/* libs/graphics/sgl/SkScan_Antihair.cpp
**
** Copyright 2006, The Android Open Source Project
**
** Licensed under the Apache License, Version 2.0 (the "License");
** you may not use this file except in compliance with the License.
** You may obtain a copy of the License at
**
** http://www.apache.org/licenses/LICENSE-2.0
**
** Unless required by applicable law or agreed to in writing, software
** distributed under the License is distributed on an "AS IS" BASIS,
** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
** See the License for the specific language governing permissions and
** limitations under the License.
*/
#include "SkScan.h"
#include "SkBlitter.h"
#include "SkColorPriv.h"
#include "SkRegion.h"
#include "SkFDot6.h"
#define HLINE_STACK_BUFFER 100
static inline int SmallDot6Scale(int value, int dot6) {
SkASSERT((int16_t)value == value);
SkASSERT((unsigned)dot6 <= 64);
return SkMulS16(value, dot6) >> 6;
}
//#define TEST_GAMMA
#ifdef TEST_GAMMA
static uint8_t gGammaTable[256];
#define ApplyGamma(table, alpha) (table)[alpha]
static void build_gamma_table()
{
static bool gInit = false;
if (gInit == false)
{
for (int i = 0; i < 256; i++)
{
SkFixed n = i * 257;
n += n >> 15;
SkASSERT(n >= 0 && n <= SK_Fixed1);
n = SkFixedSqrt(n);
n = n * 255 >> 16;
// SkDebugf("morph %d -> %d\n", i, n);
gGammaTable[i] = SkToU8(n);
}
gInit = true;
}
}
#else
#define ApplyGamma(table, alpha) SkToU8(alpha)
#endif
///////////////////////////////////////////////////////////////////////////////
static void call_hline_blitter(SkBlitter* blitter, int x, int y, int count, U8CPU alpha)
{
SkASSERT(count > 0);
int16_t runs[HLINE_STACK_BUFFER + 1];
uint8_t aa[HLINE_STACK_BUFFER];
aa[0] = ApplyGamma(gGammaTable, alpha);
do {
int n = count;
if (n > HLINE_STACK_BUFFER)
n = HLINE_STACK_BUFFER;
runs[0] = SkToS16(n);
runs[n] = 0;
blitter->blitAntiH(x, y, aa, runs);
x += n;
count -= n;
} while (count > 0);
}
static SkFixed hline(int x, int stopx, SkFixed fy, SkFixed /*slope*/, SkBlitter* blitter, int mod64)
{
SkASSERT(x < stopx);
int count = stopx - x;
fy += SK_Fixed1/2;
int y = fy >> 16;
uint8_t a = (uint8_t)(fy >> 8);
// lower line
unsigned ma = SmallDot6Scale(a, mod64);
if (ma) {
call_hline_blitter(blitter, x, y, count, ma);
}
// upper line
ma = SmallDot6Scale(255 - a, mod64);
if (ma) {
call_hline_blitter(blitter, x, y - 1, count, ma);
}
return fy - SK_Fixed1/2;
}
static SkFixed horish(int x, int stopx, SkFixed fy, SkFixed dy, SkBlitter* blitter, int mod64)
{
SkASSERT(x < stopx);
#ifdef TEST_GAMMA
const uint8_t* gamma = gGammaTable;
#endif
int16_t runs[2];
uint8_t aa[1];
runs[0] = 1;
runs[1] = 0;
fy += SK_Fixed1/2;
do {
int lower_y = fy >> 16;
uint8_t a = (uint8_t)(fy >> 8);
unsigned ma = SmallDot6Scale(a, mod64);
if (ma)
{
aa[0] = ApplyGamma(gamma, ma);
blitter->blitAntiH(x, lower_y, aa, runs);
// the clipping blitters might edit runs, but should not affect us
SkASSERT(runs[0] == 1);
SkASSERT(runs[1] == 0);
}
ma = SmallDot6Scale(255 - a, mod64);
if (ma)
{
aa[0] = ApplyGamma(gamma, ma);
blitter->blitAntiH(x, lower_y - 1, aa, runs);
// the clipping blitters might edit runs, but should not affect us
SkASSERT(runs[0] == 1);
SkASSERT(runs[1] == 0);
}
fy += dy;
} while (++x < stopx);
return fy - SK_Fixed1/2;
}
static SkFixed vline(int y, int stopy, SkFixed fx, SkFixed /*slope*/, SkBlitter* blitter, int mod64)
{
SkASSERT(y < stopy);
fx += SK_Fixed1/2;
int x = fx >> 16;
int a = (uint8_t)(fx >> 8);
unsigned ma = SmallDot6Scale(a, mod64);
if (ma)
blitter->blitV(x, y, stopy - y, ApplyGamma(gGammaTable, ma));
ma = SmallDot6Scale(255 - a, mod64);
if (ma)
blitter->blitV(x - 1, y, stopy - y, ApplyGamma(gGammaTable, ma));
return fx - SK_Fixed1/2;
}
static SkFixed vertish(int y, int stopy, SkFixed fx, SkFixed dx, SkBlitter* blitter, int mod64)
{
SkASSERT(y < stopy);
#ifdef TEST_GAMMA
const uint8_t* gamma = gGammaTable;
#endif
int16_t runs[3];
uint8_t aa[2];
runs[0] = 1;
runs[2] = 0;
fx += SK_Fixed1/2;
do {
int x = fx >> 16;
uint8_t a = (uint8_t)(fx >> 8);
aa[0] = ApplyGamma(gamma, SmallDot6Scale(255 - a, mod64));
aa[1] = ApplyGamma(gamma, SmallDot6Scale(a, mod64));
// the clippng blitters might overwrite this guy, so we have to reset it each time
runs[1] = 1;
blitter->blitAntiH(x - 1, y, aa, runs);
// the clipping blitters might edit runs, but should not affect us
SkASSERT(runs[0] == 1);
SkASSERT(runs[2] == 0);
fx += dx;
} while (++y < stopy);
return fx - SK_Fixed1/2;
}
typedef SkFixed (*LineProc)(int istart, int istop, SkFixed fstart, SkFixed slope, SkBlitter*, int);
static inline SkFixed fastfixdiv(SkFDot6 a, SkFDot6 b)
{
SkASSERT((a << 16 >> 16) == a);
SkASSERT(b != 0);
return (a << 16) / b;
}
static void do_anti_hairline(SkFDot6 x0, SkFDot6 y0, SkFDot6 x1, SkFDot6 y1,
const SkIRect* clip, SkBlitter* blitter)
{
// check that we're no larger than 511 pixels (so we can do a faster div).
// if we are, subdivide and call again
if (SkAbs32(x1 - x0) > SkIntToFDot6(511) || SkAbs32(y1 - y0) > SkIntToFDot6(511))
{
/* instead of (x0 + x1) >> 1, we shift each separately. This is less
precise, but avoids overflowing the intermediate result if the
values are huge. A better fix might be to clip the original pts
directly (i.e. do the divide), so we don't spend time subdividing
huge lines at all.
*/
int hx = (x0 >> 1) + (x1 >> 1);
int hy = (y0 >> 1) + (y1 >> 1);
do_anti_hairline(x0, y0, hx, hy, clip, blitter);
do_anti_hairline(hx, hy, x1, y1, clip, blitter);
return;
}
int scaleStart, scaleStop;
int istart, istop;
SkFixed fstart, slope;
LineProc proc;
if (SkAbs32(x1 - x0) > SkAbs32(y1 - y0)) // mostly horizontal
{
if (x0 > x1) { // we want to go left-to-right
SkTSwap<SkFDot6>(x0, x1);
SkTSwap<SkFDot6>(y0, y1);
}
istart = SkFDot6Floor(x0);
istop = SkFDot6Ceil(x1);
fstart = SkFDot6ToFixed(y0);
if (y0 == y1) { // completely horizontal, take fast case
slope = 0;
proc = hline;
} else {
slope = fastfixdiv(y1 - y0, x1 - x0);
SkASSERT(slope >= -SK_Fixed1 && slope <= SK_Fixed1);
fstart += (slope * (32 - (x0 & 63)) + 32) >> 6;
proc = horish;
}
SkASSERT(istop > istart);
if (istop - istart == 1) {
scaleStart = x1 - x0;
SkASSERT(scaleStart >= 0 && scaleStart <= 64);
scaleStop = 0;
} else {
scaleStart = 64 - (x0 & 63);
scaleStop = x1 & 63;
}
if (clip)
{
if (istart >= clip->fRight || istop <= clip->fLeft)
return;
if (istart < clip->fLeft)
{
fstart += slope * (clip->fLeft - istart);
istart = clip->fLeft;
scaleStart = 64;
}
if (istop > clip->fRight) {
istop = clip->fRight;
scaleStop = 64;
}
SkASSERT(istart <= istop);
if (istart == istop)
return;
// now test if our Y values are completely inside the clip
int top, bottom;
if (slope >= 0) // T2B
{
top = SkFixedFloor(fstart - SK_FixedHalf);
bottom = SkFixedCeil(fstart + (istop - istart - 1) * slope + SK_FixedHalf);
}
else // B2T
{
bottom = SkFixedCeil(fstart + SK_FixedHalf);
top = SkFixedFloor(fstart + (istop - istart - 1) * slope - SK_FixedHalf);
}
if (top >= clip->fBottom || bottom <= clip->fTop)
return;
if (clip->fTop <= top && clip->fBottom >= bottom)
clip = NULL;
}
}
else // mostly vertical
{
if (y0 > y1) // we want to go top-to-bottom
{
SkTSwap<SkFDot6>(x0, x1);
SkTSwap<SkFDot6>(y0, y1);
}
istart = SkFDot6Floor(y0);
istop = SkFDot6Ceil(y1);
fstart = SkFDot6ToFixed(x0);
if (x0 == x1)
{
if (y0 == y1) { // are we zero length?
return; // nothing to do
}
slope = 0;
proc = vline;
}
else
{
slope = fastfixdiv(x1 - x0, y1 - y0);
SkASSERT(slope <= SK_Fixed1 && slope >= -SK_Fixed1);
fstart += (slope * (32 - (y0 & 63)) + 32) >> 6;
proc = vertish;
}
SkASSERT(istop > istart);
if (istop - istart == 1) {
scaleStart = y1 - y0;
SkASSERT(scaleStart >= 0 && scaleStart <= 64);
scaleStop = 0;
} else {
scaleStart = 64 - (y0 & 63);
scaleStop = y1 & 63;
}
if (clip)
{
if (istart >= clip->fBottom || istop <= clip->fTop)
return;
if (istart < clip->fTop)
{
fstart += slope * (clip->fTop - istart);
istart = clip->fTop;
scaleStart = 64;
}
if (istop > clip->fBottom) {
istop = clip->fBottom;
scaleStop = 64;
}
SkASSERT(istart <= istop);
if (istart == istop)
return;
// now test if our X values are completely inside the clip
int left, right;
if (slope >= 0) // L2R
{
left = SkFixedFloor(fstart - SK_FixedHalf);
right = SkFixedCeil(fstart + (istop - istart - 1) * slope + SK_FixedHalf);
}
else // R2L
{
right = SkFixedCeil(fstart + SK_FixedHalf);
left = SkFixedFloor(fstart + (istop - istart - 1) * slope - SK_FixedHalf);
}
if (left >= clip->fRight || right <= clip->fLeft)
return;
if (clip->fLeft <= left && clip->fRight >= right)
clip = NULL;
}
}
SkRectClipBlitter rectClipper;
if (clip)
{
rectClipper.init(blitter, *clip);
blitter = &rectClipper;
}
fstart = proc(istart, istart + 1, fstart, slope, blitter, scaleStart);
istart += 1;
int fullSpans = istop - istart - 1;
if (fullSpans > 0) {
fstart = proc(istart, istart + fullSpans, fstart, slope, blitter, 64);
}
if (scaleStop > 0) {
proc(istop - 1, istop, fstart, slope, blitter, scaleStop);
}
}
void SkScan::AntiHairLine(const SkPoint& pt0, const SkPoint& pt1,
const SkRegion* clip, SkBlitter* blitter)
{
if (clip && clip->isEmpty())
return;
SkASSERT(clip == NULL || !clip->getBounds().isEmpty());
#ifdef TEST_GAMMA
build_gamma_table();
#endif
SkFDot6 x0 = SkScalarToFDot6(pt0.fX);
SkFDot6 y0 = SkScalarToFDot6(pt0.fY);
SkFDot6 x1 = SkScalarToFDot6(pt1.fX);
SkFDot6 y1 = SkScalarToFDot6(pt1.fY);
if (clip)
{
SkFDot6 left = SkMin32(x0, x1);
SkFDot6 top = SkMin32(y0, y1);
SkFDot6 right = SkMax32(x0, x1);
SkFDot6 bottom = SkMax32(y0, y1);
SkIRect ir;
ir.set( SkFDot6Floor(left) - 1,
SkFDot6Floor(top) - 1,
SkFDot6Ceil(right) + 1,
SkFDot6Ceil(bottom) + 1);
if (clip->quickReject(ir))
return;
if (!clip->quickContains(ir))
{
SkRegion::Cliperator iter(*clip, ir);
const SkIRect* r = &iter.rect();
while (!iter.done())
{
do_anti_hairline(x0, y0, x1, y1, r, blitter);
iter.next();
}
return;
}
// fall through to no-clip case
}
do_anti_hairline(x0, y0, x1, y1, NULL, blitter);
}
void SkScan::AntiHairRect(const SkRect& rect, const SkRegion* clip, SkBlitter* blitter)
{
if (clip)
{
SkIRect ir;
SkRect r = rect;
r.inset(-SK_Scalar1/2, -SK_Scalar1/2);
r.roundOut(&ir);
if (clip->quickReject(ir))
return;
if (clip->quickContains(ir))
clip = NULL;
}
SkPoint p0, p1;
p0.set(rect.fLeft, rect.fTop);
p1.set(rect.fRight, rect.fTop);
SkScan::AntiHairLine(p0, p1, clip, blitter);
p0.set(rect.fRight, rect.fBottom);
SkScan::AntiHairLine(p0, p1, clip, blitter);
p1.set(rect.fLeft, rect.fBottom);
SkScan::AntiHairLine(p0, p1, clip, blitter);
p0.set(rect.fLeft, rect.fTop);
SkScan::AntiHairLine(p0, p1, clip, blitter);
}
//////////////////////////////////////////////////////////////////////////////////////////
typedef int FDot8; // 24.8 integer fixed point
static inline FDot8 SkFixedToFDot8(SkFixed x) {
return (x + 0x80) >> 8;
}
static void do_scanline(FDot8 L, int top, FDot8 R, U8CPU alpha, SkBlitter* blitter)
{
SkASSERT(L < R);
if ((L >> 8) == ((R - 1) >> 8)) // 1x1 pixel
{
blitter->blitV(L >> 8, top, 1, SkAlphaMul(alpha, R - L));
return;
}
int left = L >> 8;
if (L & 0xFF)
{
blitter->blitV(left, top, 1, SkAlphaMul(alpha, 256 - (L & 0xFF)));
left += 1;
}
int rite = R >> 8;
int width = rite - left;
if (width > 0)
call_hline_blitter(blitter, left, top, width, alpha);
if (R & 0xFF)
blitter->blitV(rite, top, 1, SkAlphaMul(alpha, R & 0xFF));
}
static void antifillrect(const SkXRect& xr, SkBlitter* blitter)
{
FDot8 L = SkFixedToFDot8(xr.fLeft);
FDot8 T = SkFixedToFDot8(xr.fTop);
FDot8 R = SkFixedToFDot8(xr.fRight);
FDot8 B = SkFixedToFDot8(xr.fBottom);
// check for empty now that we're in our reduced precision space
if (L >= R || T >= B)
return;
int top = T >> 8;
if (top == ((B - 1) >> 8)) // just one scanline high
{
do_scanline(L, top, R, B - T - 1, blitter);
return;
}
if (T & 0xFF)
{
do_scanline(L, top, R, 256 - (T & 0xFF), blitter);
top += 1;
}
int bot = B >> 8;
int height = bot - top;
if (height > 0)
{
int left = L >> 8;
if (L & 0xFF)
{
blitter->blitV(left, top, height, 256 - (L & 0xFF));
left += 1;
}
int rite = R >> 8;
int width = rite - left;
if (width > 0)
blitter->blitRect(left, top, width, height);
if (R & 0xFF)
blitter->blitV(rite, top, height, R & 0xFF);
}
if (B & 0xFF)
do_scanline(L, bot, R, B & 0xFF, blitter);
}
///////////////////////////////////////////////////////////////////////////////
void SkScan::AntiFillXRect(const SkXRect& xr, const SkRegion* clip,
SkBlitter* blitter) {
if (clip) {
SkIRect outerBounds;
XRect_roundOut(xr, &outerBounds);
if (clip->isRect()) {
const SkIRect& clipBounds = clip->getBounds();
if (clipBounds.contains(outerBounds)) {
antifillrect(xr, blitter);
} else {
SkXRect tmpR;
// this keeps our original edges fractional
XRect_set(&tmpR, clipBounds);
if (tmpR.intersect(xr)) {
antifillrect(tmpR, blitter);
}
}
} else {
SkRegion::Cliperator clipper(*clip, outerBounds);
const SkIRect& rr = clipper.rect();
while (!clipper.done()) {
SkXRect tmpR;
// this keeps our original edges fractional
XRect_set(&tmpR, rr);
if (tmpR.intersect(xr)) {
antifillrect(tmpR, blitter);
}
clipper.next();
}
}
} else {
antifillrect(xr, blitter);
}
}
#ifdef SK_SCALAR_IS_FLOAT
/* This guy takes a float-rect, but with the key improvement that it has
already been clipped, so we know that it is safe to convert it into a
XRect (fixedpoint), as it won't overflow.
*/
static void antifillrect(const SkRect& r, SkBlitter* blitter) {
SkXRect xr;
XRect_set(&xr, r);
antifillrect(xr, blitter);
}
/* We repeat the clipping logic of AntiFillXRect because the float rect might
overflow if we blindly converted it to an XRect. This sucks that we have to
repeat the clipping logic, but I don't see how to share the code/logic.
We clip r (as needed) into one or more (smaller) float rects, and then pass
those to our version of antifillrect, which converts it into an XRect and
then calls the blit.
*/
void SkScan::AntiFillRect(const SkRect& r, const SkRegion* clip,
SkBlitter* blitter) {
if (clip) {
SkIRect outerBounds;
r.roundOut(&outerBounds);
if (clip->isRect()) {
const SkIRect& clipBounds = clip->getBounds();
if (clipBounds.contains(outerBounds)) {
antifillrect(r, blitter);
} else {
SkRect tmpR;
// this keeps our original edges fractional
tmpR.set(clipBounds);
if (tmpR.intersect(r)) {
antifillrect(tmpR, blitter);
}
}
} else {
SkRegion::Cliperator clipper(*clip, outerBounds);
const SkIRect& rr = clipper.rect();
while (!clipper.done()) {
SkRect tmpR;
// this keeps our original edges fractional
tmpR.set(rr);
if (tmpR.intersect(r)) {
antifillrect(tmpR, blitter);
}
clipper.next();
}
}
} else {
antifillrect(r, blitter);
}
}
#endif