/* * Copyright (C) 2016 The Android Open Source Project * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ #ifndef ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_ #define ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_ #include <map> #include <unordered_set> #include <vector> #include "art_field-inl.h" #include "debug/elf_compilation_unit.h" #include "debug/elf_debug_loc_writer.h" #include "debug/method_debug_info.h" #include "dex/code_item_accessors-inl.h" #include "dex/dex_file-inl.h" #include "dex/dex_file.h" #include "dwarf/debug_abbrev_writer.h" #include "dwarf/debug_info_entry_writer.h" #include "elf/elf_builder.h" #include "heap_poisoning.h" #include "linear_alloc.h" #include "mirror/array.h" #include "mirror/class-inl.h" #include "mirror/class.h" #include "oat_file.h" #include "obj_ptr-inl.h" namespace art { namespace debug { static std::vector<const char*> GetParamNames(const MethodDebugInfo* mi) { std::vector<const char*> names; DCHECK(mi->dex_file != nullptr); CodeItemDebugInfoAccessor accessor(*mi->dex_file, mi->code_item, mi->dex_method_index); if (accessor.HasCodeItem()) { accessor.VisitParameterNames([&](const dex::StringIndex& id) { names.push_back(mi->dex_file->StringDataByIdx(id)); }); } return names; } // Helper class to write .debug_info and its supporting sections. template<typename ElfTypes> class ElfDebugInfoWriter { using Elf_Addr = typename ElfTypes::Addr; public: explicit ElfDebugInfoWriter(ElfBuilder<ElfTypes>* builder) : builder_(builder), debug_abbrev_(&debug_abbrev_buffer_) { } void Start() { builder_->GetDebugInfo()->Start(); } void End() { builder_->GetDebugInfo()->End(); builder_->WriteSection(".debug_abbrev", &debug_abbrev_buffer_); if (!debug_loc_.empty()) { builder_->WriteSection(".debug_loc", &debug_loc_); } if (!debug_ranges_.empty()) { builder_->WriteSection(".debug_ranges", &debug_ranges_); } } private: ElfBuilder<ElfTypes>* builder_; std::vector<uint8_t> debug_abbrev_buffer_; dwarf::DebugAbbrevWriter<> debug_abbrev_; std::vector<uint8_t> debug_loc_; std::vector<uint8_t> debug_ranges_; std::unordered_set<const char*> defined_dex_classes_; // For CHECKs only. template<typename ElfTypes2> friend class ElfCompilationUnitWriter; }; // Helper class to write one compilation unit. // It holds helper methods and temporary state. template<typename ElfTypes> class ElfCompilationUnitWriter { using Elf_Addr = typename ElfTypes::Addr; public: explicit ElfCompilationUnitWriter(ElfDebugInfoWriter<ElfTypes>* owner) : owner_(owner), info_(Is64BitInstructionSet(owner_->builder_->GetIsa()), &owner->debug_abbrev_) { } void Write(const ElfCompilationUnit& compilation_unit) { CHECK(!compilation_unit.methods.empty()); const Elf_Addr base_address = compilation_unit.is_code_address_text_relative ? owner_->builder_->GetText()->GetAddress() : 0; const bool is64bit = Is64BitInstructionSet(owner_->builder_->GetIsa()); using namespace dwarf; // NOLINT. For easy access to DWARF constants. info_.StartTag(DW_TAG_compile_unit); info_.WriteString(DW_AT_producer, "Android dex2oat"); info_.WriteData1(DW_AT_language, DW_LANG_Java); info_.WriteString(DW_AT_comp_dir, "$JAVA_SRC_ROOT"); // The low_pc acts as base address for several other addresses/ranges. info_.WriteAddr(DW_AT_low_pc, base_address + compilation_unit.code_address); info_.WriteSecOffset(DW_AT_stmt_list, compilation_unit.debug_line_offset); // Write .debug_ranges entries covering code ranges of the whole compilation unit. dwarf::Writer<> debug_ranges(&owner_->debug_ranges_); info_.WriteSecOffset(DW_AT_ranges, owner_->debug_ranges_.size()); for (auto mi : compilation_unit.methods) { uint64_t low_pc = mi->code_address - compilation_unit.code_address; uint64_t high_pc = low_pc + mi->code_size; if (is64bit) { debug_ranges.PushUint64(low_pc); debug_ranges.PushUint64(high_pc); } else { debug_ranges.PushUint32(low_pc); debug_ranges.PushUint32(high_pc); } } if (is64bit) { debug_ranges.PushUint64(0); // End of list. debug_ranges.PushUint64(0); } else { debug_ranges.PushUint32(0); // End of list. debug_ranges.PushUint32(0); } const char* last_dex_class_desc = nullptr; for (auto mi : compilation_unit.methods) { DCHECK(mi->dex_file != nullptr); const DexFile* dex = mi->dex_file; CodeItemDebugInfoAccessor accessor(*dex, mi->code_item, mi->dex_method_index); const dex::MethodId& dex_method = dex->GetMethodId(mi->dex_method_index); const dex::ProtoId& dex_proto = dex->GetMethodPrototype(dex_method); const dex::TypeList* dex_params = dex->GetProtoParameters(dex_proto); const char* dex_class_desc = dex->GetMethodDeclaringClassDescriptor(dex_method); const bool is_static = (mi->access_flags & kAccStatic) != 0; // Enclose the method in correct class definition. if (last_dex_class_desc != dex_class_desc) { if (last_dex_class_desc != nullptr) { EndClassTag(); } // Write reference tag for the class we are about to declare. size_t reference_tag_offset = info_.StartTag(DW_TAG_reference_type); type_cache_.emplace(std::string(dex_class_desc), reference_tag_offset); size_t type_attrib_offset = info_.size(); info_.WriteRef4(DW_AT_type, 0); info_.EndTag(); // Declare the class that owns this method. size_t class_offset = StartClassTag(dex_class_desc); info_.UpdateUint32(type_attrib_offset, class_offset); info_.WriteFlagPresent(DW_AT_declaration); // Check that each class is defined only once. bool unique = owner_->defined_dex_classes_.insert(dex_class_desc).second; CHECK(unique) << "Redefinition of " << dex_class_desc; last_dex_class_desc = dex_class_desc; } int start_depth = info_.Depth(); info_.StartTag(DW_TAG_subprogram); WriteName(dex->GetMethodName(dex_method)); info_.WriteAddr(DW_AT_low_pc, base_address + mi->code_address); info_.WriteUdata(DW_AT_high_pc, mi->code_size); std::vector<uint8_t> expr_buffer; Expression expr(&expr_buffer); expr.WriteOpCallFrameCfa(); info_.WriteExprLoc(DW_AT_frame_base, expr); WriteLazyType(dex->GetReturnTypeDescriptor(dex_proto)); // Decode dex register locations for all stack maps. // It might be expensive, so do it just once and reuse the result. std::unique_ptr<const CodeInfo> code_info; std::vector<DexRegisterMap> dex_reg_maps; if (accessor.HasCodeItem() && mi->code_info != nullptr) { code_info.reset(new CodeInfo(mi->code_info)); for (StackMap stack_map : code_info->GetStackMaps()) { dex_reg_maps.push_back(code_info->GetDexRegisterMapOf(stack_map)); } } // Write parameters. DecodeDebugLocalInfo returns them as well, but it does not // guarantee order or uniqueness so it is safer to iterate over them manually. // DecodeDebugLocalInfo might not also be available if there is no debug info. std::vector<const char*> param_names = GetParamNames(mi); uint32_t arg_reg = 0; if (!is_static) { info_.StartTag(DW_TAG_formal_parameter); WriteName("this"); info_.WriteFlagPresent(DW_AT_artificial); WriteLazyType(dex_class_desc); if (accessor.HasCodeItem()) { // Write the stack location of the parameter. const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg; const bool is64bitValue = false; WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address); } arg_reg++; info_.EndTag(); } if (dex_params != nullptr) { for (uint32_t i = 0; i < dex_params->Size(); ++i) { info_.StartTag(DW_TAG_formal_parameter); // Parameter names may not be always available. if (i < param_names.size()) { WriteName(param_names[i]); } // Write the type. const char* type_desc = dex->StringByTypeIdx(dex_params->GetTypeItem(i).type_idx_); WriteLazyType(type_desc); const bool is64bitValue = type_desc[0] == 'D' || type_desc[0] == 'J'; if (accessor.HasCodeItem()) { // Write the stack location of the parameter. const uint32_t vreg = accessor.RegistersSize() - accessor.InsSize() + arg_reg; WriteRegLocation(mi, dex_reg_maps, vreg, is64bitValue, compilation_unit.code_address); } arg_reg += is64bitValue ? 2 : 1; info_.EndTag(); } if (accessor.HasCodeItem()) { DCHECK_EQ(arg_reg, accessor.InsSize()); } } // Write local variables. std::vector<DexFile::LocalInfo> local_infos; if (accessor.DecodeDebugLocalInfo(is_static, mi->dex_method_index, [&](const DexFile::LocalInfo& entry) { local_infos.push_back(entry); })) { for (const DexFile::LocalInfo& var : local_infos) { if (var.reg_ < accessor.RegistersSize() - accessor.InsSize()) { info_.StartTag(DW_TAG_variable); WriteName(var.name_); WriteLazyType(var.descriptor_); bool is64bitValue = var.descriptor_[0] == 'D' || var.descriptor_[0] == 'J'; WriteRegLocation(mi, dex_reg_maps, var.reg_, is64bitValue, compilation_unit.code_address, var.start_address_, var.end_address_); info_.EndTag(); } } } info_.EndTag(); CHECK_EQ(info_.Depth(), start_depth); // Balanced start/end. } if (last_dex_class_desc != nullptr) { EndClassTag(); } FinishLazyTypes(); CloseNamespacesAboveDepth(0); info_.EndTag(); // DW_TAG_compile_unit CHECK_EQ(info_.Depth(), 0); std::vector<uint8_t> buffer; buffer.reserve(info_.data()->size() + KB); // All compilation units share single table which is at the start of .debug_abbrev. const size_t debug_abbrev_offset = 0; WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer); owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size()); } void Write(const ArrayRef<mirror::Class*>& types) REQUIRES_SHARED(Locks::mutator_lock_) { using namespace dwarf; // NOLINT. For easy access to DWARF constants. info_.StartTag(DW_TAG_compile_unit); info_.WriteString(DW_AT_producer, "Android dex2oat"); info_.WriteData1(DW_AT_language, DW_LANG_Java); // Base class references to be patched at the end. std::map<size_t, mirror::Class*> base_class_references; // Already written declarations or definitions. std::map<mirror::Class*, size_t> class_declarations; std::vector<uint8_t> expr_buffer; for (mirror::Class* type : types) { if (type->IsPrimitive()) { // For primitive types the definition and the declaration is the same. if (type->GetPrimitiveType() != Primitive::kPrimVoid) { WriteTypeDeclaration(type->GetDescriptor(nullptr)); } } else if (type->IsArrayClass()) { ObjPtr<mirror::Class> element_type = type->GetComponentType(); uint32_t component_size = type->GetComponentSize(); uint32_t data_offset = mirror::Array::DataOffset(component_size).Uint32Value(); uint32_t length_offset = mirror::Array::LengthOffset().Uint32Value(); CloseNamespacesAboveDepth(0); // Declare in root namespace. info_.StartTag(DW_TAG_array_type); std::string descriptor_string; WriteLazyType(element_type->GetDescriptor(&descriptor_string)); WriteLinkageName(type); info_.WriteUdata(DW_AT_data_member_location, data_offset); info_.StartTag(DW_TAG_subrange_type); Expression count_expr(&expr_buffer); count_expr.WriteOpPushObjectAddress(); count_expr.WriteOpPlusUconst(length_offset); count_expr.WriteOpDerefSize(4); // Array length is always 32-bit wide. info_.WriteExprLoc(DW_AT_count, count_expr); info_.EndTag(); // DW_TAG_subrange_type. info_.EndTag(); // DW_TAG_array_type. } else if (type->IsInterface()) { // Skip. Variables cannot have an interface as a dynamic type. // We do not expose the interface information to the debugger in any way. } else { std::string descriptor_string; const char* desc = type->GetDescriptor(&descriptor_string); size_t class_offset = StartClassTag(desc); class_declarations.emplace(type, class_offset); if (!type->IsVariableSize()) { info_.WriteUdata(DW_AT_byte_size, type->GetObjectSize()); } WriteLinkageName(type); if (type->IsObjectClass()) { // Generate artificial member which is used to get the dynamic type of variable. // The run-time value of this field will correspond to linkage name of some type. // We need to do it only once in j.l.Object since all other types inherit it. info_.StartTag(DW_TAG_member); WriteName(".dynamic_type"); WriteLazyType(sizeof(uintptr_t) == 8 ? "J" : "I"); info_.WriteFlagPresent(DW_AT_artificial); // Create DWARF expression to get the value of the methods_ field. Expression expr(&expr_buffer); // The address of the object has been implicitly pushed on the stack. // Dereference the klass_ field of Object (32-bit; possibly poisoned). DCHECK_EQ(type->ClassOffset().Uint32Value(), 0u); DCHECK_EQ(sizeof(mirror::HeapReference<mirror::Class>), 4u); expr.WriteOpDerefSize(4); if (kPoisonHeapReferences) { expr.WriteOpNeg(); // DWARF stack is pointer sized. Ensure that the high bits are clear. expr.WriteOpConstu(0xFFFFFFFF); expr.WriteOpAnd(); } // Add offset to the methods_ field. expr.WriteOpPlusUconst(mirror::Class::MethodsOffset().Uint32Value()); // Top of stack holds the location of the field now. info_.WriteExprLoc(DW_AT_data_member_location, expr); info_.EndTag(); // DW_TAG_member. } // Base class. ObjPtr<mirror::Class> base_class = type->GetSuperClass(); if (base_class != nullptr) { info_.StartTag(DW_TAG_inheritance); base_class_references.emplace(info_.size(), base_class.Ptr()); info_.WriteRef4(DW_AT_type, 0); info_.WriteUdata(DW_AT_data_member_location, 0); info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public); info_.EndTag(); // DW_TAG_inheritance. } // Member variables. for (uint32_t i = 0, count = type->NumInstanceFields(); i < count; ++i) { ArtField* field = type->GetInstanceField(i); info_.StartTag(DW_TAG_member); WriteName(field->GetName()); WriteLazyType(field->GetTypeDescriptor()); info_.WriteUdata(DW_AT_data_member_location, field->GetOffset().Uint32Value()); uint32_t access_flags = field->GetAccessFlags(); if (access_flags & kAccPublic) { info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_public); } else if (access_flags & kAccProtected) { info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_protected); } else if (access_flags & kAccPrivate) { info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private); } info_.EndTag(); // DW_TAG_member. } if (type->IsStringClass()) { // Emit debug info about an artifical class member for java.lang.String which represents // the first element of the data stored in a string instance. Consumers of the debug // info will be able to read the content of java.lang.String based on the count (real // field) and based on the location of this data member. info_.StartTag(DW_TAG_member); WriteName("value"); // We don't support fields with C like array types so we just say its type is java char. WriteLazyType("C"); // char. info_.WriteUdata(DW_AT_data_member_location, mirror::String::ValueOffset().Uint32Value()); info_.WriteSdata(DW_AT_accessibility, DW_ACCESS_private); info_.EndTag(); // DW_TAG_member. } EndClassTag(); } } // Write base class declarations. for (const auto& base_class_reference : base_class_references) { size_t reference_offset = base_class_reference.first; mirror::Class* base_class = base_class_reference.second; const auto it = class_declarations.find(base_class); if (it != class_declarations.end()) { info_.UpdateUint32(reference_offset, it->second); } else { // Declare base class. We can not use the standard WriteLazyType // since we want to avoid the DW_TAG_reference_tag wrapping. std::string tmp_storage; const char* base_class_desc = base_class->GetDescriptor(&tmp_storage); size_t base_class_declaration_offset = StartClassTag(base_class_desc); info_.WriteFlagPresent(DW_AT_declaration); WriteLinkageName(base_class); EndClassTag(); class_declarations.emplace(base_class, base_class_declaration_offset); info_.UpdateUint32(reference_offset, base_class_declaration_offset); } } FinishLazyTypes(); CloseNamespacesAboveDepth(0); info_.EndTag(); // DW_TAG_compile_unit. CHECK_EQ(info_.Depth(), 0); std::vector<uint8_t> buffer; buffer.reserve(info_.data()->size() + KB); // All compilation units share single table which is at the start of .debug_abbrev. const size_t debug_abbrev_offset = 0; WriteDebugInfoCU(debug_abbrev_offset, info_, &buffer); owner_->builder_->GetDebugInfo()->WriteFully(buffer.data(), buffer.size()); } // Write table into .debug_loc which describes location of dex register. // The dex register might be valid only at some points and it might // move between machine registers and stack. void WriteRegLocation(const MethodDebugInfo* method_info, const std::vector<DexRegisterMap>& dex_register_maps, uint16_t vreg, bool is64bitValue, uint64_t compilation_unit_code_address, uint32_t dex_pc_low = 0, uint32_t dex_pc_high = 0xFFFFFFFF) { WriteDebugLocEntry(method_info, dex_register_maps, vreg, is64bitValue, compilation_unit_code_address, dex_pc_low, dex_pc_high, owner_->builder_->GetIsa(), &info_, &owner_->debug_loc_, &owner_->debug_ranges_); } // Linkage name uniquely identifies type. // It is used to determine the dynamic type of objects. // We use the methods_ field of class since it is unique and it is not moved by the GC. void WriteLinkageName(mirror::Class* type) REQUIRES_SHARED(Locks::mutator_lock_) { auto* methods_ptr = type->GetMethodsPtr(); if (methods_ptr == nullptr) { // Some types might have no methods. Allocate empty array instead. LinearAlloc* allocator = Runtime::Current()->GetLinearAlloc(); void* storage = allocator->Alloc(Thread::Current(), sizeof(LengthPrefixedArray<ArtMethod>)); methods_ptr = new (storage) LengthPrefixedArray<ArtMethod>(0); type->SetMethodsPtr(methods_ptr, 0, 0); DCHECK(type->GetMethodsPtr() != nullptr); } char name[32]; snprintf(name, sizeof(name), "0x%" PRIXPTR, reinterpret_cast<uintptr_t>(methods_ptr)); info_.WriteString(dwarf::DW_AT_linkage_name, name); } // Some types are difficult to define as we go since they need // to be enclosed in the right set of namespaces. Therefore we // just define all types lazily at the end of compilation unit. void WriteLazyType(const char* type_descriptor) { if (type_descriptor != nullptr && type_descriptor[0] != 'V') { lazy_types_.emplace(std::string(type_descriptor), info_.size()); info_.WriteRef4(dwarf::DW_AT_type, 0); } } void FinishLazyTypes() { for (const auto& lazy_type : lazy_types_) { info_.UpdateUint32(lazy_type.second, WriteTypeDeclaration(lazy_type.first)); } lazy_types_.clear(); } private: void WriteName(const char* name) { if (name != nullptr) { info_.WriteString(dwarf::DW_AT_name, name); } } // Convert dex type descriptor to DWARF. // Returns offset in the compilation unit. size_t WriteTypeDeclaration(const std::string& desc) { using namespace dwarf; // NOLINT. For easy access to DWARF constants. DCHECK(!desc.empty()); const auto it = type_cache_.find(desc); if (it != type_cache_.end()) { return it->second; } size_t offset; if (desc[0] == 'L') { // Class type. For example: Lpackage/name; size_t class_offset = StartClassTag(desc.c_str()); info_.WriteFlagPresent(DW_AT_declaration); EndClassTag(); // Reference to the class type. offset = info_.StartTag(DW_TAG_reference_type); info_.WriteRef(DW_AT_type, class_offset); info_.EndTag(); } else if (desc[0] == '[') { // Array type. size_t element_type = WriteTypeDeclaration(desc.substr(1)); CloseNamespacesAboveDepth(0); // Declare in root namespace. size_t array_type = info_.StartTag(DW_TAG_array_type); info_.WriteFlagPresent(DW_AT_declaration); info_.WriteRef(DW_AT_type, element_type); info_.EndTag(); offset = info_.StartTag(DW_TAG_reference_type); info_.WriteRef4(DW_AT_type, array_type); info_.EndTag(); } else { // Primitive types. DCHECK_EQ(desc.size(), 1u); const char* name; uint32_t encoding; uint32_t byte_size; switch (desc[0]) { case 'B': name = "byte"; encoding = DW_ATE_signed; byte_size = 1; break; case 'C': name = "char"; encoding = DW_ATE_UTF; byte_size = 2; break; case 'D': name = "double"; encoding = DW_ATE_float; byte_size = 8; break; case 'F': name = "float"; encoding = DW_ATE_float; byte_size = 4; break; case 'I': name = "int"; encoding = DW_ATE_signed; byte_size = 4; break; case 'J': name = "long"; encoding = DW_ATE_signed; byte_size = 8; break; case 'S': name = "short"; encoding = DW_ATE_signed; byte_size = 2; break; case 'Z': name = "boolean"; encoding = DW_ATE_boolean; byte_size = 1; break; case 'V': LOG(FATAL) << "Void type should not be encoded"; UNREACHABLE(); default: LOG(FATAL) << "Unknown dex type descriptor: \"" << desc << "\""; UNREACHABLE(); } CloseNamespacesAboveDepth(0); // Declare in root namespace. offset = info_.StartTag(DW_TAG_base_type); WriteName(name); info_.WriteData1(DW_AT_encoding, encoding); info_.WriteData1(DW_AT_byte_size, byte_size); info_.EndTag(); } type_cache_.emplace(desc, offset); return offset; } // Start DW_TAG_class_type tag nested in DW_TAG_namespace tags. // Returns offset of the class tag in the compilation unit. size_t StartClassTag(const char* desc) { std::string name = SetNamespaceForClass(desc); size_t offset = info_.StartTag(dwarf::DW_TAG_class_type); WriteName(name.c_str()); return offset; } void EndClassTag() { info_.EndTag(); } // Set the current namespace nesting to one required by the given class. // Returns the class name with namespaces, 'L', and ';' stripped. std::string SetNamespaceForClass(const char* desc) { DCHECK(desc != nullptr && desc[0] == 'L'); desc++; // Skip the initial 'L'. size_t depth = 0; for (const char* end; (end = strchr(desc, '/')) != nullptr; desc = end + 1, ++depth) { // Check whether the name at this depth is already what we need. if (depth < current_namespace_.size()) { const std::string& name = current_namespace_[depth]; if (name.compare(0, name.size(), desc, end - desc) == 0) { continue; } } // Otherwise we need to open a new namespace tag at this depth. CloseNamespacesAboveDepth(depth); info_.StartTag(dwarf::DW_TAG_namespace); std::string name(desc, end - desc); WriteName(name.c_str()); current_namespace_.push_back(std::move(name)); } CloseNamespacesAboveDepth(depth); return std::string(desc, strchr(desc, ';') - desc); } // Close namespace tags to reach the given nesting depth. void CloseNamespacesAboveDepth(size_t depth) { DCHECK_LE(depth, current_namespace_.size()); while (current_namespace_.size() > depth) { info_.EndTag(); current_namespace_.pop_back(); } } // For access to the ELF sections. ElfDebugInfoWriter<ElfTypes>* owner_; // Temporary buffer to create and store the entries. dwarf::DebugInfoEntryWriter<> info_; // Cache of already translated type descriptors. std::map<std::string, size_t> type_cache_; // type_desc -> definition_offset. // 32-bit references which need to be resolved to a type later. // Given type may be used multiple times. Therefore we need a multimap. std::multimap<std::string, size_t> lazy_types_; // type_desc -> patch_offset. // The current set of open namespace tags which are active and not closed yet. std::vector<std::string> current_namespace_; }; } // namespace debug } // namespace art #endif // ART_COMPILER_DEBUG_ELF_DEBUG_INFO_WRITER_H_