/* * Copyright (C) 2014 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #include "ssa_liveness_analysis.h" #include "base/bit_vector-inl.h" #include "code_generator.h" #include "linear_order.h" #include "nodes.h" namespace art { void SsaLivenessAnalysis::Analyze() { // Compute the linear order directly in the graph's data structure // (there are no more following graph mutations). LinearizeGraph(graph_, &graph_->linear_order_); // Liveness analysis. NumberInstructions(); ComputeLiveness(); } void SsaLivenessAnalysis::NumberInstructions() { int ssa_index = 0; size_t lifetime_position = 0; // Each instruction gets a lifetime position, and a block gets a lifetime // start and end position. Non-phi instructions have a distinct lifetime position than // the block they are in. Phi instructions have the lifetime start of their block as // lifetime position. // // Because the register allocator will insert moves in the graph, we need // to differentiate between the start and end of an instruction. Adding 2 to // the lifetime position for each instruction ensures the start of an // instruction is different than the end of the previous instruction. for (HBasicBlock* block : graph_->GetLinearOrder()) { block->SetLifetimeStart(lifetime_position); for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) { HInstruction* current = inst_it.Current(); codegen_->AllocateLocations(current); LocationSummary* locations = current->GetLocations(); if (locations != nullptr && locations->Out().IsValid()) { instructions_from_ssa_index_.push_back(current); current->SetSsaIndex(ssa_index++); current->SetLiveInterval( LiveInterval::MakeInterval(allocator_, current->GetType(), current)); } current->SetLifetimePosition(lifetime_position); } lifetime_position += 2; // Add a null marker to notify we are starting a block. instructions_from_lifetime_position_.push_back(nullptr); for (HInstructionIterator inst_it(block->GetInstructions()); !inst_it.Done(); inst_it.Advance()) { HInstruction* current = inst_it.Current(); codegen_->AllocateLocations(current); LocationSummary* locations = current->GetLocations(); if (locations != nullptr && locations->Out().IsValid()) { instructions_from_ssa_index_.push_back(current); current->SetSsaIndex(ssa_index++); current->SetLiveInterval( LiveInterval::MakeInterval(allocator_, current->GetType(), current)); } instructions_from_lifetime_position_.push_back(current); current->SetLifetimePosition(lifetime_position); lifetime_position += 2; } block->SetLifetimeEnd(lifetime_position); } number_of_ssa_values_ = ssa_index; } void SsaLivenessAnalysis::ComputeLiveness() { for (HBasicBlock* block : graph_->GetLinearOrder()) { block_infos_[block->GetBlockId()] = new (allocator_) BlockInfo(allocator_, *block, number_of_ssa_values_); } // Compute the live ranges, as well as the initial live_in, live_out, and kill sets. // This method does not handle backward branches for the sets, therefore live_in // and live_out sets are not yet correct. ComputeLiveRanges(); // Do a fixed point calculation to take into account backward branches, // that will update live_in of loop headers, and therefore live_out and live_in // of blocks in the loop. ComputeLiveInAndLiveOutSets(); } void SsaLivenessAnalysis::RecursivelyProcessInputs(HInstruction* current, HInstruction* actual_user, BitVector* live_in) { HInputsRef inputs = current->GetInputs(); for (size_t i = 0; i < inputs.size(); ++i) { HInstruction* input = inputs[i]; bool has_in_location = current->GetLocations()->InAt(i).IsValid(); bool has_out_location = input->GetLocations()->Out().IsValid(); if (has_in_location) { DCHECK(has_out_location) << "Instruction " << current->DebugName() << current->GetId() << " expects an input value at index " << i << " but " << input->DebugName() << input->GetId() << " does not produce one."; DCHECK(input->HasSsaIndex()); // `input` generates a result used by `current`. Add use and update // the live-in set. input->GetLiveInterval()->AddUse(current, /* environment= */ nullptr, i, actual_user); live_in->SetBit(input->GetSsaIndex()); } else if (has_out_location) { // `input` generates a result but it is not used by `current`. } else { // `input` is inlined into `current`. Walk over its inputs and record // uses at `current`. DCHECK(input->IsEmittedAtUseSite()); // Check that the inlined input is not a phi. Recursing on loop phis could // lead to an infinite loop. DCHECK(!input->IsPhi()); DCHECK(!input->HasEnvironment()); RecursivelyProcessInputs(input, actual_user, live_in); } } } void SsaLivenessAnalysis::ProcessEnvironment(HInstruction* current, HInstruction* actual_user, BitVector* live_in) { for (HEnvironment* environment = current->GetEnvironment(); environment != nullptr; environment = environment->GetParent()) { // Handle environment uses. See statements (b) and (c) of the // SsaLivenessAnalysis. for (size_t i = 0, e = environment->Size(); i < e; ++i) { HInstruction* instruction = environment->GetInstructionAt(i); if (instruction == nullptr) { continue; } bool should_be_live = ShouldBeLiveForEnvironment(current, instruction); // If this environment use does not keep the instruction live, it does not // affect the live range of that instruction. if (should_be_live) { CHECK(instruction->HasSsaIndex()) << instruction->DebugName(); live_in->SetBit(instruction->GetSsaIndex()); instruction->GetLiveInterval()->AddUse(current, environment, i, actual_user); } } } } void SsaLivenessAnalysis::ComputeLiveRanges() { // Do a post order visit, adding inputs of instructions live in the block where // that instruction is defined, and killing instructions that are being visited. for (HBasicBlock* block : ReverseRange(graph_->GetLinearOrder())) { BitVector* kill = GetKillSet(*block); BitVector* live_in = GetLiveInSet(*block); // Set phi inputs of successors of this block corresponding to this block // as live_in. for (HBasicBlock* successor : block->GetSuccessors()) { live_in->Union(GetLiveInSet(*successor)); if (successor->IsCatchBlock()) { // Inputs of catch phis will be kept alive through their environment // uses, allowing the runtime to copy their values to the corresponding // catch phi spill slots when an exception is thrown. // The only instructions which may not be recorded in the environments // are constants created by the SSA builder as typed equivalents of // untyped constants from the bytecode, or phis with only such constants // as inputs (verified by GraphChecker). Their raw binary value must // therefore be the same and we only need to keep alive one. } else { size_t phi_input_index = successor->GetPredecessorIndexOf(block); for (HInstructionIterator phi_it(successor->GetPhis()); !phi_it.Done(); phi_it.Advance()) { HInstruction* phi = phi_it.Current(); HInstruction* input = phi->InputAt(phi_input_index); input->GetLiveInterval()->AddPhiUse(phi, phi_input_index, block); // A phi input whose last user is the phi dies at the end of the predecessor block, // and not at the phi's lifetime position. live_in->SetBit(input->GetSsaIndex()); } } } // Add a range that covers this block to all instructions live_in because of successors. // Instructions defined in this block will have their start of the range adjusted. for (uint32_t idx : live_in->Indexes()) { HInstruction* current = GetInstructionFromSsaIndex(idx); current->GetLiveInterval()->AddRange(block->GetLifetimeStart(), block->GetLifetimeEnd()); } for (HBackwardInstructionIterator back_it(block->GetInstructions()); !back_it.Done(); back_it.Advance()) { HInstruction* current = back_it.Current(); if (current->HasSsaIndex()) { // Kill the instruction and shorten its interval. kill->SetBit(current->GetSsaIndex()); live_in->ClearBit(current->GetSsaIndex()); current->GetLiveInterval()->SetFrom(current->GetLifetimePosition()); } // Process inputs of instructions. if (current->IsEmittedAtUseSite()) { if (kIsDebugBuild) { DCHECK(!current->GetLocations()->Out().IsValid()); for (const HUseListNode<HInstruction*>& use : current->GetUses()) { HInstruction* user = use.GetUser(); size_t index = use.GetIndex(); DCHECK(!user->GetLocations()->InAt(index).IsValid()); } DCHECK(!current->HasEnvironmentUses()); } } else { // Process the environment first, because we know their uses come after // or at the same liveness position of inputs. ProcessEnvironment(current, current, live_in); // Special case implicit null checks. We want their environment uses to be // emitted at the instruction doing the actual null check. HNullCheck* check = current->GetImplicitNullCheck(); if (check != nullptr) { ProcessEnvironment(check, current, live_in); } RecursivelyProcessInputs(current, current, live_in); } } // Kill phis defined in this block. for (HInstructionIterator inst_it(block->GetPhis()); !inst_it.Done(); inst_it.Advance()) { HInstruction* current = inst_it.Current(); if (current->HasSsaIndex()) { kill->SetBit(current->GetSsaIndex()); live_in->ClearBit(current->GetSsaIndex()); LiveInterval* interval = current->GetLiveInterval(); DCHECK((interval->GetFirstRange() == nullptr) || (interval->GetStart() == current->GetLifetimePosition())); interval->SetFrom(current->GetLifetimePosition()); } } if (block->IsLoopHeader()) { if (kIsDebugBuild) { CheckNoLiveInIrreducibleLoop(*block); } size_t last_position = block->GetLoopInformation()->GetLifetimeEnd(); // For all live_in instructions at the loop header, we need to create a range // that covers the full loop. for (uint32_t idx : live_in->Indexes()) { HInstruction* current = GetInstructionFromSsaIndex(idx); current->GetLiveInterval()->AddLoopRange(block->GetLifetimeStart(), last_position); } } } } void SsaLivenessAnalysis::ComputeLiveInAndLiveOutSets() { bool changed; do { changed = false; for (const HBasicBlock* block : graph_->GetPostOrder()) { // The live_in set depends on the kill set (which does not // change in this loop), and the live_out set. If the live_out // set does not change, there is no need to update the live_in set. if (UpdateLiveOut(*block) && UpdateLiveIn(*block)) { if (kIsDebugBuild) { CheckNoLiveInIrreducibleLoop(*block); } changed = true; } } } while (changed); } bool SsaLivenessAnalysis::UpdateLiveOut(const HBasicBlock& block) { BitVector* live_out = GetLiveOutSet(block); bool changed = false; // The live_out set of a block is the union of live_in sets of its successors. for (HBasicBlock* successor : block.GetSuccessors()) { if (live_out->Union(GetLiveInSet(*successor))) { changed = true; } } return changed; } bool SsaLivenessAnalysis::UpdateLiveIn(const HBasicBlock& block) { BitVector* live_out = GetLiveOutSet(block); BitVector* kill = GetKillSet(block); BitVector* live_in = GetLiveInSet(block); // If live_out is updated (because of backward branches), we need to make // sure instructions in live_out are also in live_in, unless they are killed // by this block. return live_in->UnionIfNotIn(live_out, kill); } void LiveInterval::DumpWithContext(std::ostream& stream, const CodeGenerator& codegen) const { Dump(stream); if (IsFixed()) { stream << ", register:" << GetRegister() << "("; if (IsFloatingPoint()) { codegen.DumpFloatingPointRegister(stream, GetRegister()); } else { codegen.DumpCoreRegister(stream, GetRegister()); } stream << ")"; } else { stream << ", spill slot:" << GetSpillSlot(); } stream << ", requires_register:" << (GetDefinedBy() != nullptr && RequiresRegister()); if (GetParent()->GetDefinedBy() != nullptr) { stream << ", defined_by:" << GetParent()->GetDefinedBy()->GetKind(); stream << "(" << GetParent()->GetDefinedBy()->GetLifetimePosition() << ")"; } } static int RegisterOrLowRegister(Location location) { return location.IsPair() ? location.low() : location.reg(); } int LiveInterval::FindFirstRegisterHint(size_t* free_until, const SsaLivenessAnalysis& liveness) const { DCHECK(!IsHighInterval()); if (IsTemp()) return kNoRegister; if (GetParent() == this && defined_by_ != nullptr) { // This is the first interval for the instruction. Try to find // a register based on its definition. DCHECK_EQ(defined_by_->GetLiveInterval(), this); int hint = FindHintAtDefinition(); if (hint != kNoRegister && free_until[hint] > GetStart()) { return hint; } } if (IsSplit() && liveness.IsAtBlockBoundary(GetStart() / 2)) { // If the start of this interval is at a block boundary, we look at the // location of the interval in blocks preceding the block this interval // starts at. If one location is a register we return it as a hint. This // will avoid a move between the two blocks. HBasicBlock* block = liveness.GetBlockFromPosition(GetStart() / 2); size_t next_register_use = FirstRegisterUse(); for (HBasicBlock* predecessor : block->GetPredecessors()) { size_t position = predecessor->GetLifetimeEnd() - 1; // We know positions above GetStart() do not have a location yet. if (position < GetStart()) { LiveInterval* existing = GetParent()->GetSiblingAt(position); if (existing != nullptr && existing->HasRegister() // It's worth using that register if it is available until // the next use. && (free_until[existing->GetRegister()] >= next_register_use)) { return existing->GetRegister(); } } } } size_t start = GetStart(); size_t end = GetEnd(); for (const UsePosition& use : GetUses()) { size_t use_position = use.GetPosition(); if (use_position > end) { break; } if (use_position >= start && !use.IsSynthesized()) { HInstruction* user = use.GetUser(); size_t input_index = use.GetInputIndex(); if (user->IsPhi()) { // If the phi has a register, try to use the same. Location phi_location = user->GetLiveInterval()->ToLocation(); if (phi_location.IsRegisterKind()) { DCHECK(SameRegisterKind(phi_location)); int reg = RegisterOrLowRegister(phi_location); if (free_until[reg] >= use_position) { return reg; } } // If the instruction dies at the phi assignment, we can try having the // same register. if (end == user->GetBlock()->GetPredecessors()[input_index]->GetLifetimeEnd()) { HInputsRef inputs = user->GetInputs(); for (size_t i = 0; i < inputs.size(); ++i) { if (i == input_index) { continue; } Location location = inputs[i]->GetLiveInterval()->GetLocationAt( user->GetBlock()->GetPredecessors()[i]->GetLifetimeEnd() - 1); if (location.IsRegisterKind()) { int reg = RegisterOrLowRegister(location); if (free_until[reg] >= use_position) { return reg; } } } } } else { // If the instruction is expected in a register, try to use it. LocationSummary* locations = user->GetLocations(); Location expected = locations->InAt(use.GetInputIndex()); // We use the user's lifetime position - 1 (and not `use_position`) because the // register is blocked at the beginning of the user. size_t position = user->GetLifetimePosition() - 1; if (expected.IsRegisterKind()) { DCHECK(SameRegisterKind(expected)); int reg = RegisterOrLowRegister(expected); if (free_until[reg] >= position) { return reg; } } } } } return kNoRegister; } int LiveInterval::FindHintAtDefinition() const { if (defined_by_->IsPhi()) { // Try to use the same register as one of the inputs. const ArenaVector<HBasicBlock*>& predecessors = defined_by_->GetBlock()->GetPredecessors(); HInputsRef inputs = defined_by_->GetInputs(); for (size_t i = 0; i < inputs.size(); ++i) { size_t end = predecessors[i]->GetLifetimeEnd(); LiveInterval* input_interval = inputs[i]->GetLiveInterval()->GetSiblingAt(end - 1); if (input_interval->GetEnd() == end) { // If the input dies at the end of the predecessor, we know its register can // be reused. Location input_location = input_interval->ToLocation(); if (input_location.IsRegisterKind()) { DCHECK(SameRegisterKind(input_location)); return RegisterOrLowRegister(input_location); } } } } else { LocationSummary* locations = GetDefinedBy()->GetLocations(); Location out = locations->Out(); if (out.IsUnallocated() && out.GetPolicy() == Location::kSameAsFirstInput) { // Try to use the same register as the first input. LiveInterval* input_interval = GetDefinedBy()->InputAt(0)->GetLiveInterval()->GetSiblingAt(GetStart() - 1); if (input_interval->GetEnd() == GetStart()) { // If the input dies at the start of this instruction, we know its register can // be reused. Location location = input_interval->ToLocation(); if (location.IsRegisterKind()) { DCHECK(SameRegisterKind(location)); return RegisterOrLowRegister(location); } } } } return kNoRegister; } bool LiveInterval::SameRegisterKind(Location other) const { if (IsFloatingPoint()) { if (IsLowInterval() || IsHighInterval()) { return other.IsFpuRegisterPair(); } else { return other.IsFpuRegister(); } } else { if (IsLowInterval() || IsHighInterval()) { return other.IsRegisterPair(); } else { return other.IsRegister(); } } } size_t LiveInterval::NumberOfSpillSlotsNeeded() const { // For a SIMD operation, compute the number of needed spill slots. // TODO: do through vector type? HInstruction* definition = GetParent()->GetDefinedBy(); if (definition != nullptr && HVecOperation::ReturnsSIMDValue(definition)) { if (definition->IsPhi()) { definition = definition->InputAt(1); // SIMD always appears on back-edge } return definition->AsVecOperation()->GetVectorNumberOfBytes() / kVRegSize; } // Return number of needed spill slots based on type. return (type_ == DataType::Type::kInt64 || type_ == DataType::Type::kFloat64) ? 2 : 1; } Location LiveInterval::ToLocation() const { DCHECK(!IsHighInterval()); if (HasRegister()) { if (IsFloatingPoint()) { if (HasHighInterval()) { return Location::FpuRegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister()); } else { return Location::FpuRegisterLocation(GetRegister()); } } else { if (HasHighInterval()) { return Location::RegisterPairLocation(GetRegister(), GetHighInterval()->GetRegister()); } else { return Location::RegisterLocation(GetRegister()); } } } else { HInstruction* defined_by = GetParent()->GetDefinedBy(); if (defined_by->IsConstant()) { return defined_by->GetLocations()->Out(); } else if (GetParent()->HasSpillSlot()) { switch (NumberOfSpillSlotsNeeded()) { case 1: return Location::StackSlot(GetParent()->GetSpillSlot()); case 2: return Location::DoubleStackSlot(GetParent()->GetSpillSlot()); case 4: return Location::SIMDStackSlot(GetParent()->GetSpillSlot()); default: LOG(FATAL) << "Unexpected number of spill slots"; UNREACHABLE(); } } else { return Location(); } } } Location LiveInterval::GetLocationAt(size_t position) { LiveInterval* sibling = GetSiblingAt(position); DCHECK(sibling != nullptr); return sibling->ToLocation(); } LiveInterval* LiveInterval::GetSiblingAt(size_t position) { LiveInterval* current = this; while (current != nullptr && !current->IsDefinedAt(position)) { current = current->GetNextSibling(); } return current; } } // namespace art