UNIMPLEMENTED(FATAL) << "no zero extension necessary for mips"; } void MipsAssembler::Move(ManagedRegister mdest, ManagedRegister msrc, size_t size) { MipsManagedRegister dest = mdest.AsMips(); MipsManagedRegister src = msrc.AsMips(); if (!dest.Equals(src)) { if (dest.IsCoreRegister()) { CHECK(src.IsCoreRegister()) << src; Move(dest.AsCoreRegister(), src.AsCoreRegister()); } else if (dest.IsFRegister()) { CHECK(src.IsFRegister()) << src; if (size == kMipsWordSize) { MovS(dest.AsFRegister(), src.AsFRegister()); } else { CHECK_EQ(kMipsDoublewordSize, size); MovD(dest.AsFRegister(), src.AsFRegister()); } } else if (dest.IsDRegister()) { CHECK(src.IsDRegister()) << src; MovD(dest.AsOverlappingDRegisterLow(), src.AsOverlappingDRegisterLow()); } else { CHECK(dest.IsRegisterPair()) << dest; CHECK(src.IsRegisterPair()) << src; // Ensure that the first move doesn't clobber the input of the second. if (src.AsRegisterPairHigh() != dest.AsRegisterPairLow()) { Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow()); Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh()); } else { Move(dest.AsRegisterPairHigh(), src.AsRegisterPairHigh()); Move(dest.AsRegisterPairLow(), src.AsRegisterPairLow()); } } } } void MipsAssembler::CopyRef(FrameOffset dest, FrameOffset src, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); } void MipsAssembler::CopyRawPtrFromThread(FrameOffset fr_offs, ThreadOffset32 thr_offs, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), S1, thr_offs.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, fr_offs.Int32Value()); } void MipsAssembler::CopyRawPtrToThread(ThreadOffset32 thr_offs, FrameOffset fr_offs, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, fr_offs.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), S1, thr_offs.Int32Value()); } void MipsAssembler::Copy(FrameOffset dest, FrameOffset src, ManagedRegister mscratch, size_t size) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; CHECK(size == kMipsWordSize || size == kMipsDoublewordSize) << size; if (size == kMipsWordSize) { LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); } else if (size == kMipsDoublewordSize) { LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value()); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, src.Int32Value() + kMipsWordSize); StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, dest.Int32Value() + kMipsWordSize); } } void MipsAssembler::Copy(FrameOffset dest, ManagedRegister src_base, Offset src_offset, ManagedRegister mscratch, size_t size) { Register scratch = mscratch.AsMips().AsCoreRegister(); CHECK_EQ(size, kMipsWordSize); LoadFromOffset(kLoadWord, scratch, src_base.AsMips().AsCoreRegister(), src_offset.Int32Value()); StoreToOffset(kStoreWord, scratch, SP, dest.Int32Value()); } void MipsAssembler::Copy(ManagedRegister dest_base, Offset dest_offset, FrameOffset src, ManagedRegister mscratch, size_t size) { Register scratch = mscratch.AsMips().AsCoreRegister(); CHECK_EQ(size, kMipsWordSize); LoadFromOffset(kLoadWord, scratch, SP, src.Int32Value()); StoreToOffset(kStoreWord, scratch, dest_base.AsMips().AsCoreRegister(), dest_offset.Int32Value()); } void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED, FrameOffset src_base ATTRIBUTE_UNUSED, Offset src_offset ATTRIBUTE_UNUSED, ManagedRegister mscratch ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "no MIPS implementation"; } void MipsAssembler::Copy(ManagedRegister dest, Offset dest_offset, ManagedRegister src, Offset src_offset, ManagedRegister mscratch, size_t size) { CHECK_EQ(size, kMipsWordSize); Register scratch = mscratch.AsMips().AsCoreRegister(); LoadFromOffset(kLoadWord, scratch, src.AsMips().AsCoreRegister(), src_offset.Int32Value()); StoreToOffset(kStoreWord, scratch, dest.AsMips().AsCoreRegister(), dest_offset.Int32Value()); } void MipsAssembler::Copy(FrameOffset dest ATTRIBUTE_UNUSED, Offset dest_offset ATTRIBUTE_UNUSED, FrameOffset src ATTRIBUTE_UNUSED, Offset src_offset ATTRIBUTE_UNUSED, ManagedRegister mscratch ATTRIBUTE_UNUSED, size_t size ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "no MIPS implementation"; } void MipsAssembler::MemoryBarrier(ManagedRegister) { // TODO: sync? UNIMPLEMENTED(FATAL) << "no MIPS implementation"; } void MipsAssembler::CreateHandleScopeEntry(ManagedRegister mout_reg, FrameOffset handle_scope_offset, ManagedRegister min_reg, bool null_allowed) { MipsManagedRegister out_reg = mout_reg.AsMips(); MipsManagedRegister in_reg = min_reg.AsMips(); CHECK(in_reg.IsNoRegister() || in_reg.IsCoreRegister()) << in_reg; CHECK(out_reg.IsCoreRegister()) << out_reg; if (null_allowed) { MipsLabel null_arg; // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is // the address in the handle scope holding the reference. // E.g. out_reg = (handle == 0) ? 0 : (SP+handle_offset). if (in_reg.IsNoRegister()) { LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); in_reg = out_reg; } if (!out_reg.Equals(in_reg)) { LoadConst32(out_reg.AsCoreRegister(), 0); } Beqz(in_reg.AsCoreRegister(), &null_arg); Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); Bind(&null_arg); } else { Addiu32(out_reg.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); } } void MipsAssembler::CreateHandleScopeEntry(FrameOffset out_off, FrameOffset handle_scope_offset, ManagedRegister mscratch, bool null_allowed) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; if (null_allowed) { MipsLabel null_arg; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); // Null values get a handle scope entry value of 0. Otherwise, the handle scope entry is // the address in the handle scope holding the reference. // E.g. scratch = (scratch == 0) ? 0 : (SP+handle_scope_offset). Beqz(scratch.AsCoreRegister(), &null_arg); Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); Bind(&null_arg); } else { Addiu32(scratch.AsCoreRegister(), SP, handle_scope_offset.Int32Value()); } StoreToOffset(kStoreWord, scratch.AsCoreRegister(), SP, out_off.Int32Value()); } // Given a handle scope entry, load the associated reference. void MipsAssembler::LoadReferenceFromHandleScope(ManagedRegister mout_reg, ManagedRegister min_reg) { MipsManagedRegister out_reg = mout_reg.AsMips(); MipsManagedRegister in_reg = min_reg.AsMips(); CHECK(out_reg.IsCoreRegister()) << out_reg; CHECK(in_reg.IsCoreRegister()) << in_reg; MipsLabel null_arg; if (!out_reg.Equals(in_reg)) { LoadConst32(out_reg.AsCoreRegister(), 0); } Beqz(in_reg.AsCoreRegister(), &null_arg); LoadFromOffset(kLoadWord, out_reg.AsCoreRegister(), in_reg.AsCoreRegister(), 0); Bind(&null_arg); } void MipsAssembler::VerifyObject(ManagedRegister src ATTRIBUTE_UNUSED, bool could_be_null ATTRIBUTE_UNUSED) { // TODO: not validating references. } void MipsAssembler::VerifyObject(FrameOffset src ATTRIBUTE_UNUSED, bool could_be_null ATTRIBUTE_UNUSED) { // TODO: not validating references. } void MipsAssembler::Call(ManagedRegister mbase, Offset offset, ManagedRegister mscratch) { MipsManagedRegister base = mbase.AsMips(); MipsManagedRegister scratch = mscratch.AsMips(); CHECK(base.IsCoreRegister()) << base; CHECK(scratch.IsCoreRegister()) << scratch; LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), base.AsCoreRegister(), offset.Int32Value()); Jalr(scratch.AsCoreRegister()); NopIfNoReordering(); // TODO: place reference map on call. } void MipsAssembler::Call(FrameOffset base, Offset offset, ManagedRegister mscratch) { MipsManagedRegister scratch = mscratch.AsMips(); CHECK(scratch.IsCoreRegister()) << scratch; // Call *(*(SP + base) + offset) LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), SP, base.Int32Value()); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), scratch.AsCoreRegister(), offset.Int32Value()); Jalr(scratch.AsCoreRegister()); NopIfNoReordering(); // TODO: place reference map on call. } void MipsAssembler::CallFromThread(ThreadOffset32 offset ATTRIBUTE_UNUSED, ManagedRegister mscratch ATTRIBUTE_UNUSED) { UNIMPLEMENTED(FATAL) << "no mips implementation"; } void MipsAssembler::GetCurrentThread(ManagedRegister tr) { Move(tr.AsMips().AsCoreRegister(), S1); } void MipsAssembler::GetCurrentThread(FrameOffset offset, ManagedRegister mscratch ATTRIBUTE_UNUSED) { StoreToOffset(kStoreWord, S1, SP, offset.Int32Value()); } void MipsAssembler::ExceptionPoll(ManagedRegister mscratch, size_t stack_adjust) { MipsManagedRegister scratch = mscratch.AsMips(); exception_blocks_.emplace_back(scratch, stack_adjust); LoadFromOffset(kLoadWord, scratch.AsCoreRegister(), S1, Thread::ExceptionOffset<kMipsPointerSize>().Int32Value()); Bnez(scratch.AsCoreRegister(), exception_blocks_.back().Entry()); } void MipsAssembler::EmitExceptionPoll(MipsExceptionSlowPath* exception) { Bind(exception->Entry()); if (exception->stack_adjust_ != 0) { // Fix up the frame. DecreaseFrameSize(exception->stack_adjust_); } // Pass exception object as argument. // Don't care about preserving A0 as this call won't return. CheckEntrypointTypes<kQuickDeliverException, void, mirror::Object*>(); Move(A0, exception->scratch_.AsCoreRegister()); // Set up call to Thread::Current()->pDeliverException. LoadFromOffset(kLoadWord, T9, S1, QUICK_ENTRYPOINT_OFFSET(kMipsPointerSize, pDeliverException).Int32Value()); Jr(T9); NopIfNoReordering(); // Call never returns. Break(); } } // namespace mips } // namespace art