/* * Copyright (C) 2015 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_OPTIMIZING_CODE_GENERATOR_MIPS_H_ #define ART_COMPILER_OPTIMIZING_CODE_GENERATOR_MIPS_H_ #include "code_generator.h" #include "dex/dex_file_types.h" #include "dex/string_reference.h" #include "dex/type_reference.h" #include "driver/compiler_options.h" #include "nodes.h" #include "parallel_move_resolver.h" #include "utils/mips/assembler_mips.h" namespace art { namespace mips { // InvokeDexCallingConvention registers static constexpr Register kParameterCoreRegisters[] = { A1, A2, A3, T0, T1 }; static constexpr size_t kParameterCoreRegistersLength = arraysize(kParameterCoreRegisters); static constexpr FRegister kParameterFpuRegisters[] = { F8, F10, F12, F14, F16, F18 }; static constexpr size_t kParameterFpuRegistersLength = arraysize(kParameterFpuRegisters); // InvokeRuntimeCallingConvention registers static constexpr Register kRuntimeParameterCoreRegisters[] = { A0, A1, A2, A3 }; static constexpr size_t kRuntimeParameterCoreRegistersLength = arraysize(kRuntimeParameterCoreRegisters); static constexpr FRegister kRuntimeParameterFpuRegisters[] = { F12, F14 }; static constexpr size_t kRuntimeParameterFpuRegistersLength = arraysize(kRuntimeParameterFpuRegisters); static constexpr Register kCoreCalleeSaves[] = { S0, S1, S2, S3, S4, S5, S6, S7, FP, RA }; static constexpr FRegister kFpuCalleeSaves[] = { F20, F22, F24, F26, F28, F30 }; class CodeGeneratorMIPS; VectorRegister VectorRegisterFrom(Location location); class InvokeDexCallingConvention : public CallingConvention<Register, FRegister> { public: InvokeDexCallingConvention() : CallingConvention(kParameterCoreRegisters, kParameterCoreRegistersLength, kParameterFpuRegisters, kParameterFpuRegistersLength, kMipsPointerSize) {} private: DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConvention); }; class InvokeDexCallingConventionVisitorMIPS : public InvokeDexCallingConventionVisitor { public: InvokeDexCallingConventionVisitorMIPS() {} virtual ~InvokeDexCallingConventionVisitorMIPS() {} Location GetNextLocation(DataType::Type type) override; Location GetReturnLocation(DataType::Type type) const override; Location GetMethodLocation() const override; private: InvokeDexCallingConvention calling_convention; DISALLOW_COPY_AND_ASSIGN(InvokeDexCallingConventionVisitorMIPS); }; class InvokeRuntimeCallingConvention : public CallingConvention<Register, FRegister> { public: InvokeRuntimeCallingConvention() : CallingConvention(kRuntimeParameterCoreRegisters, kRuntimeParameterCoreRegistersLength, kRuntimeParameterFpuRegisters, kRuntimeParameterFpuRegistersLength, kMipsPointerSize) {} Location GetReturnLocation(DataType::Type return_type); private: DISALLOW_COPY_AND_ASSIGN(InvokeRuntimeCallingConvention); }; class FieldAccessCallingConventionMIPS : public FieldAccessCallingConvention { public: FieldAccessCallingConventionMIPS() {} Location GetObjectLocation() const override { return Location::RegisterLocation(A1); } Location GetFieldIndexLocation() const override { return Location::RegisterLocation(A0); } Location GetReturnLocation(DataType::Type type) const override { return DataType::Is64BitType(type) ? Location::RegisterPairLocation(V0, V1) : Location::RegisterLocation(V0); } Location GetSetValueLocation(DataType::Type type, bool is_instance) const override { return DataType::Is64BitType(type) ? Location::RegisterPairLocation(A2, A3) : (is_instance ? Location::RegisterLocation(A2) : Location::RegisterLocation(A1)); } Location GetFpuLocation(DataType::Type type ATTRIBUTE_UNUSED) const override { return Location::FpuRegisterLocation(F0); } private: DISALLOW_COPY_AND_ASSIGN(FieldAccessCallingConventionMIPS); }; class ParallelMoveResolverMIPS : public ParallelMoveResolverWithSwap { public: ParallelMoveResolverMIPS(ArenaAllocator* allocator, CodeGeneratorMIPS* codegen) : ParallelMoveResolverWithSwap(allocator), codegen_(codegen) {} void EmitMove(size_t index) override; void EmitSwap(size_t index) override; void SpillScratch(int reg) override; void RestoreScratch(int reg) override; void Exchange(int index1, int index2, bool double_slot); void ExchangeQuadSlots(int index1, int index2); MipsAssembler* GetAssembler() const; private: CodeGeneratorMIPS* const codegen_; DISALLOW_COPY_AND_ASSIGN(ParallelMoveResolverMIPS); }; class SlowPathCodeMIPS : public SlowPathCode { public: explicit SlowPathCodeMIPS(HInstruction* instruction) : SlowPathCode(instruction), entry_label_(), exit_label_() {} MipsLabel* GetEntryLabel() { return &entry_label_; } MipsLabel* GetExitLabel() { return &exit_label_; } private: MipsLabel entry_label_; MipsLabel exit_label_; DISALLOW_COPY_AND_ASSIGN(SlowPathCodeMIPS); }; class LocationsBuilderMIPS : public HGraphVisitor { public: LocationsBuilderMIPS(HGraph* graph, CodeGeneratorMIPS* codegen) : HGraphVisitor(graph), codegen_(codegen) {} #define DECLARE_VISIT_INSTRUCTION(name, super) \ void Visit##name(H##name* instr) override; FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION) FOR_EACH_CONCRETE_INSTRUCTION_MIPS(DECLARE_VISIT_INSTRUCTION) #undef DECLARE_VISIT_INSTRUCTION void VisitInstruction(HInstruction* instruction) override { LOG(FATAL) << "Unreachable instruction " << instruction->DebugName() << " (id " << instruction->GetId() << ")"; } private: void HandleInvoke(HInvoke* invoke); void HandleBinaryOp(HBinaryOperation* operation); void HandleCondition(HCondition* instruction); void HandleShift(HBinaryOperation* operation); void HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info); void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info); Location RegisterOrZeroConstant(HInstruction* instruction); Location FpuRegisterOrConstantForStore(HInstruction* instruction); InvokeDexCallingConventionVisitorMIPS parameter_visitor_; CodeGeneratorMIPS* const codegen_; DISALLOW_COPY_AND_ASSIGN(LocationsBuilderMIPS); }; class InstructionCodeGeneratorMIPS : public InstructionCodeGenerator { public: InstructionCodeGeneratorMIPS(HGraph* graph, CodeGeneratorMIPS* codegen); #define DECLARE_VISIT_INSTRUCTION(name, super) \ void Visit##name(H##name* instr) override; FOR_EACH_CONCRETE_INSTRUCTION_COMMON(DECLARE_VISIT_INSTRUCTION) FOR_EACH_CONCRETE_INSTRUCTION_MIPS(DECLARE_VISIT_INSTRUCTION) #undef DECLARE_VISIT_INSTRUCTION void VisitInstruction(HInstruction* instruction) override { LOG(FATAL) << "Unreachable instruction " << instruction->DebugName() << " (id " << instruction->GetId() << ")"; } MipsAssembler* GetAssembler() const { return assembler_; } // Compare-and-jump packed switch generates approx. 3 + 2.5 * N 32-bit // instructions for N cases. // Table-based packed switch generates approx. 11 32-bit instructions // and N 32-bit data words for N cases. // At N = 6 they come out as 18 and 17 32-bit words respectively. // We switch to the table-based method starting with 7 cases. static constexpr uint32_t kPackedSwitchJumpTableThreshold = 6; void GenerateMemoryBarrier(MemBarrierKind kind); private: void GenerateClassInitializationCheck(SlowPathCodeMIPS* slow_path, Register class_reg); void GenerateSuspendCheck(HSuspendCheck* check, HBasicBlock* successor); void GenerateBitstringTypeCheckCompare(HTypeCheckInstruction* check, Register temp); void HandleBinaryOp(HBinaryOperation* operation); void HandleCondition(HCondition* instruction); void HandleShift(HBinaryOperation* operation); void HandleFieldSet(HInstruction* instruction, const FieldInfo& field_info, uint32_t dex_pc, bool value_can_be_null); void HandleFieldGet(HInstruction* instruction, const FieldInfo& field_info, uint32_t dex_pc); void GenerateMinMaxInt(LocationSummary* locations, bool is_min, bool isR6, DataType::Type type); void GenerateMinMaxFP(LocationSummary* locations, bool is_min, bool isR6, DataType::Type type); void GenerateMinMax(HBinaryOperation*, bool is_min); void GenerateAbsFP(LocationSummary* locations, DataType::Type type, bool isR2OrNewer, bool isR6); // Generate a heap reference load using one register `out`: // // out <- *(out + offset) // // while honoring heap poisoning and/or read barriers (if any). // // Location `maybe_temp` is used when generating a read barrier and // shall be a register in that case; it may be an invalid location // otherwise. void GenerateReferenceLoadOneRegister(HInstruction* instruction, Location out, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option); // Generate a heap reference load using two different registers // `out` and `obj`: // // out <- *(obj + offset) // // while honoring heap poisoning and/or read barriers (if any). // // Location `maybe_temp` is used when generating a Baker's (fast // path) read barrier and shall be a register in that case; it may // be an invalid location otherwise. void GenerateReferenceLoadTwoRegisters(HInstruction* instruction, Location out, Location obj, uint32_t offset, Location maybe_temp, ReadBarrierOption read_barrier_option); // Generate a GC root reference load: // // root <- *(obj + offset) // // while honoring read barriers (if any). void GenerateGcRootFieldLoad(HInstruction* instruction, Location root, Register obj, uint32_t offset, ReadBarrierOption read_barrier_option, MipsLabel* label_low = nullptr); void GenerateIntCompare(IfCondition cond, LocationSummary* locations); // When the function returns `false` it means that the condition holds if `dst` is non-zero // and doesn't hold if `dst` is zero. If it returns `true`, the roles of zero and non-zero // `dst` are exchanged. bool MaterializeIntCompare(IfCondition cond, LocationSummary* input_locations, Register dst); void GenerateIntCompareAndBranch(IfCondition cond, LocationSummary* locations, MipsLabel* label); void GenerateLongCompare(IfCondition cond, LocationSummary* locations); void GenerateLongCompareAndBranch(IfCondition cond, LocationSummary* locations, MipsLabel* label); void GenerateFpCompare(IfCondition cond, bool gt_bias, DataType::Type type, LocationSummary* locations); // When the function returns `false` it means that the condition holds if the condition // code flag `cc` is non-zero and doesn't hold if `cc` is zero. If it returns `true`, // the roles of zero and non-zero values of the `cc` flag are exchanged. bool MaterializeFpCompareR2(IfCondition cond, bool gt_bias, DataType::Type type, LocationSummary* input_locations, int cc); // When the function returns `false` it means that the condition holds if `dst` is non-zero // and doesn't hold if `dst` is zero. If it returns `true`, the roles of zero and non-zero // `dst` are exchanged. bool MaterializeFpCompareR6(IfCondition cond, bool gt_bias, DataType::Type type, LocationSummary* input_locations, FRegister dst); void GenerateFpCompareAndBranch(IfCondition cond, bool gt_bias, DataType::Type type, LocationSummary* locations, MipsLabel* label); void GenerateTestAndBranch(HInstruction* instruction, size_t condition_input_index, MipsLabel* true_target, MipsLabel* false_target); void DivRemOneOrMinusOne(HBinaryOperation* instruction); void DivRemByPowerOfTwo(HBinaryOperation* instruction); void GenerateDivRemWithAnyConstant(HBinaryOperation* instruction); void GenerateDivRemIntegral(HBinaryOperation* instruction); void HandleGoto(HInstruction* got, HBasicBlock* successor); void GenPackedSwitchWithCompares(Register value_reg, int32_t lower_bound, uint32_t num_entries, HBasicBlock* switch_block, HBasicBlock* default_block); void GenTableBasedPackedSwitch(Register value_reg, Register constant_area, int32_t lower_bound, uint32_t num_entries, HBasicBlock* switch_block, HBasicBlock* default_block); int32_t VecAddress(LocationSummary* locations, size_t size, /* out */ Register* adjusted_base); void GenConditionalMoveR2(HSelect* select); void GenConditionalMoveR6(HSelect* select); MipsAssembler* const assembler_; CodeGeneratorMIPS* const codegen_; DISALLOW_COPY_AND_ASSIGN(InstructionCodeGeneratorMIPS); }; class CodeGeneratorMIPS : public CodeGenerator { public: CodeGeneratorMIPS(HGraph* graph, const CompilerOptions& compiler_options, OptimizingCompilerStats* stats = nullptr); virtual ~CodeGeneratorMIPS() {} void ComputeSpillMask() override; bool HasAllocatedCalleeSaveRegisters() const override; void GenerateFrameEntry() override; void GenerateFrameExit() override; void Bind(HBasicBlock* block) override; void MoveConstant(Location location, HConstant* c); size_t GetWordSize() const override { return kMipsWordSize; } size_t GetFloatingPointSpillSlotSize() const override { return GetGraph()->HasSIMD() ? 2 * kMipsDoublewordSize // 16 bytes for each spill. : 1 * kMipsDoublewordSize; // 8 bytes for each spill. } uintptr_t GetAddressOf(HBasicBlock* block) override { return assembler_.GetLabelLocation(GetLabelOf(block)); } HGraphVisitor* GetLocationBuilder() override { return &location_builder_; } HGraphVisitor* GetInstructionVisitor() override { return &instruction_visitor_; } MipsAssembler* GetAssembler() override { return &assembler_; } const MipsAssembler& GetAssembler() const override { return assembler_; } // Emit linker patches. void EmitLinkerPatches(ArenaVector<linker::LinkerPatch>* linker_patches) override; void EmitJitRootPatches(uint8_t* code, const uint8_t* roots_data) override; // Fast path implementation of ReadBarrier::Barrier for a heap // reference field load when Baker's read barriers are used. void GenerateFieldLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, uint32_t offset, Location temp, bool needs_null_check); // Fast path implementation of ReadBarrier::Barrier for a heap // reference array load when Baker's read barriers are used. void GenerateArrayLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, uint32_t data_offset, Location index, Location temp, bool needs_null_check); // Factored implementation, used by GenerateFieldLoadWithBakerReadBarrier, // GenerateArrayLoadWithBakerReadBarrier and some intrinsics. // // Load the object reference located at the address // `obj + offset + (index << scale_factor)`, held by object `obj`, into // `ref`, and mark it if needed. // // If `always_update_field` is true, the value of the reference is // atomically updated in the holder (`obj`). void GenerateReferenceLoadWithBakerReadBarrier(HInstruction* instruction, Location ref, Register obj, uint32_t offset, Location index, ScaleFactor scale_factor, Location temp, bool needs_null_check, bool always_update_field = false); // Generate a read barrier for a heap reference within `instruction` // using a slow path. // // A read barrier for an object reference read from the heap is // implemented as a call to the artReadBarrierSlow runtime entry // point, which is passed the values in locations `ref`, `obj`, and // `offset`: // // mirror::Object* artReadBarrierSlow(mirror::Object* ref, // mirror::Object* obj, // uint32_t offset); // // The `out` location contains the value returned by // artReadBarrierSlow. // // When `index` is provided (i.e. for array accesses), the offset // value passed to artReadBarrierSlow is adjusted to take `index` // into account. void GenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index = Location::NoLocation()); // If read barriers are enabled, generate a read barrier for a heap // reference using a slow path. If heap poisoning is enabled, also // unpoison the reference in `out`. void MaybeGenerateReadBarrierSlow(HInstruction* instruction, Location out, Location ref, Location obj, uint32_t offset, Location index = Location::NoLocation()); // Generate a read barrier for a GC root within `instruction` using // a slow path. // // A read barrier for an object reference GC root is implemented as // a call to the artReadBarrierForRootSlow runtime entry point, // which is passed the value in location `root`: // // mirror::Object* artReadBarrierForRootSlow(GcRoot<mirror::Object>* root); // // The `out` location contains the value returned by // artReadBarrierForRootSlow. void GenerateReadBarrierForRootSlow(HInstruction* instruction, Location out, Location root); void MarkGCCard(Register object, Register value, bool value_can_be_null); // Register allocation. void SetupBlockedRegisters() const override; size_t SaveCoreRegister(size_t stack_index, uint32_t reg_id) override; size_t RestoreCoreRegister(size_t stack_index, uint32_t reg_id) override; size_t SaveFloatingPointRegister(size_t stack_index, uint32_t reg_id) override; size_t RestoreFloatingPointRegister(size_t stack_index, uint32_t reg_id) override; void ClobberRA() { clobbered_ra_ = true; } void DumpCoreRegister(std::ostream& stream, int reg) const override; void DumpFloatingPointRegister(std::ostream& stream, int reg) const override; InstructionSet GetInstructionSet() const override { return InstructionSet::kMips; } const MipsInstructionSetFeatures& GetInstructionSetFeatures() const; MipsLabel* GetLabelOf(HBasicBlock* block) const { return CommonGetLabelOf<MipsLabel>(block_labels_, block); } void Initialize() override { block_labels_ = CommonInitializeLabels<MipsLabel>(); } void Finalize(CodeAllocator* allocator) override; // Code generation helpers. void MoveLocation(Location dst, Location src, DataType::Type dst_type) override; void MoveConstant(Location destination, int32_t value) override; void AddLocationAsTemp(Location location, LocationSummary* locations) override; // Generate code to invoke a runtime entry point. void InvokeRuntime(QuickEntrypointEnum entrypoint, HInstruction* instruction, uint32_t dex_pc, SlowPathCode* slow_path = nullptr) override; // Generate code to invoke a runtime entry point, but do not record // PC-related information in a stack map. void InvokeRuntimeWithoutRecordingPcInfo(int32_t entry_point_offset, HInstruction* instruction, SlowPathCode* slow_path, bool direct); void GenerateInvokeRuntime(int32_t entry_point_offset, bool direct); ParallelMoveResolver* GetMoveResolver() override { return &move_resolver_; } bool NeedsTwoRegisters(DataType::Type type) const override { return type == DataType::Type::kInt64; } // Check if the desired_string_load_kind is supported. If it is, return it, // otherwise return a fall-back kind that should be used instead. HLoadString::LoadKind GetSupportedLoadStringKind( HLoadString::LoadKind desired_string_load_kind) override; // Check if the desired_class_load_kind is supported. If it is, return it, // otherwise return a fall-back kind that should be used instead. HLoadClass::LoadKind GetSupportedLoadClassKind( HLoadClass::LoadKind desired_class_load_kind) override; // Check if the desired_dispatch_info is supported. If it is, return it, // otherwise return a fall-back info that should be used instead. HInvokeStaticOrDirect::DispatchInfo GetSupportedInvokeStaticOrDirectDispatch( const HInvokeStaticOrDirect::DispatchInfo& desired_dispatch_info, ArtMethod* method) override; void GenerateStaticOrDirectCall( HInvokeStaticOrDirect* invoke, Location temp, SlowPathCode* slow_path = nullptr) override; void GenerateVirtualCall( HInvokeVirtual* invoke, Location temp, SlowPathCode* slow_path = nullptr) override; void MoveFromReturnRegister(Location trg ATTRIBUTE_UNUSED, DataType::Type type ATTRIBUTE_UNUSED) override { UNIMPLEMENTED(FATAL) << "Not implemented on MIPS"; } void GenerateNop() override; void GenerateImplicitNullCheck(HNullCheck* instruction) override; void GenerateExplicitNullCheck(HNullCheck* instruction) override; // The PcRelativePatchInfo is used for PC-relative addressing of methods/strings/types, // whether through .data.bimg.rel.ro, .bss, or directly in the boot image. // // The 16-bit halves of the 32-bit PC-relative offset are patched separately, necessitating // two patches/infos. There can be more than two patches/infos if the instruction supplying // the high half is shared with e.g. a slow path, while the low half is supplied by separate // instructions, e.g.: // lui r1, high // patch // addu r1, r1, rbase // lw r2, low(r1) // patch // beqz r2, slow_path // back: // ... // slow_path: // ... // sw r2, low(r1) // patch // b back struct PcRelativePatchInfo : PatchInfo<MipsLabel> { PcRelativePatchInfo(const DexFile* dex_file, uint32_t off_or_idx, const PcRelativePatchInfo* info_high) : PatchInfo<MipsLabel>(dex_file, off_or_idx), pc_rel_label(), patch_info_high(info_high) { } // Label for the instruction corresponding to PC+0. Not bound or used in low half patches. // Not bound in high half patches on R2 when using HMipsComputeBaseMethodAddress. // Bound in high half patches on R2 when using the NAL instruction instead of // HMipsComputeBaseMethodAddress. // Bound in high half patches on R6. MipsLabel pc_rel_label; // Pointer to the info for the high half patch or nullptr if this is the high half patch info. const PcRelativePatchInfo* patch_info_high; private: PcRelativePatchInfo(PcRelativePatchInfo&& other) = delete; DISALLOW_COPY_AND_ASSIGN(PcRelativePatchInfo); }; PcRelativePatchInfo* NewBootImageIntrinsicPatch(uint32_t intrinsic_data, const PcRelativePatchInfo* info_high = nullptr); PcRelativePatchInfo* NewBootImageRelRoPatch(uint32_t boot_image_offset, const PcRelativePatchInfo* info_high = nullptr); PcRelativePatchInfo* NewBootImageMethodPatch(MethodReference target_method, const PcRelativePatchInfo* info_high = nullptr); PcRelativePatchInfo* NewMethodBssEntryPatch(MethodReference target_method, const PcRelativePatchInfo* info_high = nullptr); PcRelativePatchInfo* NewBootImageTypePatch(const DexFile& dex_file, dex::TypeIndex type_index, const PcRelativePatchInfo* info_high = nullptr); PcRelativePatchInfo* NewTypeBssEntryPatch(const DexFile& dex_file, dex::TypeIndex type_index, const PcRelativePatchInfo* info_high = nullptr); PcRelativePatchInfo* NewBootImageStringPatch(const DexFile& dex_file, dex::StringIndex string_index, const PcRelativePatchInfo* info_high = nullptr); PcRelativePatchInfo* NewStringBssEntryPatch(const DexFile& dex_file, dex::StringIndex string_index, const PcRelativePatchInfo* info_high = nullptr); Literal* DeduplicateBootImageAddressLiteral(uint32_t address); void EmitPcRelativeAddressPlaceholderHigh(PcRelativePatchInfo* info_high, Register out, Register base); void LoadBootImageAddress(Register reg, uint32_t boot_image_reference); void AllocateInstanceForIntrinsic(HInvokeStaticOrDirect* invoke, uint32_t boot_image_offset); // The JitPatchInfo is used for JIT string and class loads. struct JitPatchInfo { JitPatchInfo(const DexFile& dex_file, uint64_t idx) : target_dex_file(dex_file), index(idx) { } JitPatchInfo(JitPatchInfo&& other) = default; const DexFile& target_dex_file; // String/type index. uint64_t index; // Label for the instruction loading the most significant half of the address. MipsLabel high_label; // Label for the instruction supplying the least significant half of the address. MipsLabel low_label; }; void PatchJitRootUse(uint8_t* code, const uint8_t* roots_data, const JitPatchInfo& info, uint64_t index_in_table) const; JitPatchInfo* NewJitRootStringPatch(const DexFile& dex_file, dex::StringIndex string_index, Handle<mirror::String> handle); JitPatchInfo* NewJitRootClassPatch(const DexFile& dex_file, dex::TypeIndex type_index, Handle<mirror::Class> handle); private: Register GetInvokeStaticOrDirectExtraParameter(HInvokeStaticOrDirect* invoke, Register temp); using Uint32ToLiteralMap = ArenaSafeMap<uint32_t, Literal*>; Literal* DeduplicateUint32Literal(uint32_t value, Uint32ToLiteralMap* map); PcRelativePatchInfo* NewPcRelativePatch(const DexFile* dex_file, uint32_t offset_or_index, const PcRelativePatchInfo* info_high, ArenaDeque<PcRelativePatchInfo>* patches); template <linker::LinkerPatch (*Factory)(size_t, const DexFile*, uint32_t, uint32_t)> void EmitPcRelativeLinkerPatches(const ArenaDeque<PcRelativePatchInfo>& infos, ArenaVector<linker::LinkerPatch>* linker_patches); // Labels for each block that will be compiled. MipsLabel* block_labels_; MipsLabel frame_entry_label_; LocationsBuilderMIPS location_builder_; InstructionCodeGeneratorMIPS instruction_visitor_; ParallelMoveResolverMIPS move_resolver_; MipsAssembler assembler_; // Deduplication map for 32-bit literals, used for non-patchable boot image addresses. Uint32ToLiteralMap uint32_literals_; // PC-relative method patch info for kBootImageLinkTimePcRelative/kBootImageRelRo. // Also used for type/string patches for kBootImageRelRo (same linker patch as for methods). ArenaDeque<PcRelativePatchInfo> boot_image_method_patches_; // PC-relative method patch info for kBssEntry. ArenaDeque<PcRelativePatchInfo> method_bss_entry_patches_; // PC-relative type patch info for kBootImageLinkTimePcRelative. ArenaDeque<PcRelativePatchInfo> boot_image_type_patches_; // PC-relative type patch info for kBssEntry. ArenaDeque<PcRelativePatchInfo> type_bss_entry_patches_; // PC-relative String patch info for kBootImageLinkTimePcRelative. ArenaDeque<PcRelativePatchInfo> boot_image_string_patches_; // PC-relative String patch info for kBssEntry. ArenaDeque<PcRelativePatchInfo> string_bss_entry_patches_; // PC-relative patch info for IntrinsicObjects. ArenaDeque<PcRelativePatchInfo> boot_image_intrinsic_patches_; // Patches for string root accesses in JIT compiled code. ArenaDeque<JitPatchInfo> jit_string_patches_; // Patches for class root accesses in JIT compiled code. ArenaDeque<JitPatchInfo> jit_class_patches_; // PC-relative loads on R2 clobber RA, which may need to be preserved explicitly in leaf methods. // This is a flag set by pc_relative_fixups_mips and dex_cache_array_fixups_mips optimizations. bool clobbered_ra_; DISALLOW_COPY_AND_ASSIGN(CodeGeneratorMIPS); }; } // namespace mips } // namespace art #endif // ART_COMPILER_OPTIMIZING_CODE_GENERATOR_MIPS_H_