This is bfd.info, produced by makeinfo version 4.8 from /home/jingyu/projects/gcc/android-toolchain/gdb-6.6/bfd/doc/bfd.texinfo. START-INFO-DIR-ENTRY * Bfd: (bfd). The Binary File Descriptor library. END-INFO-DIR-ENTRY This file documents the BFD library. Copyright (C) 1991, 2000, 2001, 2003, 2006 Free Software Foundation, Inc. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License". File: bfd.info, Node: Top, Next: Overview, Prev: (dir), Up: (dir) This file documents the binary file descriptor library libbfd. * Menu: * Overview:: Overview of BFD * BFD front end:: BFD front end * BFD back ends:: BFD back ends * GNU Free Documentation License:: GNU Free Documentation License * BFD Index:: BFD Index File: bfd.info, Node: Overview, Next: BFD front end, Prev: Top, Up: Top 1 Introduction ************** BFD is a package which allows applications to use the same routines to operate on object files whatever the object file format. A new object file format can be supported simply by creating a new BFD back end and adding it to the library. BFD is split into two parts: the front end, and the back ends (one for each object file format). * The front end of BFD provides the interface to the user. It manages memory and various canonical data structures. The front end also decides which back end to use and when to call back end routines. * The back ends provide BFD its view of the real world. Each back end provides a set of calls which the BFD front end can use to maintain its canonical form. The back ends also may keep around information for their own use, for greater efficiency. * Menu: * History:: History * How It Works:: How It Works * What BFD Version 2 Can Do:: What BFD Version 2 Can Do File: bfd.info, Node: History, Next: How It Works, Prev: Overview, Up: Overview 1.1 History =========== One spur behind BFD was the desire, on the part of the GNU 960 team at Intel Oregon, for interoperability of applications on their COFF and b.out file formats. Cygnus was providing GNU support for the team, and was contracted to provide the required functionality. The name came from a conversation David Wallace was having with Richard Stallman about the library: RMS said that it would be quite hard--David said "BFD". Stallman was right, but the name stuck. At the same time, Ready Systems wanted much the same thing, but for different object file formats: IEEE-695, Oasys, Srecords, a.out and 68k coff. BFD was first implemented by members of Cygnus Support; Steve Chamberlain (`sac@cygnus.com'), John Gilmore (`gnu@cygnus.com'), K. Richard Pixley (`rich@cygnus.com') and David Henkel-Wallace (`gumby@cygnus.com'). File: bfd.info, Node: How It Works, Next: What BFD Version 2 Can Do, Prev: History, Up: Overview 1.2 How To Use BFD ================== To use the library, include `bfd.h' and link with `libbfd.a'. BFD provides a common interface to the parts of an object file for a calling application. When an application successfully opens a target file (object, archive, or whatever), a pointer to an internal structure is returned. This pointer points to a structure called `bfd', described in `bfd.h'. Our convention is to call this pointer a BFD, and instances of it within code `abfd'. All operations on the target object file are applied as methods to the BFD. The mapping is defined within `bfd.h' in a set of macros, all beginning with `bfd_' to reduce namespace pollution. For example, this sequence does what you would probably expect: return the number of sections in an object file attached to a BFD `abfd'. #include "bfd.h" unsigned int number_of_sections (abfd) bfd *abfd; { return bfd_count_sections (abfd); } The abstraction used within BFD is that an object file has: * a header, * a number of sections containing raw data (*note Sections::), * a set of relocations (*note Relocations::), and * some symbol information (*note Symbols::). Also, BFDs opened for archives have the additional attribute of an index and contain subordinate BFDs. This approach is fine for a.out and coff, but loses efficiency when applied to formats such as S-records and IEEE-695. File: bfd.info, Node: What BFD Version 2 Can Do, Prev: How It Works, Up: Overview 1.3 What BFD Version 2 Can Do ============================= When an object file is opened, BFD subroutines automatically determine the format of the input object file. They then build a descriptor in memory with pointers to routines that will be used to access elements of the object file's data structures. As different information from the object files is required, BFD reads from different sections of the file and processes them. For example, a very common operation for the linker is processing symbol tables. Each BFD back end provides a routine for converting between the object file's representation of symbols and an internal canonical format. When the linker asks for the symbol table of an object file, it calls through a memory pointer to the routine from the relevant BFD back end which reads and converts the table into a canonical form. The linker then operates upon the canonical form. When the link is finished and the linker writes the output file's symbol table, another BFD back end routine is called to take the newly created symbol table and convert it into the chosen output format. * Menu: * BFD information loss:: Information Loss * Canonical format:: The BFD canonical object-file format File: bfd.info, Node: BFD information loss, Next: Canonical format, Up: What BFD Version 2 Can Do 1.3.1 Information Loss ---------------------- _Information can be lost during output._ The output formats supported by BFD do not provide identical facilities, and information which can be described in one form has nowhere to go in another format. One example of this is alignment information in `b.out'. There is nowhere in an `a.out' format file to store alignment information on the contained data, so when a file is linked from `b.out' and an `a.out' image is produced, alignment information will not propagate to the output file. (The linker will still use the alignment information internally, so the link is performed correctly). Another example is COFF section names. COFF files may contain an unlimited number of sections, each one with a textual section name. If the target of the link is a format which does not have many sections (e.g., `a.out') or has sections without names (e.g., the Oasys format), the link cannot be done simply. You can circumvent this problem by describing the desired input-to-output section mapping with the linker command language. _Information can be lost during canonicalization._ The BFD internal canonical form of the external formats is not exhaustive; there are structures in input formats for which there is no direct representation internally. This means that the BFD back ends cannot maintain all possible data richness through the transformation between external to internal and back to external formats. This limitation is only a problem when an application reads one format and writes another. Each BFD back end is responsible for maintaining as much data as possible, and the internal BFD canonical form has structures which are opaque to the BFD core, and exported only to the back ends. When a file is read in one format, the canonical form is generated for BFD and the application. At the same time, the back end saves away any information which may otherwise be lost. If the data is then written back in the same format, the back end routine will be able to use the canonical form provided by the BFD core as well as the information it prepared earlier. Since there is a great deal of commonality between back ends, there is no information lost when linking or copying big endian COFF to little endian COFF, or `a.out' to `b.out'. When a mixture of formats is linked, the information is only lost from the files whose format differs from the destination. File: bfd.info, Node: Canonical format, Prev: BFD information loss, Up: What BFD Version 2 Can Do 1.3.2 The BFD canonical object-file format ------------------------------------------ The greatest potential for loss of information occurs when there is the least overlap between the information provided by the source format, that stored by the canonical format, and that needed by the destination format. A brief description of the canonical form may help you understand which kinds of data you can count on preserving across conversions. _files_ Information stored on a per-file basis includes target machine architecture, particular implementation format type, a demand pageable bit, and a write protected bit. Information like Unix magic numbers is not stored here--only the magic numbers' meaning, so a `ZMAGIC' file would have both the demand pageable bit and the write protected text bit set. The byte order of the target is stored on a per-file basis, so that big- and little-endian object files may be used with one another. _sections_ Each section in the input file contains the name of the section, the section's original address in the object file, size and alignment information, various flags, and pointers into other BFD data structures. _symbols_ Each symbol contains a pointer to the information for the object file which originally defined it, its name, its value, and various flag bits. When a BFD back end reads in a symbol table, it relocates all symbols to make them relative to the base of the section where they were defined. Doing this ensures that each symbol points to its containing section. Each symbol also has a varying amount of hidden private data for the BFD back end. Since the symbol points to the original file, the private data format for that symbol is accessible. `ld' can operate on a collection of symbols of wildly different formats without problems. Normal global and simple local symbols are maintained on output, so an output file (no matter its format) will retain symbols pointing to functions and to global, static, and common variables. Some symbol information is not worth retaining; in `a.out', type information is stored in the symbol table as long symbol names. This information would be useless to most COFF debuggers; the linker has command line switches to allow users to throw it away. There is one word of type information within the symbol, so if the format supports symbol type information within symbols (for example, COFF, IEEE, Oasys) and the type is simple enough to fit within one word (nearly everything but aggregates), the information will be preserved. _relocation level_ Each canonical BFD relocation record contains a pointer to the symbol to relocate to, the offset of the data to relocate, the section the data is in, and a pointer to a relocation type descriptor. Relocation is performed by passing messages through the relocation type descriptor and the symbol pointer. Therefore, relocations can be performed on output data using a relocation method that is only available in one of the input formats. For instance, Oasys provides a byte relocation format. A relocation record requesting this relocation type would point indirectly to a routine to perform this, so the relocation may be performed on a byte being written to a 68k COFF file, even though 68k COFF has no such relocation type. _line numbers_ Object formats can contain, for debugging purposes, some form of mapping between symbols, source line numbers, and addresses in the output file. These addresses have to be relocated along with the symbol information. Each symbol with an associated list of line number records points to the first record of the list. The head of a line number list consists of a pointer to the symbol, which allows finding out the address of the function whose line number is being described. The rest of the list is made up of pairs: offsets into the section and line numbers. Any format which can simply derive this information can pass it successfully between formats (COFF, IEEE and Oasys). File: bfd.info, Node: BFD front end, Next: BFD back ends, Prev: Overview, Up: Top 2 BFD Front End *************** 2.1 `typedef bfd' ================= A BFD has type `bfd'; objects of this type are the cornerstone of any application using BFD. Using BFD consists of making references though the BFD and to data in the BFD. Here is the structure that defines the type `bfd'. It contains the major data about the file and pointers to the rest of the data. struct bfd { /* A unique identifier of the BFD */ unsigned int id; /* The filename the application opened the BFD with. */ const char *filename; /* A pointer to the target jump table. */ const struct bfd_target *xvec; /* The IOSTREAM, and corresponding IO vector that provide access to the file backing the BFD. */ void *iostream; const struct bfd_iovec *iovec; /* Is the file descriptor being cached? That is, can it be closed as needed, and re-opened when accessed later? */ bfd_boolean cacheable; /* Marks whether there was a default target specified when the BFD was opened. This is used to select which matching algorithm to use to choose the back end. */ bfd_boolean target_defaulted; /* The caching routines use these to maintain a least-recently-used list of BFDs. */ struct bfd *lru_prev, *lru_next; /* When a file is closed by the caching routines, BFD retains state information on the file here... */ ufile_ptr where; /* ... and here: (``once'' means at least once). */ bfd_boolean opened_once; /* Set if we have a locally maintained mtime value, rather than getting it from the file each time. */ bfd_boolean mtime_set; /* File modified time, if mtime_set is TRUE. */ long mtime; /* Reserved for an unimplemented file locking extension. */ int ifd; /* The format which belongs to the BFD. (object, core, etc.) */ bfd_format format; /* The direction with which the BFD was opened. */ enum bfd_direction { no_direction = 0, read_direction = 1, write_direction = 2, both_direction = 3 } direction; /* Format_specific flags. */ flagword flags; /* Currently my_archive is tested before adding origin to anything. I believe that this can become always an add of origin, with origin set to 0 for non archive files. */ ufile_ptr origin; /* Remember when output has begun, to stop strange things from happening. */ bfd_boolean output_has_begun; /* A hash table for section names. */ struct bfd_hash_table section_htab; /* Pointer to linked list of sections. */ struct bfd_section *sections; /* The last section on the section list. */ struct bfd_section *section_last; /* The number of sections. */ unsigned int section_count; /* Stuff only useful for object files: The start address. */ bfd_vma start_address; /* Used for input and output. */ unsigned int symcount; /* Symbol table for output BFD (with symcount entries). */ struct bfd_symbol **outsymbols; /* Used for slurped dynamic symbol tables. */ unsigned int dynsymcount; /* Pointer to structure which contains architecture information. */ const struct bfd_arch_info *arch_info; /* Flag set if symbols from this BFD should not be exported. */ bfd_boolean no_export; /* Stuff only useful for archives. */ void *arelt_data; struct bfd *my_archive; /* The containing archive BFD. */ struct bfd *next; /* The next BFD in the archive. */ struct bfd *archive_head; /* The first BFD in the archive. */ bfd_boolean has_armap; /* A chain of BFD structures involved in a link. */ struct bfd *link_next; /* A field used by _bfd_generic_link_add_archive_symbols. This will be used only for archive elements. */ int archive_pass; /* Used by the back end to hold private data. */ union { struct aout_data_struct *aout_data; struct artdata *aout_ar_data; struct _oasys_data *oasys_obj_data; struct _oasys_ar_data *oasys_ar_data; struct coff_tdata *coff_obj_data; struct pe_tdata *pe_obj_data; struct xcoff_tdata *xcoff_obj_data; struct ecoff_tdata *ecoff_obj_data; struct ieee_data_struct *ieee_data; struct ieee_ar_data_struct *ieee_ar_data; struct srec_data_struct *srec_data; struct ihex_data_struct *ihex_data; struct tekhex_data_struct *tekhex_data; struct elf_obj_tdata *elf_obj_data; struct nlm_obj_tdata *nlm_obj_data; struct bout_data_struct *bout_data; struct mmo_data_struct *mmo_data; struct sun_core_struct *sun_core_data; struct sco5_core_struct *sco5_core_data; struct trad_core_struct *trad_core_data; struct som_data_struct *som_data; struct hpux_core_struct *hpux_core_data; struct hppabsd_core_struct *hppabsd_core_data; struct sgi_core_struct *sgi_core_data; struct lynx_core_struct *lynx_core_data; struct osf_core_struct *osf_core_data; struct cisco_core_struct *cisco_core_data; struct versados_data_struct *versados_data; struct netbsd_core_struct *netbsd_core_data; struct mach_o_data_struct *mach_o_data; struct mach_o_fat_data_struct *mach_o_fat_data; struct bfd_pef_data_struct *pef_data; struct bfd_pef_xlib_data_struct *pef_xlib_data; struct bfd_sym_data_struct *sym_data; void *any; } tdata; /* Used by the application to hold private data. */ void *usrdata; /* Where all the allocated stuff under this BFD goes. This is a struct objalloc *, but we use void * to avoid requiring the inclusion of objalloc.h. */ void *memory; }; 2.2 Error reporting =================== Most BFD functions return nonzero on success (check their individual documentation for precise semantics). On an error, they call `bfd_set_error' to set an error condition that callers can check by calling `bfd_get_error'. If that returns `bfd_error_system_call', then check `errno'. The easiest way to report a BFD error to the user is to use `bfd_perror'. 2.2.1 Type `bfd_error_type' --------------------------- The values returned by `bfd_get_error' are defined by the enumerated type `bfd_error_type'. typedef enum bfd_error { bfd_error_no_error = 0, bfd_error_system_call, bfd_error_invalid_target, bfd_error_wrong_format, bfd_error_wrong_object_format, bfd_error_invalid_operation, bfd_error_no_memory, bfd_error_no_symbols, bfd_error_no_armap, bfd_error_no_more_archived_files, bfd_error_malformed_archive, bfd_error_file_not_recognized, bfd_error_file_ambiguously_recognized, bfd_error_no_contents, bfd_error_nonrepresentable_section, bfd_error_no_debug_section, bfd_error_bad_value, bfd_error_file_truncated, bfd_error_file_too_big, bfd_error_on_input, bfd_error_invalid_error_code } bfd_error_type; 2.2.1.1 `bfd_get_error' ....................... *Synopsis* bfd_error_type bfd_get_error (void); *Description* Return the current BFD error condition. 2.2.1.2 `bfd_set_error' ....................... *Synopsis* void bfd_set_error (bfd_error_type error_tag, ...); *Description* Set the BFD error condition to be ERROR_TAG. If ERROR_TAG is bfd_error_on_input, then this function takes two more parameters, the input bfd where the error occurred, and the bfd_error_type error. 2.2.1.3 `bfd_errmsg' .................... *Synopsis* const char *bfd_errmsg (bfd_error_type error_tag); *Description* Return a string describing the error ERROR_TAG, or the system error if ERROR_TAG is `bfd_error_system_call'. 2.2.1.4 `bfd_perror' .................... *Synopsis* void bfd_perror (const char *message); *Description* Print to the standard error stream a string describing the last BFD error that occurred, or the last system error if the last BFD error was a system call failure. If MESSAGE is non-NULL and non-empty, the error string printed is preceded by MESSAGE, a colon, and a space. It is followed by a newline. 2.2.2 BFD error handler ----------------------- Some BFD functions want to print messages describing the problem. They call a BFD error handler function. This function may be overridden by the program. The BFD error handler acts like printf. typedef void (*bfd_error_handler_type) (const char *, ...); 2.2.2.1 `bfd_set_error_handler' ............................... *Synopsis* bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type); *Description* Set the BFD error handler function. Returns the previous function. 2.2.2.2 `bfd_set_error_program_name' .................................... *Synopsis* void bfd_set_error_program_name (const char *); *Description* Set the program name to use when printing a BFD error. This is printed before the error message followed by a colon and space. The string must not be changed after it is passed to this function. 2.2.2.3 `bfd_get_error_handler' ............................... *Synopsis* bfd_error_handler_type bfd_get_error_handler (void); *Description* Return the BFD error handler function. 2.3 Miscellaneous ================= 2.3.1 Miscellaneous functions ----------------------------- 2.3.1.1 `bfd_get_reloc_upper_bound' ................................... *Synopsis* long bfd_get_reloc_upper_bound (bfd *abfd, asection *sect); *Description* Return the number of bytes required to store the relocation information associated with section SECT attached to bfd ABFD. If an error occurs, return -1. 2.3.1.2 `bfd_canonicalize_reloc' ................................ *Synopsis* long bfd_canonicalize_reloc (bfd *abfd, asection *sec, arelent **loc, asymbol **syms); *Description* Call the back end associated with the open BFD ABFD and translate the external form of the relocation information attached to SEC into the internal canonical form. Place the table into memory at LOC, which has been preallocated, usually by a call to `bfd_get_reloc_upper_bound'. Returns the number of relocs, or -1 on error. The SYMS table is also needed for horrible internal magic reasons. 2.3.1.3 `bfd_set_reloc' ....................... *Synopsis* void bfd_set_reloc (bfd *abfd, asection *sec, arelent **rel, unsigned int count); *Description* Set the relocation pointer and count within section SEC to the values REL and COUNT. The argument ABFD is ignored. 2.3.1.4 `bfd_set_file_flags' ............................ *Synopsis* bfd_boolean bfd_set_file_flags (bfd *abfd, flagword flags); *Description* Set the flag word in the BFD ABFD to the value FLAGS. Possible errors are: * `bfd_error_wrong_format' - The target bfd was not of object format. * `bfd_error_invalid_operation' - The target bfd was open for reading. * `bfd_error_invalid_operation' - The flag word contained a bit which was not applicable to the type of file. E.g., an attempt was made to set the `D_PAGED' bit on a BFD format which does not support demand paging. 2.3.1.5 `bfd_get_arch_size' ........................... *Synopsis* int bfd_get_arch_size (bfd *abfd); *Description* Returns the architecture address size, in bits, as determined by the object file's format. For ELF, this information is included in the header. *Returns* Returns the arch size in bits if known, `-1' otherwise. 2.3.1.6 `bfd_get_sign_extend_vma' ................................. *Synopsis* int bfd_get_sign_extend_vma (bfd *abfd); *Description* Indicates if the target architecture "naturally" sign extends an address. Some architectures implicitly sign extend address values when they are converted to types larger than the size of an address. For instance, bfd_get_start_address() will return an address sign extended to fill a bfd_vma when this is the case. *Returns* Returns `1' if the target architecture is known to sign extend addresses, `0' if the target architecture is known to not sign extend addresses, and `-1' otherwise. 2.3.1.7 `bfd_set_start_address' ............................... *Synopsis* bfd_boolean bfd_set_start_address (bfd *abfd, bfd_vma vma); *Description* Make VMA the entry point of output BFD ABFD. *Returns* Returns `TRUE' on success, `FALSE' otherwise. 2.3.1.8 `bfd_get_gp_size' ......................... *Synopsis* unsigned int bfd_get_gp_size (bfd *abfd); *Description* Return the maximum size of objects to be optimized using the GP register under MIPS ECOFF. This is typically set by the `-G' argument to the compiler, assembler or linker. 2.3.1.9 `bfd_set_gp_size' ......................... *Synopsis* void bfd_set_gp_size (bfd *abfd, unsigned int i); *Description* Set the maximum size of objects to be optimized using the GP register under ECOFF or MIPS ELF. This is typically set by the `-G' argument to the compiler, assembler or linker. 2.3.1.10 `bfd_scan_vma' ....................... *Synopsis* bfd_vma bfd_scan_vma (const char *string, const char **end, int base); *Description* Convert, like `strtoul', a numerical expression STRING into a `bfd_vma' integer, and return that integer. (Though without as many bells and whistles as `strtoul'.) The expression is assumed to be unsigned (i.e., positive). If given a BASE, it is used as the base for conversion. A base of 0 causes the function to interpret the string in hex if a leading "0x" or "0X" is found, otherwise in octal if a leading zero is found, otherwise in decimal. If the value would overflow, the maximum `bfd_vma' value is returned. 2.3.1.11 `bfd_copy_private_header_data' ....................................... *Synopsis* bfd_boolean bfd_copy_private_header_data (bfd *ibfd, bfd *obfd); *Description* Copy private BFD header information from the BFD IBFD to the the BFD OBFD. This copies information that may require sections to exist, but does not require symbol tables. Return `true' on success, `false' on error. Possible error returns are: * `bfd_error_no_memory' - Not enough memory exists to create private data for OBFD. #define bfd_copy_private_header_data(ibfd, obfd) \ BFD_SEND (obfd, _bfd_copy_private_header_data, \ (ibfd, obfd)) 2.3.1.12 `bfd_copy_private_bfd_data' .................................... *Synopsis* bfd_boolean bfd_copy_private_bfd_data (bfd *ibfd, bfd *obfd); *Description* Copy private BFD information from the BFD IBFD to the the BFD OBFD. Return `TRUE' on success, `FALSE' on error. Possible error returns are: * `bfd_error_no_memory' - Not enough memory exists to create private data for OBFD. #define bfd_copy_private_bfd_data(ibfd, obfd) \ BFD_SEND (obfd, _bfd_copy_private_bfd_data, \ (ibfd, obfd)) 2.3.1.13 `bfd_merge_private_bfd_data' ..................................... *Synopsis* bfd_boolean bfd_merge_private_bfd_data (bfd *ibfd, bfd *obfd); *Description* Merge private BFD information from the BFD IBFD to the the output file BFD OBFD when linking. Return `TRUE' on success, `FALSE' on error. Possible error returns are: * `bfd_error_no_memory' - Not enough memory exists to create private data for OBFD. #define bfd_merge_private_bfd_data(ibfd, obfd) \ BFD_SEND (obfd, _bfd_merge_private_bfd_data, \ (ibfd, obfd)) 2.3.1.14 `bfd_set_private_flags' ................................ *Synopsis* bfd_boolean bfd_set_private_flags (bfd *abfd, flagword flags); *Description* Set private BFD flag information in the BFD ABFD. Return `TRUE' on success, `FALSE' on error. Possible error returns are: * `bfd_error_no_memory' - Not enough memory exists to create private data for OBFD. #define bfd_set_private_flags(abfd, flags) \ BFD_SEND (abfd, _bfd_set_private_flags, (abfd, flags)) 2.3.1.15 `Other functions' .......................... *Description* The following functions exist but have not yet been documented. #define bfd_sizeof_headers(abfd, info) \ BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, info)) #define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \ BFD_SEND (abfd, _bfd_find_nearest_line, \ (abfd, sec, syms, off, file, func, line)) #define bfd_find_line(abfd, syms, sym, file, line) \ BFD_SEND (abfd, _bfd_find_line, \ (abfd, syms, sym, file, line)) #define bfd_find_inliner_info(abfd, file, func, line) \ BFD_SEND (abfd, _bfd_find_inliner_info, \ (abfd, file, func, line)) #define bfd_debug_info_start(abfd) \ BFD_SEND (abfd, _bfd_debug_info_start, (abfd)) #define bfd_debug_info_end(abfd) \ BFD_SEND (abfd, _bfd_debug_info_end, (abfd)) #define bfd_debug_info_accumulate(abfd, section) \ BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section)) #define bfd_stat_arch_elt(abfd, stat) \ BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat)) #define bfd_update_armap_timestamp(abfd) \ BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd)) #define bfd_set_arch_mach(abfd, arch, mach)\ BFD_SEND ( abfd, _bfd_set_arch_mach, (abfd, arch, mach)) #define bfd_relax_section(abfd, section, link_info, again) \ BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again)) #define bfd_gc_sections(abfd, link_info) \ BFD_SEND (abfd, _bfd_gc_sections, (abfd, link_info)) #define bfd_merge_sections(abfd, link_info) \ BFD_SEND (abfd, _bfd_merge_sections, (abfd, link_info)) #define bfd_is_group_section(abfd, sec) \ BFD_SEND (abfd, _bfd_is_group_section, (abfd, sec)) #define bfd_discard_group(abfd, sec) \ BFD_SEND (abfd, _bfd_discard_group, (abfd, sec)) #define bfd_link_hash_table_create(abfd) \ BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd)) #define bfd_link_hash_table_free(abfd, hash) \ BFD_SEND (abfd, _bfd_link_hash_table_free, (hash)) #define bfd_link_add_symbols(abfd, info) \ BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info)) #define bfd_link_just_syms(abfd, sec, info) \ BFD_SEND (abfd, _bfd_link_just_syms, (sec, info)) #define bfd_final_link(abfd, info) \ BFD_SEND (abfd, _bfd_final_link, (abfd, info)) #define bfd_free_cached_info(abfd) \ BFD_SEND (abfd, _bfd_free_cached_info, (abfd)) #define bfd_get_dynamic_symtab_upper_bound(abfd) \ BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd)) #define bfd_print_private_bfd_data(abfd, file)\ BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file)) #define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \ BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols)) #define bfd_get_synthetic_symtab(abfd, count, syms, dyncount, dynsyms, ret) \ BFD_SEND (abfd, _bfd_get_synthetic_symtab, (abfd, count, syms, \ dyncount, dynsyms, ret)) #define bfd_get_dynamic_reloc_upper_bound(abfd) \ BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd)) #define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \ BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms)) extern bfd_byte *bfd_get_relocated_section_contents (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *, bfd_boolean, asymbol **); 2.3.1.16 `bfd_alt_mach_code' ............................ *Synopsis* bfd_boolean bfd_alt_mach_code (bfd *abfd, int alternative); *Description* When more than one machine code number is available for the same machine type, this function can be used to switch between the preferred one (alternative == 0) and any others. Currently, only ELF supports this feature, with up to two alternate machine codes. struct bfd_preserve { void *marker; void *tdata; flagword flags; const struct bfd_arch_info *arch_info; struct bfd_section *sections; struct bfd_section *section_last; unsigned int section_count; struct bfd_hash_table section_htab; }; 2.3.1.17 `bfd_preserve_save' ............................ *Synopsis* bfd_boolean bfd_preserve_save (bfd *, struct bfd_preserve *); *Description* When testing an object for compatibility with a particular target back-end, the back-end object_p function needs to set up certain fields in the bfd on successfully recognizing the object. This typically happens in a piecemeal fashion, with failures possible at many points. On failure, the bfd is supposed to be restored to its initial state, which is virtually impossible. However, restoring a subset of the bfd state works in practice. This function stores the subset and reinitializes the bfd. 2.3.1.18 `bfd_preserve_restore' ............................... *Synopsis* void bfd_preserve_restore (bfd *, struct bfd_preserve *); *Description* This function restores bfd state saved by bfd_preserve_save. If MARKER is non-NULL in struct bfd_preserve then that block and all subsequently bfd_alloc'd memory is freed. 2.3.1.19 `bfd_preserve_finish' .............................. *Synopsis* void bfd_preserve_finish (bfd *, struct bfd_preserve *); *Description* This function should be called when the bfd state saved by bfd_preserve_save is no longer needed. ie. when the back-end object_p function returns with success. 2.3.1.20 `bfd_emul_get_maxpagesize' ................................... *Synopsis* bfd_vma bfd_emul_get_maxpagesize (const char *); *Description* Returns the maximum page size, in bytes, as determined by emulation. *Returns* Returns the maximum page size in bytes for ELF, abort otherwise. 2.3.1.21 `bfd_emul_set_maxpagesize' ................................... *Synopsis* void bfd_emul_set_maxpagesize (const char *, bfd_vma); *Description* For ELF, set the maximum page size for the emulation. It is a no-op for other formats. 2.3.1.22 `bfd_emul_get_commonpagesize' ...................................... *Synopsis* bfd_vma bfd_emul_get_commonpagesize (const char *); *Description* Returns the common page size, in bytes, as determined by emulation. *Returns* Returns the common page size in bytes for ELF, abort otherwise. 2.3.1.23 `bfd_emul_set_commonpagesize' ...................................... *Synopsis* void bfd_emul_set_commonpagesize (const char *, bfd_vma); *Description* For ELF, set the common page size for the emulation. It is a no-op for other formats. 2.3.1.24 `struct bfd_iovec' ........................... *Description* The `struct bfd_iovec' contains the internal file I/O class. Each `BFD' has an instance of this class and all file I/O is routed through it (it is assumed that the instance implements all methods listed below). struct bfd_iovec { /* To avoid problems with macros, a "b" rather than "f" prefix is prepended to each method name. */ /* Attempt to read/write NBYTES on ABFD's IOSTREAM storing/fetching bytes starting at PTR. Return the number of bytes actually transfered (a read past end-of-file returns less than NBYTES), or -1 (setting `bfd_error') if an error occurs. */ file_ptr (*bread) (struct bfd *abfd, void *ptr, file_ptr nbytes); file_ptr (*bwrite) (struct bfd *abfd, const void *ptr, file_ptr nbytes); /* Return the current IOSTREAM file offset, or -1 (setting `bfd_error' if an error occurs. */ file_ptr (*btell) (struct bfd *abfd); /* For the following, on successful completion a value of 0 is returned. Otherwise, a value of -1 is returned (and `bfd_error' is set). */ int (*bseek) (struct bfd *abfd, file_ptr offset, int whence); int (*bclose) (struct bfd *abfd); int (*bflush) (struct bfd *abfd); int (*bstat) (struct bfd *abfd, struct stat *sb); }; 2.3.1.25 `bfd_get_mtime' ........................ *Synopsis* long bfd_get_mtime (bfd *abfd); *Description* Return the file modification time (as read from the file system, or from the archive header for archive members). 2.3.1.26 `bfd_get_size' ....................... *Synopsis* long bfd_get_size (bfd *abfd); *Description* Return the file size (as read from file system) for the file associated with BFD ABFD. The initial motivation for, and use of, this routine is not so we can get the exact size of the object the BFD applies to, since that might not be generally possible (archive members for example). It would be ideal if someone could eventually modify it so that such results were guaranteed. Instead, we want to ask questions like "is this NNN byte sized object I'm about to try read from file offset YYY reasonable?" As as example of where we might do this, some object formats use string tables for which the first `sizeof (long)' bytes of the table contain the size of the table itself, including the size bytes. If an application tries to read what it thinks is one of these string tables, without some way to validate the size, and for some reason the size is wrong (byte swapping error, wrong location for the string table, etc.), the only clue is likely to be a read error when it tries to read the table, or a "virtual memory exhausted" error when it tries to allocate 15 bazillon bytes of space for the 15 bazillon byte table it is about to read. This function at least allows us to answer the question, "is the size reasonable?". * Menu: * Memory Usage:: * Initialization:: * Sections:: * Symbols:: * Archives:: * Formats:: * Relocations:: * Core Files:: * Targets:: * Architectures:: * Opening and Closing:: * Internal:: * File Caching:: * Linker Functions:: * Hash Tables:: File: bfd.info, Node: Memory Usage, Next: Initialization, Prev: BFD front end, Up: BFD front end 2.4 Memory Usage ================ BFD keeps all of its internal structures in obstacks. There is one obstack per open BFD file, into which the current state is stored. When a BFD is closed, the obstack is deleted, and so everything which has been allocated by BFD for the closing file is thrown away. BFD does not free anything created by an application, but pointers into `bfd' structures become invalid on a `bfd_close'; for example, after a `bfd_close' the vector passed to `bfd_canonicalize_symtab' is still around, since it has been allocated by the application, but the data that it pointed to are lost. The general rule is to not close a BFD until all operations dependent upon data from the BFD have been completed, or all the data from within the file has been copied. To help with the management of memory, there is a function (`bfd_alloc_size') which returns the number of bytes in obstacks associated with the supplied BFD. This could be used to select the greediest open BFD, close it to reclaim the memory, perform some operation and reopen the BFD again, to get a fresh copy of the data structures. File: bfd.info, Node: Initialization, Next: Sections, Prev: Memory Usage, Up: BFD front end 2.5 Initialization ================== 2.5.1 Initialization functions ------------------------------ These are the functions that handle initializing a BFD. 2.5.1.1 `bfd_init' .................. *Synopsis* void bfd_init (void); *Description* This routine must be called before any other BFD function to initialize magical internal data structures. File: bfd.info, Node: Sections, Next: Symbols, Prev: Initialization, Up: BFD front end 2.6 Sections ============ The raw data contained within a BFD is maintained through the section abstraction. A single BFD may have any number of sections. It keeps hold of them by pointing to the first; each one points to the next in the list. Sections are supported in BFD in `section.c'. * Menu: * Section Input:: * Section Output:: * typedef asection:: * section prototypes:: File: bfd.info, Node: Section Input, Next: Section Output, Prev: Sections, Up: Sections 2.6.1 Section input ------------------- When a BFD is opened for reading, the section structures are created and attached to the BFD. Each section has a name which describes the section in the outside world--for example, `a.out' would contain at least three sections, called `.text', `.data' and `.bss'. Names need not be unique; for example a COFF file may have several sections named `.data'. Sometimes a BFD will contain more than the "natural" number of sections. A back end may attach other sections containing constructor data, or an application may add a section (using `bfd_make_section') to the sections attached to an already open BFD. For example, the linker creates an extra section `COMMON' for each input file's BFD to hold information about common storage. The raw data is not necessarily read in when the section descriptor is created. Some targets may leave the data in place until a `bfd_get_section_contents' call is made. Other back ends may read in all the data at once. For example, an S-record file has to be read once to determine the size of the data. An IEEE-695 file doesn't contain raw data in sections, but data and relocation expressions intermixed, so the data area has to be parsed to get out the data and relocations. File: bfd.info, Node: Section Output, Next: typedef asection, Prev: Section Input, Up: Sections 2.6.2 Section output -------------------- To write a new object style BFD, the various sections to be written have to be created. They are attached to the BFD in the same way as input sections; data is written to the sections using `bfd_set_section_contents'. Any program that creates or combines sections (e.g., the assembler and linker) must use the `asection' fields `output_section' and `output_offset' to indicate the file sections to which each section must be written. (If the section is being created from scratch, `output_section' should probably point to the section itself and `output_offset' should probably be zero.) The data to be written comes from input sections attached (via `output_section' pointers) to the output sections. The output section structure can be considered a filter for the input section: the output section determines the vma of the output data and the name, but the input section determines the offset into the output section of the data to be written. E.g., to create a section "O", starting at 0x100, 0x123 long, containing two subsections, "A" at offset 0x0 (i.e., at vma 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the `asection' structures would look like: section name "A" output_offset 0x00 size 0x20 output_section -----------> section name "O" | vma 0x100 section name "B" | size 0x123 output_offset 0x20 | size 0x103 | output_section --------| 2.6.3 Link orders ----------------- The data within a section is stored in a "link_order". These are much like the fixups in `gas'. The link_order abstraction allows a section to grow and shrink within itself. A link_order knows how big it is, and which is the next link_order and where the raw data for it is; it also points to a list of relocations which apply to it. The link_order is used by the linker to perform relaxing on final code. The compiler creates code which is as big as necessary to make it work without relaxing, and the user can select whether to relax. Sometimes relaxing takes a lot of time. The linker runs around the relocations to see if any are attached to data which can be shrunk, if so it does it on a link_order by link_order basis. File: bfd.info, Node: typedef asection, Next: section prototypes, Prev: Section Output, Up: Sections 2.6.4 typedef asection ---------------------- Here is the section structure: typedef struct bfd_section { /* The name of the section; the name isn't a copy, the pointer is the same as that passed to bfd_make_section. */ const char *name; /* A unique sequence number. */ int id; /* Which section in the bfd; 0..n-1 as sections are created in a bfd. */ int index; /* The next section in the list belonging to the BFD, or NULL. */ struct bfd_section *next; /* The previous section in the list belonging to the BFD, or NULL. */ struct bfd_section *prev; /* The field flags contains attributes of the section. Some flags are read in from the object file, and some are synthesized from other information. */ flagword flags; #define SEC_NO_FLAGS 0x000 /* Tells the OS to allocate space for this section when loading. This is clear for a section containing debug information only. */ #define SEC_ALLOC 0x001 /* Tells the OS to load the section from the file when loading. This is clear for a .bss section. */ #define SEC_LOAD 0x002 /* The section contains data still to be relocated, so there is some relocation information too. */ #define SEC_RELOC 0x004 /* A signal to the OS that the section contains read only data. */ #define SEC_READONLY 0x008 /* The section contains code only. */ #define SEC_CODE 0x010 /* The section contains data only. */ #define SEC_DATA 0x020 /* The section will reside in ROM. */ #define SEC_ROM 0x040 /* The section contains constructor information. This section type is used by the linker to create lists of constructors and destructors used by `g++'. When a back end sees a symbol which should be used in a constructor list, it creates a new section for the type of name (e.g., `__CTOR_LIST__'), attaches the symbol to it, and builds a relocation. To build the lists of constructors, all the linker has to do is catenate all the sections called `__CTOR_LIST__' and relocate the data contained within - exactly the operations it would peform on standard data. */ #define SEC_CONSTRUCTOR 0x080 /* The section has contents - a data section could be `SEC_ALLOC' | `SEC_HAS_CONTENTS'; a debug section could be `SEC_HAS_CONTENTS' */ #define SEC_HAS_CONTENTS 0x100 /* An instruction to the linker to not output the section even if it has information which would normally be written. */ #define SEC_NEVER_LOAD 0x200 /* The section contains thread local data. */ #define SEC_THREAD_LOCAL 0x400 /* The section has GOT references. This flag is only for the linker, and is currently only used by the elf32-hppa back end. It will be set if global offset table references were detected in this section, which indicate to the linker that the section contains PIC code, and must be handled specially when doing a static link. */ #define SEC_HAS_GOT_REF 0x800 /* The section contains common symbols (symbols may be defined multiple times, the value of a symbol is the amount of space it requires, and the largest symbol value is the one used). Most targets have exactly one of these (which we translate to bfd_com_section_ptr), but ECOFF has two. */ #define SEC_IS_COMMON 0x1000 /* The section contains only debugging information. For example, this is set for ELF .debug and .stab sections. strip tests this flag to see if a section can be discarded. */ #define SEC_DEBUGGING 0x2000 /* The contents of this section are held in memory pointed to by the contents field. This is checked by bfd_get_section_contents, and the data is retrieved from memory if appropriate. */ #define SEC_IN_MEMORY 0x4000 /* The contents of this section are to be excluded by the linker for executable and shared objects unless those objects are to be further relocated. */ #define SEC_EXCLUDE 0x8000 /* The contents of this section are to be sorted based on the sum of the symbol and addend values specified by the associated relocation entries. Entries without associated relocation entries will be appended to the end of the section in an unspecified order. */ #define SEC_SORT_ENTRIES 0x10000 /* When linking, duplicate sections of the same name should be discarded, rather than being combined into a single section as is usually done. This is similar to how common symbols are handled. See SEC_LINK_DUPLICATES below. */ #define SEC_LINK_ONCE 0x20000 /* If SEC_LINK_ONCE is set, this bitfield describes how the linker should handle duplicate sections. */ #define SEC_LINK_DUPLICATES 0x40000 /* This value for SEC_LINK_DUPLICATES means that duplicate sections with the same name should simply be discarded. */ #define SEC_LINK_DUPLICATES_DISCARD 0x0 /* This value for SEC_LINK_DUPLICATES means that the linker should warn if there are any duplicate sections, although it should still only link one copy. */ #define SEC_LINK_DUPLICATES_ONE_ONLY 0x80000 /* This value for SEC_LINK_DUPLICATES means that the linker should warn if any duplicate sections are a different size. */ #define SEC_LINK_DUPLICATES_SAME_SIZE 0x100000 /* This value for SEC_LINK_DUPLICATES means that the linker should warn if any duplicate sections contain different contents. */ #define SEC_LINK_DUPLICATES_SAME_CONTENTS \ (SEC_LINK_DUPLICATES_ONE_ONLY | SEC_LINK_DUPLICATES_SAME_SIZE) /* This section was created by the linker as part of dynamic relocation or other arcane processing. It is skipped when going through the first-pass output, trusting that someone else up the line will take care of it later. */ #define SEC_LINKER_CREATED 0x200000 /* This section should not be subject to garbage collection. Also set to inform the linker that this section should not be listed in the link map as discarded. */ #define SEC_KEEP 0x400000 /* This section contains "short" data, and should be placed "near" the GP. */ #define SEC_SMALL_DATA 0x800000 /* Attempt to merge identical entities in the section. Entity size is given in the entsize field. */ #define SEC_MERGE 0x1000000 /* If given with SEC_MERGE, entities to merge are zero terminated strings where entsize specifies character size instead of fixed size entries. */ #define SEC_STRINGS 0x2000000 /* This section contains data about section groups. */ #define SEC_GROUP 0x4000000 /* The section is a COFF shared library section. This flag is only for the linker. If this type of section appears in the input file, the linker must copy it to the output file without changing the vma or size. FIXME: Although this was originally intended to be general, it really is COFF specific (and the flag was renamed to indicate this). It might be cleaner to have some more general mechanism to allow the back end to control what the linker does with sections. */ #define SEC_COFF_SHARED_LIBRARY 0x10000000 /* This section contains data which may be shared with other executables or shared objects. This is for COFF only. */ #define SEC_COFF_SHARED 0x20000000 /* When a section with this flag is being linked, then if the size of the input section is less than a page, it should not cross a page boundary. If the size of the input section is one page or more, it should be aligned on a page boundary. This is for TI TMS320C54X only. */ #define SEC_TIC54X_BLOCK 0x40000000 /* Conditionally link this section; do not link if there are no references found to any symbol in the section. This is for TI TMS320C54X only. */ #define SEC_TIC54X_CLINK 0x80000000 /* End of section flags. */ /* Some internal packed boolean fields. */ /* See the vma field. */ unsigned int user_set_vma : 1; /* A mark flag used by some of the linker backends. */ unsigned int linker_mark : 1; /* Another mark flag used by some of the linker backends. Set for output sections that have an input section. */ unsigned int linker_has_input : 1; /* Mark flags used by some linker backends for garbage collection. */ unsigned int gc_mark : 1; unsigned int gc_mark_from_eh : 1; /* The following flags are used by the ELF linker. */ /* Mark sections which have been allocated to segments. */ unsigned int segment_mark : 1; /* Type of sec_info information. */ unsigned int sec_info_type:3; #define ELF_INFO_TYPE_NONE 0 #define ELF_INFO_TYPE_STABS 1 #define ELF_INFO_TYPE_MERGE 2 #define ELF_INFO_TYPE_EH_FRAME 3 #define ELF_INFO_TYPE_JUST_SYMS 4 /* Nonzero if this section uses RELA relocations, rather than REL. */ unsigned int use_rela_p:1; /* Bits used by various backends. The generic code doesn't touch these fields. */ /* Nonzero if this section has TLS related relocations. */ unsigned int has_tls_reloc:1; /* Nonzero if this section has a gp reloc. */ unsigned int has_gp_reloc:1; /* Nonzero if this section needs the relax finalize pass. */ unsigned int need_finalize_relax:1; /* Whether relocations have been processed. */ unsigned int reloc_done : 1; /* End of internal packed boolean fields. */ /* The virtual memory address of the section - where it will be at run time. The symbols are relocated against this. The user_set_vma flag is maintained by bfd; if it's not set, the backend can assign addresses (for example, in `a.out', where the default address for `.data' is dependent on the specific target and various flags). */ bfd_vma vma; /* The load address of the section - where it would be in a rom image; really only used for writing section header information. */ bfd_vma lma; /* The size of the section in octets, as it will be output. Contains a value even if the section has no contents (e.g., the size of `.bss'). */ bfd_size_type size; /* For input sections, the original size on disk of the section, in octets. This field is used by the linker relaxation code. It is currently only set for sections where the linker relaxation scheme doesn't cache altered section and reloc contents (stabs, eh_frame, SEC_MERGE, some coff relaxing targets), and thus the original size needs to be kept to read the section multiple times. For output sections, rawsize holds the section size calculated on a previous linker relaxation pass. */ bfd_size_type rawsize; /* If this section is going to be output, then this value is the offset in *bytes* into the output section of the first byte in the input section (byte ==> smallest addressable unit on the target). In most cases, if this was going to start at the 100th octet (8-bit quantity) in the output section, this value would be 100. However, if the target byte size is 16 bits (bfd_octets_per_byte is "2"), this value would be 50. */ bfd_vma output_offset; /* The output section through which to map on output. */ struct bfd_section *output_section; /* The alignment requirement of the section, as an exponent of 2 - e.g., 3 aligns to 2^3 (or 8). */ unsigned int alignment_power; /* If an input section, a pointer to a vector of relocation records for the data in this section. */ struct reloc_cache_entry *relocation; /* If an output section, a pointer to a vector of pointers to relocation records for the data in this section. */ struct reloc_cache_entry **orelocation; /* The number of relocation records in one of the above. */ unsigned reloc_count; /* Information below is back end specific - and not always used or updated. */ /* File position of section data. */ file_ptr filepos; /* File position of relocation info. */ file_ptr rel_filepos; /* File position of line data. */ file_ptr line_filepos; /* Pointer to data for applications. */ void *userdata; /* If the SEC_IN_MEMORY flag is set, this points to the actual contents. */ unsigned char *contents; /* Attached line number information. */ alent *lineno; /* Number of line number records. */ unsigned int lineno_count; /* Entity size for merging purposes. */ unsigned int entsize; /* Points to the kept section if this section is a link-once section, and is discarded. */ struct bfd_section *kept_section; /* When a section is being output, this value changes as more linenumbers are written out. */ file_ptr moving_line_filepos; /* What the section number is in the target world. */ int target_index; void *used_by_bfd; /* If this is a constructor section then here is a list of the relocations created to relocate items within it. */ struct relent_chain *constructor_chain; /* The BFD which owns the section. */ bfd *owner; /* A symbol which points at this section only. */ struct bfd_symbol *symbol; struct bfd_symbol **symbol_ptr_ptr; /* Early in the link process, map_head and map_tail are used to build a list of input sections attached to an output section. Later, output sections use these fields for a list of bfd_link_order structs. */ union { struct bfd_link_order *link_order; struct bfd_section *s; } map_head, map_tail; } asection; /* These sections are global, and are managed by BFD. The application and target back end are not permitted to change the values in these sections. New code should use the section_ptr macros rather than referring directly to the const sections. The const sections may eventually vanish. */ #define BFD_ABS_SECTION_NAME "*ABS*" #define BFD_UND_SECTION_NAME "*UND*" #define BFD_COM_SECTION_NAME "*COM*" #define BFD_IND_SECTION_NAME "*IND*" /* The absolute section. */ extern asection bfd_abs_section; #define bfd_abs_section_ptr ((asection *) &bfd_abs_section) #define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr) /* Pointer to the undefined section. */ extern asection bfd_und_section; #define bfd_und_section_ptr ((asection *) &bfd_und_section) #define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr) /* Pointer to the common section. */ extern asection bfd_com_section; #define bfd_com_section_ptr ((asection *) &bfd_com_section) /* Pointer to the indirect section. */ extern asection bfd_ind_section; #define bfd_ind_section_ptr ((asection *) &bfd_ind_section) #define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr) #define bfd_is_const_section(SEC) \ ( ((SEC) == bfd_abs_section_ptr) \ || ((SEC) == bfd_und_section_ptr) \ || ((SEC) == bfd_com_section_ptr) \ || ((SEC) == bfd_ind_section_ptr)) /* Macros to handle insertion and deletion of a bfd's sections. These only handle the list pointers, ie. do not adjust section_count, target_index etc. */ #define bfd_section_list_remove(ABFD, S) \ do \ { \ asection *_s = S; \ asection *_next = _s->next; \ asection *_prev = _s->prev; \ if (_prev) \ _prev->next = _next; \ else \ (ABFD)->sections = _next; \ if (_next) \ _next->prev = _prev; \ else \ (ABFD)->section_last = _prev; \ } \ while (0) #define bfd_section_list_append(ABFD, S) \ do \ { \ asection *_s = S; \ bfd *_abfd = ABFD; \ _s->next = NULL; \ if (_abfd->section_last) \ { \ _s->prev = _abfd->section_last; \ _abfd->section_last->next = _s; \ } \ else \ { \ _s->prev = NULL; \ _abfd->sections = _s; \ } \ _abfd->section_last = _s; \ } \ while (0) #define bfd_section_list_prepend(ABFD, S) \ do \ { \ asection *_s = S; \ bfd *_abfd = ABFD; \ _s->prev = NULL; \ if (_abfd->sections) \ { \ _s->next = _abfd->sections; \ _abfd->sections->prev = _s; \ } \ else \ { \ _s->next = NULL; \ _abfd->section_last = _s; \ } \ _abfd->sections = _s; \ } \ while (0) #define bfd_section_list_insert_after(ABFD, A, S) \ do \ { \ asection *_a = A; \ asection *_s = S; \ asection *_next = _a->next; \ _s->next = _next; \ _s->prev = _a; \ _a->next = _s; \ if (_next) \ _next->prev = _s; \ else \ (ABFD)->section_last = _s; \ } \ while (0) #define bfd_section_list_insert_before(ABFD, B, S) \ do \ { \ asection *_b = B; \ asection *_s = S; \ asection *_prev = _b->prev; \ _s->prev = _prev; \ _s->next = _b; \ _b->prev = _s; \ if (_prev) \ _prev->next = _s; \ else \ (ABFD)->sections = _s; \ } \ while (0) #define bfd_section_removed_from_list(ABFD, S) \ ((S)->next == NULL ? (ABFD)->section_last != (S) : (S)->next->prev != (S)) #define BFD_FAKE_SECTION(SEC, FLAGS, SYM, NAME, IDX) \ /* name, id, index, next, prev, flags, user_set_vma, */ \ { NAME, IDX, 0, NULL, NULL, FLAGS, 0, \ \ /* linker_mark, linker_has_input, gc_mark, gc_mark_from_eh, */ \ 0, 0, 1, 0, \ \ /* segment_mark, sec_info_type, use_rela_p, has_tls_reloc, */ \ 0, 0, 0, 0, \ \ /* has_gp_reloc, need_finalize_relax, reloc_done, */ \ 0, 0, 0, \ \ /* vma, lma, size, rawsize */ \ 0, 0, 0, 0, \ \ /* output_offset, output_section, alignment_power, */ \ 0, (struct bfd_section *) &SEC, 0, \ \ /* relocation, orelocation, reloc_count, filepos, rel_filepos, */ \ NULL, NULL, 0, 0, 0, \ \ /* line_filepos, userdata, contents, lineno, lineno_count, */ \ 0, NULL, NULL, NULL, 0, \ \ /* entsize, kept_section, moving_line_filepos, */ \ 0, NULL, 0, \ \ /* target_index, used_by_bfd, constructor_chain, owner, */ \ 0, NULL, NULL, NULL, \ \ /* symbol, symbol_ptr_ptr, */ \ (struct bfd_symbol *) SYM, &SEC.symbol, \ \ /* map_head, map_tail */ \ { NULL }, { NULL } \ } File: bfd.info, Node: section prototypes, Prev: typedef asection, Up: Sections 2.6.5 Section prototypes ------------------------ These are the functions exported by the section handling part of BFD. 2.6.5.1 `bfd_section_list_clear' ................................ *Synopsis* void bfd_section_list_clear (bfd *); *Description* Clears the section list, and also resets the section count and hash table entries. 2.6.5.2 `bfd_get_section_by_name' ................................. *Synopsis* asection *bfd_get_section_by_name (bfd *abfd, const char *name); *Description* Run through ABFD and return the one of the `asection's whose name matches NAME, otherwise `NULL'. *Note Sections::, for more information. This should only be used in special cases; the normal way to process all sections of a given name is to use `bfd_map_over_sections' and `strcmp' on the name (or better yet, base it on the section flags or something else) for each section. 2.6.5.3 `bfd_get_section_by_name_if' .................................... *Synopsis* asection *bfd_get_section_by_name_if (bfd *abfd, const char *name, bfd_boolean (*func) (bfd *abfd, asection *sect, void *obj), void *obj); *Description* Call the provided function FUNC for each section attached to the BFD ABFD whose name matches NAME, passing OBJ as an argument. The function will be called as if by func (abfd, the_section, obj); It returns the first section for which FUNC returns true, otherwise `NULL'. 2.6.5.4 `bfd_get_unique_section_name' ..................................... *Synopsis* char *bfd_get_unique_section_name (bfd *abfd, const char *templat, int *count); *Description* Invent a section name that is unique in ABFD by tacking a dot and a digit suffix onto the original TEMPLAT. If COUNT is non-NULL, then it specifies the first number tried as a suffix to generate a unique name. The value pointed to by COUNT will be incremented in this case. 2.6.5.5 `bfd_make_section_old_way' .................................. *Synopsis* asection *bfd_make_section_old_way (bfd *abfd, const char *name); *Description* Create a new empty section called NAME and attach it to the end of the chain of sections for the BFD ABFD. An attempt to create a section with a name which is already in use returns its pointer without changing the section chain. It has the funny name since this is the way it used to be before it was rewritten.... Possible errors are: * `bfd_error_invalid_operation' - If output has already started for this BFD. * `bfd_error_no_memory' - If memory allocation fails. 2.6.5.6 `bfd_make_section_anyway_with_flags' ............................................ *Synopsis* asection *bfd_make_section_anyway_with_flags (bfd *abfd, const char *name, flagword flags); *Description* Create a new empty section called NAME and attach it to the end of the chain of sections for ABFD. Create a new section even if there is already a section with that name. Also set the attributes of the new section to the value FLAGS. Return `NULL' and set `bfd_error' on error; possible errors are: * `bfd_error_invalid_operation' - If output has already started for ABFD. * `bfd_error_no_memory' - If memory allocation fails. 2.6.5.7 `bfd_make_section_anyway' ................................. *Synopsis* asection *bfd_make_section_anyway (bfd *abfd, const char *name); *Description* Create a new empty section called NAME and attach it to the end of the chain of sections for ABFD. Create a new section even if there is already a section with that name. Return `NULL' and set `bfd_error' on error; possible errors are: * `bfd_error_invalid_operation' - If output has already started for ABFD. * `bfd_error_no_memory' - If memory allocation fails. 2.6.5.8 `bfd_make_section_with_flags' ..................................... *Synopsis* asection *bfd_make_section_with_flags (bfd *, const char *name, flagword flags); *Description* Like `bfd_make_section_anyway', but return `NULL' (without calling bfd_set_error ()) without changing the section chain if there is already a section named NAME. Also set the attributes of the new section to the value FLAGS. If there is an error, return `NULL' and set `bfd_error'. 2.6.5.9 `bfd_make_section' .......................... *Synopsis* asection *bfd_make_section (bfd *, const char *name); *Description* Like `bfd_make_section_anyway', but return `NULL' (without calling bfd_set_error ()) without changing the section chain if there is already a section named NAME. If there is an error, return `NULL' and set `bfd_error'. 2.6.5.10 `bfd_set_section_flags' ................................ *Synopsis* bfd_boolean bfd_set_section_flags (bfd *abfd, asection *sec, flagword flags); *Description* Set the attributes of the section SEC in the BFD ABFD to the value FLAGS. Return `TRUE' on success, `FALSE' on error. Possible error returns are: * `bfd_error_invalid_operation' - The section cannot have one or more of the attributes requested. For example, a .bss section in `a.out' may not have the `SEC_HAS_CONTENTS' field set. 2.6.5.11 `bfd_map_over_sections' ................................ *Synopsis* void bfd_map_over_sections (bfd *abfd, void (*func) (bfd *abfd, asection *sect, void *obj), void *obj); *Description* Call the provided function FUNC for each section attached to the BFD ABFD, passing OBJ as an argument. The function will be called as if by func (abfd, the_section, obj); This is the preferred method for iterating over sections; an alternative would be to use a loop: section *p; for (p = abfd->sections; p != NULL; p = p->next) func (abfd, p, ...) 2.6.5.12 `bfd_sections_find_if' ............................... *Synopsis* asection *bfd_sections_find_if (bfd *abfd, bfd_boolean (*operation) (bfd *abfd, asection *sect, void *obj), void *obj); *Description* Call the provided function OPERATION for each section attached to the BFD ABFD, passing OBJ as an argument. The function will be called as if by operation (abfd, the_section, obj); It returns the first section for which OPERATION returns true. 2.6.5.13 `bfd_set_section_size' ............................... *Synopsis* bfd_boolean bfd_set_section_size (bfd *abfd, asection *sec, bfd_size_type val); *Description* Set SEC to the size VAL. If the operation is ok, then `TRUE' is returned, else `FALSE'. Possible error returns: * `bfd_error_invalid_operation' - Writing has started to the BFD, so setting the size is invalid. 2.6.5.14 `bfd_set_section_contents' ................................... *Synopsis* bfd_boolean bfd_set_section_contents (bfd *abfd, asection *section, const void *data, file_ptr offset, bfd_size_type count); *Description* Sets the contents of the section SECTION in BFD ABFD to the data starting in memory at DATA. The data is written to the output section starting at offset OFFSET for COUNT octets. Normally `TRUE' is returned, else `FALSE'. Possible error returns are: * `bfd_error_no_contents' - The output section does not have the `SEC_HAS_CONTENTS' attribute, so nothing can be written to it. * and some more too This routine is front end to the back end function `_bfd_set_section_contents'. 2.6.5.15 `bfd_get_section_contents' ................................... *Synopsis* bfd_boolean bfd_get_section_contents (bfd *abfd, asection *section, void *location, file_ptr offset, bfd_size_type count); *Description* Read data from SECTION in BFD ABFD into memory starting at LOCATION. The data is read at an offset of OFFSET from the start of the input section, and is read for COUNT bytes. If the contents of a constructor with the `SEC_CONSTRUCTOR' flag set are requested or if the section does not have the `SEC_HAS_CONTENTS' flag set, then the LOCATION is filled with zeroes. If no errors occur, `TRUE' is returned, else `FALSE'. 2.6.5.16 `bfd_malloc_and_get_section' ..................................... *Synopsis* bfd_boolean bfd_malloc_and_get_section (bfd *abfd, asection *section, bfd_byte **buf); *Description* Read all data from SECTION in BFD ABFD into a buffer, *BUF, malloc'd by this function. 2.6.5.17 `bfd_copy_private_section_data' ........................................ *Synopsis* bfd_boolean bfd_copy_private_section_data (bfd *ibfd, asection *isec, bfd *obfd, asection *osec); *Description* Copy private section information from ISEC in the BFD IBFD to the section OSEC in the BFD OBFD. Return `TRUE' on success, `FALSE' on error. Possible error returns are: * `bfd_error_no_memory' - Not enough memory exists to create private data for OSEC. #define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \ BFD_SEND (obfd, _bfd_copy_private_section_data, \ (ibfd, isection, obfd, osection)) 2.6.5.18 `bfd_generic_is_group_section' ....................................... *Synopsis* bfd_boolean bfd_generic_is_group_section (bfd *, const asection *sec); *Description* Returns TRUE if SEC is a member of a group. 2.6.5.19 `bfd_generic_discard_group' .................................... *Synopsis* bfd_boolean bfd_generic_discard_group (bfd *abfd, asection *group); *Description* Remove all members of GROUP from the output. File: bfd.info, Node: Symbols, Next: Archives, Prev: Sections, Up: BFD front end 2.7 Symbols =========== BFD tries to maintain as much symbol information as it can when it moves information from file to file. BFD passes information to applications though the `asymbol' structure. When the application requests the symbol table, BFD reads the table in the native form and translates parts of it into the internal format. To maintain more than the information passed to applications, some targets keep some information "behind the scenes" in a structure only the particular back end knows about. For example, the coff back end keeps the original symbol table structure as well as the canonical structure when a BFD is read in. On output, the coff back end can reconstruct the output symbol table so that no information is lost, even information unique to coff which BFD doesn't know or understand. If a coff symbol table were read, but were written through an a.out back end, all the coff specific information would be lost. The symbol table of a BFD is not necessarily read in until a canonicalize request is made. Then the BFD back end fills in a table provided by the application with pointers to the canonical information. To output symbols, the application provides BFD with a table of pointers to pointers to `asymbol's. This allows applications like the linker to output a symbol as it was read, since the "behind the scenes" information will be still available. * Menu: * Reading Symbols:: * Writing Symbols:: * Mini Symbols:: * typedef asymbol:: * symbol handling functions:: File: bfd.info, Node: Reading Symbols, Next: Writing Symbols, Prev: Symbols, Up: Symbols 2.7.1 Reading symbols --------------------- There are two stages to reading a symbol table from a BFD: allocating storage, and the actual reading process. This is an excerpt from an application which reads the symbol table: long storage_needed; asymbol **symbol_table; long number_of_symbols; long i; storage_needed = bfd_get_symtab_upper_bound (abfd); if (storage_needed < 0) FAIL if (storage_needed == 0) return; symbol_table = xmalloc (storage_needed); ... number_of_symbols = bfd_canonicalize_symtab (abfd, symbol_table); if (number_of_symbols < 0) FAIL for (i = 0; i < number_of_symbols; i++) process_symbol (symbol_table[i]); All storage for the symbols themselves is in an objalloc connected to the BFD; it is freed when the BFD is closed. File: bfd.info, Node: Writing Symbols, Next: Mini Symbols, Prev: Reading Symbols, Up: Symbols 2.7.2 Writing symbols --------------------- Writing of a symbol table is automatic when a BFD open for writing is closed. The application attaches a vector of pointers to pointers to symbols to the BFD being written, and fills in the symbol count. The close and cleanup code reads through the table provided and performs all the necessary operations. The BFD output code must always be provided with an "owned" symbol: one which has come from another BFD, or one which has been created using `bfd_make_empty_symbol'. Here is an example showing the creation of a symbol table with only one element: #include "bfd.h" int main (void) { bfd *abfd; asymbol *ptrs[2]; asymbol *new; abfd = bfd_openw ("foo","a.out-sunos-big"); bfd_set_format (abfd, bfd_object); new = bfd_make_empty_symbol (abfd); new->name = "dummy_symbol"; new->section = bfd_make_section_old_way (abfd, ".text"); new->flags = BSF_GLOBAL; new->value = 0x12345; ptrs[0] = new; ptrs[1] = 0; bfd_set_symtab (abfd, ptrs, 1); bfd_close (abfd); return 0; } ./makesym nm foo 00012345 A dummy_symbol Many formats cannot represent arbitrary symbol information; for instance, the `a.out' object format does not allow an arbitrary number of sections. A symbol pointing to a section which is not one of `.text', `.data' or `.bss' cannot be described. File: bfd.info, Node: Mini Symbols, Next: typedef asymbol, Prev: Writing Symbols, Up: Symbols 2.7.3 Mini Symbols ------------------ Mini symbols provide read-only access to the symbol table. They use less memory space, but require more time to access. They can be useful for tools like nm or objdump, which may have to handle symbol tables of extremely large executables. The `bfd_read_minisymbols' function will read the symbols into memory in an internal form. It will return a `void *' pointer to a block of memory, a symbol count, and the size of each symbol. The pointer is allocated using `malloc', and should be freed by the caller when it is no longer needed. The function `bfd_minisymbol_to_symbol' will take a pointer to a minisymbol, and a pointer to a structure returned by `bfd_make_empty_symbol', and return a `asymbol' structure. The return value may or may not be the same as the value from `bfd_make_empty_symbol' which was passed in. File: bfd.info, Node: typedef asymbol, Next: symbol handling functions, Prev: Mini Symbols, Up: Symbols 2.7.4 typedef asymbol --------------------- An `asymbol' has the form: typedef struct bfd_symbol { /* A pointer to the BFD which owns the symbol. This information is necessary so that a back end can work out what additional information (invisible to the application writer) is carried with the symbol. This field is *almost* redundant, since you can use section->owner instead, except that some symbols point to the global sections bfd_{abs,com,und}_section. This could be fixed by making these globals be per-bfd (or per-target-flavor). FIXME. */ struct bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */ /* The text of the symbol. The name is left alone, and not copied; the application may not alter it. */ const char *name; /* The value of the symbol. This really should be a union of a numeric value with a pointer, since some flags indicate that a pointer to another symbol is stored here. */ symvalue value; /* Attributes of a symbol. */ #define BSF_NO_FLAGS 0x00 /* The symbol has local scope; `static' in `C'. The value is the offset into the section of the data. */ #define BSF_LOCAL 0x01 /* The symbol has global scope; initialized data in `C'. The value is the offset into the section of the data. */ #define BSF_GLOBAL 0x02 /* The symbol has global scope and is exported. The value is the offset into the section of the data. */ #define BSF_EXPORT BSF_GLOBAL /* No real difference. */ /* A normal C symbol would be one of: `BSF_LOCAL', `BSF_FORT_COMM', `BSF_UNDEFINED' or `BSF_GLOBAL'. */ /* The symbol is a debugging record. The value has an arbitrary meaning, unless BSF_DEBUGGING_RELOC is also set. */ #define BSF_DEBUGGING 0x08 /* The symbol denotes a function entry point. Used in ELF, perhaps others someday. */ #define BSF_FUNCTION 0x10 /* Used by the linker. */ #define BSF_KEEP 0x20 #define BSF_KEEP_G 0x40 /* A weak global symbol, overridable without warnings by a regular global symbol of the same name. */ #define BSF_WEAK 0x80 /* This symbol was created to point to a section, e.g. ELF's STT_SECTION symbols. */ #define BSF_SECTION_SYM 0x100 /* The symbol used to be a common symbol, but now it is allocated. */ #define BSF_OLD_COMMON 0x200 /* The default value for common data. */ #define BFD_FORT_COMM_DEFAULT_VALUE 0 /* In some files the type of a symbol sometimes alters its location in an output file - ie in coff a `ISFCN' symbol which is also `C_EXT' symbol appears where it was declared and not at the end of a section. This bit is set by the target BFD part to convey this information. */ #define BSF_NOT_AT_END 0x400 /* Signal that the symbol is the label of constructor section. */ #define BSF_CONSTRUCTOR 0x800 /* Signal that the symbol is a warning symbol. The name is a warning. The name of the next symbol is the one to warn about; if a reference is made to a symbol with the same name as the next symbol, a warning is issued by the linker. */ #define BSF_WARNING 0x1000 /* Signal that the symbol is indirect. This symbol is an indirect pointer to the symbol with the same name as the next symbol. */ #define BSF_INDIRECT 0x2000 /* BSF_FILE marks symbols that contain a file name. This is used for ELF STT_FILE symbols. */ #define BSF_FILE 0x4000 /* Symbol is from dynamic linking information. */ #define BSF_DYNAMIC 0x8000 /* The symbol denotes a data object. Used in ELF, and perhaps others someday. */ #define BSF_OBJECT 0x10000 /* This symbol is a debugging symbol. The value is the offset into the section of the data. BSF_DEBUGGING should be set as well. */ #define BSF_DEBUGGING_RELOC 0x20000 /* This symbol is thread local. Used in ELF. */ #define BSF_THREAD_LOCAL 0x40000 flagword flags; /* A pointer to the section to which this symbol is relative. This will always be non NULL, there are special sections for undefined and absolute symbols. */ struct bfd_section *section; /* Back end special data. */ union { void *p; bfd_vma i; } udata; } asymbol; File: bfd.info, Node: symbol handling functions, Prev: typedef asymbol, Up: Symbols 2.7.5 Symbol handling functions ------------------------------- 2.7.5.1 `bfd_get_symtab_upper_bound' .................................... *Description* Return the number of bytes required to store a vector of pointers to `asymbols' for all the symbols in the BFD ABFD, including a terminal NULL pointer. If there are no symbols in the BFD, then return 0. If an error occurs, return -1. #define bfd_get_symtab_upper_bound(abfd) \ BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd)) 2.7.5.2 `bfd_is_local_label' ............................ *Synopsis* bfd_boolean bfd_is_local_label (bfd *abfd, asymbol *sym); *Description* Return TRUE if the given symbol SYM in the BFD ABFD is a compiler generated local label, else return FALSE. 2.7.5.3 `bfd_is_local_label_name' ................................. *Synopsis* bfd_boolean bfd_is_local_label_name (bfd *abfd, const char *name); *Description* Return TRUE if a symbol with the name NAME in the BFD ABFD is a compiler generated local label, else return FALSE. This just checks whether the name has the form of a local label. #define bfd_is_local_label_name(abfd, name) \ BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name)) 2.7.5.4 `bfd_is_target_special_symbol' ...................................... *Synopsis* bfd_boolean bfd_is_target_special_symbol (bfd *abfd, asymbol *sym); *Description* Return TRUE iff a symbol SYM in the BFD ABFD is something special to the particular target represented by the BFD. Such symbols should normally not be mentioned to the user. #define bfd_is_target_special_symbol(abfd, sym) \ BFD_SEND (abfd, _bfd_is_target_special_symbol, (abfd, sym)) 2.7.5.5 `bfd_canonicalize_symtab' ................................. *Description* Read the symbols from the BFD ABFD, and fills in the vector LOCATION with pointers to the symbols and a trailing NULL. Return the actual number of symbol pointers, not including the NULL. #define bfd_canonicalize_symtab(abfd, location) \ BFD_SEND (abfd, _bfd_canonicalize_symtab, (abfd, location)) 2.7.5.6 `bfd_set_symtab' ........................ *Synopsis* bfd_boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count); *Description* Arrange that when the output BFD ABFD is closed, the table LOCATION of COUNT pointers to symbols will be written. 2.7.5.7 `bfd_print_symbol_vandf' ................................ *Synopsis* void bfd_print_symbol_vandf (bfd *abfd, void *file, asymbol *symbol); *Description* Print the value and flags of the SYMBOL supplied to the stream FILE. 2.7.5.8 `bfd_make_empty_symbol' ............................... *Description* Create a new `asymbol' structure for the BFD ABFD and return a pointer to it. This routine is necessary because each back end has private information surrounding the `asymbol'. Building your own `asymbol' and pointing to it will not create the private information, and will cause problems later on. #define bfd_make_empty_symbol(abfd) \ BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd)) 2.7.5.9 `_bfd_generic_make_empty_symbol' ........................................ *Synopsis* asymbol *_bfd_generic_make_empty_symbol (bfd *); *Description* Create a new `asymbol' structure for the BFD ABFD and return a pointer to it. Used by core file routines, binary back-end and anywhere else where no private info is needed. 2.7.5.10 `bfd_make_debug_symbol' ................................ *Description* Create a new `asymbol' structure for the BFD ABFD, to be used as a debugging symbol. Further details of its use have yet to be worked out. #define bfd_make_debug_symbol(abfd,ptr,size) \ BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size)) 2.7.5.11 `bfd_decode_symclass' .............................. *Description* Return a character corresponding to the symbol class of SYMBOL, or '?' for an unknown class. *Synopsis* int bfd_decode_symclass (asymbol *symbol); 2.7.5.12 `bfd_is_undefined_symclass' .................................... *Description* Returns non-zero if the class symbol returned by bfd_decode_symclass represents an undefined symbol. Returns zero otherwise. *Synopsis* bfd_boolean bfd_is_undefined_symclass (int symclass); 2.7.5.13 `bfd_symbol_info' .......................... *Description* Fill in the basic info about symbol that nm needs. Additional info may be added by the back-ends after calling this function. *Synopsis* void bfd_symbol_info (asymbol *symbol, symbol_info *ret); 2.7.5.14 `bfd_copy_private_symbol_data' ....................................... *Synopsis* bfd_boolean bfd_copy_private_symbol_data (bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osym); *Description* Copy private symbol information from ISYM in the BFD IBFD to the symbol OSYM in the BFD OBFD. Return `TRUE' on success, `FALSE' on error. Possible error returns are: * `bfd_error_no_memory' - Not enough memory exists to create private data for OSEC. #define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \ BFD_SEND (obfd, _bfd_copy_private_symbol_data, \ (ibfd, isymbol, obfd, osymbol)) File: bfd.info, Node: Archives, Next: Formats, Prev: Symbols, Up: BFD front end 2.8 Archives ============ *Description* An archive (or library) is just another BFD. It has a symbol table, although there's not much a user program will do with it. The big difference between an archive BFD and an ordinary BFD is that the archive doesn't have sections. Instead it has a chain of BFDs that are considered its contents. These BFDs can be manipulated like any other. The BFDs contained in an archive opened for reading will all be opened for reading. You may put either input or output BFDs into an archive opened for output; they will be handled correctly when the archive is closed. Use `bfd_openr_next_archived_file' to step through the contents of an archive opened for input. You don't have to read the entire archive if you don't want to! Read it until you find what you want. Archive contents of output BFDs are chained through the `next' pointer in a BFD. The first one is findable through the `archive_head' slot of the archive. Set it with `bfd_set_archive_head' (q.v.). A given BFD may be in only one open output archive at a time. As expected, the BFD archive code is more general than the archive code of any given environment. BFD archives may contain files of different formats (e.g., a.out and coff) and even different architectures. You may even place archives recursively into archives! This can cause unexpected confusion, since some archive formats are more expressive than others. For instance, Intel COFF archives can preserve long filenames; SunOS a.out archives cannot. If you move a file from the first to the second format and back again, the filename may be truncated. Likewise, different a.out environments have different conventions as to how they truncate filenames, whether they preserve directory names in filenames, etc. When interoperating with native tools, be sure your files are homogeneous. Beware: most of these formats do not react well to the presence of spaces in filenames. We do the best we can, but can't always handle this case due to restrictions in the format of archives. Many Unix utilities are braindead in regards to spaces and such in filenames anyway, so this shouldn't be much of a restriction. Archives are supported in BFD in `archive.c'. 2.8.1 Archive functions ----------------------- 2.8.1.1 `bfd_get_next_mapent' ............................. *Synopsis* symindex bfd_get_next_mapent (bfd *abfd, symindex previous, carsym **sym); *Description* Step through archive ABFD's symbol table (if it has one). Successively update SYM with the next symbol's information, returning that symbol's (internal) index into the symbol table. Supply `BFD_NO_MORE_SYMBOLS' as the PREVIOUS entry to get the first one; returns `BFD_NO_MORE_SYMBOLS' when you've already got the last one. A `carsym' is a canonical archive symbol. The only user-visible element is its name, a null-terminated string. 2.8.1.2 `bfd_set_archive_head' .............................. *Synopsis* bfd_boolean bfd_set_archive_head (bfd *output, bfd *new_head); *Description* Set the head of the chain of BFDs contained in the archive OUTPUT to NEW_HEAD. 2.8.1.3 `bfd_openr_next_archived_file' ...................................... *Synopsis* bfd *bfd_openr_next_archived_file (bfd *archive, bfd *previous); *Description* Provided a BFD, ARCHIVE, containing an archive and NULL, open an input BFD on the first contained element and returns that. Subsequent calls should pass the archive and the previous return value to return a created BFD to the next contained element. NULL is returned when there are no more. File: bfd.info, Node: Formats, Next: Relocations, Prev: Archives, Up: BFD front end 2.9 File formats ================ A format is a BFD concept of high level file contents type. The formats supported by BFD are: * `bfd_object' The BFD may contain data, symbols, relocations and debug info. * `bfd_archive' The BFD contains other BFDs and an optional index. * `bfd_core' The BFD contains the result of an executable core dump. 2.9.1 File format functions --------------------------- 2.9.1.1 `bfd_check_format' .......................... *Synopsis* bfd_boolean bfd_check_format (bfd *abfd, bfd_format format); *Description* Verify if the file attached to the BFD ABFD is compatible with the format FORMAT (i.e., one of `bfd_object', `bfd_archive' or `bfd_core'). If the BFD has been set to a specific target before the call, only the named target and format combination is checked. If the target has not been set, or has been set to `default', then all the known target backends is interrogated to determine a match. If the default target matches, it is used. If not, exactly one target must recognize the file, or an error results. The function returns `TRUE' on success, otherwise `FALSE' with one of the following error codes: * `bfd_error_invalid_operation' - if `format' is not one of `bfd_object', `bfd_archive' or `bfd_core'. * `bfd_error_system_call' - if an error occured during a read - even some file mismatches can cause bfd_error_system_calls. * `file_not_recognised' - none of the backends recognised the file format. * `bfd_error_file_ambiguously_recognized' - more than one backend recognised the file format. 2.9.1.2 `bfd_check_format_matches' .................................. *Synopsis* bfd_boolean bfd_check_format_matches (bfd *abfd, bfd_format format, char ***matching); *Description* Like `bfd_check_format', except when it returns FALSE with `bfd_errno' set to `bfd_error_file_ambiguously_recognized'. In that case, if MATCHING is not NULL, it will be filled in with a NULL-terminated list of the names of the formats that matched, allocated with `malloc'. Then the user may choose a format and try again. When done with the list that MATCHING points to, the caller should free it. 2.9.1.3 `bfd_set_format' ........................ *Synopsis* bfd_boolean bfd_set_format (bfd *abfd, bfd_format format); *Description* This function sets the file format of the BFD ABFD to the format FORMAT. If the target set in the BFD does not support the format requested, the format is invalid, or the BFD is not open for writing, then an error occurs. 2.9.1.4 `bfd_format_string' ........................... *Synopsis* const char *bfd_format_string (bfd_format format); *Description* Return a pointer to a const string `invalid', `object', `archive', `core', or `unknown', depending upon the value of FORMAT. File: bfd.info, Node: Relocations, Next: Core Files, Prev: Formats, Up: BFD front end 2.10 Relocations ================ BFD maintains relocations in much the same way it maintains symbols: they are left alone until required, then read in en-masse and translated into an internal form. A common routine `bfd_perform_relocation' acts upon the canonical form to do the fixup. Relocations are maintained on a per section basis, while symbols are maintained on a per BFD basis. All that a back end has to do to fit the BFD interface is to create a `struct reloc_cache_entry' for each relocation in a particular section, and fill in the right bits of the structures. * Menu: * typedef arelent:: * howto manager:: File: bfd.info, Node: typedef arelent, Next: howto manager, Prev: Relocations, Up: Relocations 2.10.1 typedef arelent ---------------------- This is the structure of a relocation entry: typedef enum bfd_reloc_status { /* No errors detected. */ bfd_reloc_ok, /* The relocation was performed, but there was an overflow. */ bfd_reloc_overflow, /* The address to relocate was not within the section supplied. */ bfd_reloc_outofrange, /* Used by special functions. */ bfd_reloc_continue, /* Unsupported relocation size requested. */ bfd_reloc_notsupported, /* Unused. */ bfd_reloc_other, /* The symbol to relocate against was undefined. */ bfd_reloc_undefined, /* The relocation was performed, but may not be ok - presently generated only when linking i960 coff files with i960 b.out symbols. If this type is returned, the error_message argument to bfd_perform_relocation will be set. */ bfd_reloc_dangerous } bfd_reloc_status_type; typedef struct reloc_cache_entry { /* A pointer into the canonical table of pointers. */ struct bfd_symbol **sym_ptr_ptr; /* offset in section. */ bfd_size_type address; /* addend for relocation value. */ bfd_vma addend; /* Pointer to how to perform the required relocation. */ reloc_howto_type *howto; } arelent; *Description* Here is a description of each of the fields within an `arelent': * `sym_ptr_ptr' The symbol table pointer points to a pointer to the symbol associated with the relocation request. It is the pointer into the table returned by the back end's `canonicalize_symtab' action. *Note Symbols::. The symbol is referenced through a pointer to a pointer so that tools like the linker can fix up all the symbols of the same name by modifying only one pointer. The relocation routine looks in the symbol and uses the base of the section the symbol is attached to and the value of the symbol as the initial relocation offset. If the symbol pointer is zero, then the section provided is looked up. * `address' The `address' field gives the offset in bytes from the base of the section data which owns the relocation record to the first byte of relocatable information. The actual data relocated will be relative to this point; for example, a relocation type which modifies the bottom two bytes of a four byte word would not touch the first byte pointed to in a big endian world. * `addend' The `addend' is a value provided by the back end to be added (!) to the relocation offset. Its interpretation is dependent upon the howto. For example, on the 68k the code: char foo[]; main() { return foo[0x12345678]; } Could be compiled into: linkw fp,#-4 moveb @#12345678,d0 extbl d0 unlk fp rts This could create a reloc pointing to `foo', but leave the offset in the data, something like: RELOCATION RECORDS FOR [.text]: offset type value 00000006 32 _foo 00000000 4e56 fffc ; linkw fp,#-4 00000004 1039 1234 5678 ; moveb @#12345678,d0 0000000a 49c0 ; extbl d0 0000000c 4e5e ; unlk fp 0000000e 4e75 ; rts Using coff and an 88k, some instructions don't have enough space in them to represent the full address range, and pointers have to be loaded in two parts. So you'd get something like: or.u r13,r0,hi16(_foo+0x12345678) ld.b r2,r13,lo16(_foo+0x12345678) jmp r1 This should create two relocs, both pointing to `_foo', and with 0x12340000 in their addend field. The data would consist of: RELOCATION RECORDS FOR [.text]: offset type value 00000002 HVRT16 _foo+0x12340000 00000006 LVRT16 _foo+0x12340000 00000000 5da05678 ; or.u r13,r0,0x5678 00000004 1c4d5678 ; ld.b r2,r13,0x5678 00000008 f400c001 ; jmp r1 The relocation routine digs out the value from the data, adds it to the addend to get the original offset, and then adds the value of `_foo'. Note that all 32 bits have to be kept around somewhere, to cope with carry from bit 15 to bit 16. One further example is the sparc and the a.out format. The sparc has a similar problem to the 88k, in that some instructions don't have room for an entire offset, but on the sparc the parts are created in odd sized lumps. The designers of the a.out format chose to not use the data within the section for storing part of the offset; all the offset is kept within the reloc. Anything in the data should be ignored. save %sp,-112,%sp sethi %hi(_foo+0x12345678),%g2 ldsb [%g2+%lo(_foo+0x12345678)],%i0 ret restore Both relocs contain a pointer to `foo', and the offsets contain junk. RELOCATION RECORDS FOR [.text]: offset type value 00000004 HI22 _foo+0x12345678 00000008 LO10 _foo+0x12345678 00000000 9de3bf90 ; save %sp,-112,%sp 00000004 05000000 ; sethi %hi(_foo+0),%g2 00000008 f048a000 ; ldsb [%g2+%lo(_foo+0)],%i0 0000000c 81c7e008 ; ret 00000010 81e80000 ; restore * `howto' The `howto' field can be imagined as a relocation instruction. It is a pointer to a structure which contains information on what to do with all of the other information in the reloc record and data section. A back end would normally have a relocation instruction set and turn relocations into pointers to the correct structure on input - but it would be possible to create each howto field on demand. 2.10.1.1 `enum complain_overflow' ................................. Indicates what sort of overflow checking should be done when performing a relocation. enum complain_overflow { /* Do not complain on overflow. */ complain_overflow_dont, /* Complain if the value overflows when considered as a signed number one bit larger than the field. ie. A bitfield of N bits is allowed to represent -2**n to 2**n-1. */ complain_overflow_bitfield, /* Complain if the value overflows when considered as a signed number. */ complain_overflow_signed, /* Complain if the value overflows when considered as an unsigned number. */ complain_overflow_unsigned }; 2.10.1.2 `reloc_howto_type' ........................... The `reloc_howto_type' is a structure which contains all the information that libbfd needs to know to tie up a back end's data. struct bfd_symbol; /* Forward declaration. */ struct reloc_howto_struct { /* The type field has mainly a documentary use - the back end can do what it wants with it, though normally the back end's external idea of what a reloc number is stored in this field. For example, a PC relative word relocation in a coff environment has the type 023 - because that's what the outside world calls a R_PCRWORD reloc. */ unsigned int type; /* The value the final relocation is shifted right by. This drops unwanted data from the relocation. */ unsigned int rightshift; /* The size of the item to be relocated. This is *not* a power-of-two measure. To get the number of bytes operated on by a type of relocation, use bfd_get_reloc_size. */ int size; /* The number of bits in the item to be relocated. This is used when doing overflow checking. */ unsigned int bitsize; /* Notes that the relocation is relative to the location in the data section of the addend. The relocation function will subtract from the relocation value the address of the location being relocated. */ bfd_boolean pc_relative; /* The bit position of the reloc value in the destination. The relocated value is left shifted by this amount. */ unsigned int bitpos; /* What type of overflow error should be checked for when relocating. */ enum complain_overflow complain_on_overflow; /* If this field is non null, then the supplied function is called rather than the normal function. This allows really strange relocation methods to be accommodated (e.g., i960 callj instructions). */ bfd_reloc_status_type (*special_function) (bfd *, arelent *, struct bfd_symbol *, void *, asection *, bfd *, char **); /* The textual name of the relocation type. */ char *name; /* Some formats record a relocation addend in the section contents rather than with the relocation. For ELF formats this is the distinction between USE_REL and USE_RELA (though the code checks for USE_REL == 1/0). The value of this field is TRUE if the addend is recorded with the section contents; when performing a partial link (ld -r) the section contents (the data) will be modified. The value of this field is FALSE if addends are recorded with the relocation (in arelent.addend); when performing a partial link the relocation will be modified. All relocations for all ELF USE_RELA targets should set this field to FALSE (values of TRUE should be looked on with suspicion). However, the converse is not true: not all relocations of all ELF USE_REL targets set this field to TRUE. Why this is so is peculiar to each particular target. For relocs that aren't used in partial links (e.g. GOT stuff) it doesn't matter what this is set to. */ bfd_boolean partial_inplace; /* src_mask selects the part of the instruction (or data) to be used in the relocation sum. If the target relocations don't have an addend in the reloc, eg. ELF USE_REL, src_mask will normally equal dst_mask to extract the addend from the section contents. If relocations do have an addend in the reloc, eg. ELF USE_RELA, this field should be zero. Non-zero values for ELF USE_RELA targets are bogus as in those cases the value in the dst_mask part of the section contents should be treated as garbage. */ bfd_vma src_mask; /* dst_mask selects which parts of the instruction (or data) are replaced with a relocated value. */ bfd_vma dst_mask; /* When some formats create PC relative instructions, they leave the value of the pc of the place being relocated in the offset slot of the instruction, so that a PC relative relocation can be made just by adding in an ordinary offset (e.g., sun3 a.out). Some formats leave the displacement part of an instruction empty (e.g., m88k bcs); this flag signals the fact. */ bfd_boolean pcrel_offset; }; 2.10.1.3 `The HOWTO Macro' .......................... *Description* The HOWTO define is horrible and will go away. #define HOWTO(C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \ { (unsigned) C, R, S, B, P, BI, O, SF, NAME, INPLACE, MASKSRC, MASKDST, PC } *Description* And will be replaced with the totally magic way. But for the moment, we are compatible, so do it this way. #define NEWHOWTO(FUNCTION, NAME, SIZE, REL, IN) \ HOWTO (0, 0, SIZE, 0, REL, 0, complain_overflow_dont, FUNCTION, \ NAME, FALSE, 0, 0, IN) *Description* This is used to fill in an empty howto entry in an array. #define EMPTY_HOWTO(C) \ HOWTO ((C), 0, 0, 0, FALSE, 0, complain_overflow_dont, NULL, \ NULL, FALSE, 0, 0, FALSE) *Description* Helper routine to turn a symbol into a relocation value. #define HOWTO_PREPARE(relocation, symbol) \ { \ if (symbol != NULL) \ { \ if (bfd_is_com_section (symbol->section)) \ { \ relocation = 0; \ } \ else \ { \ relocation = symbol->value; \ } \ } \ } 2.10.1.4 `bfd_get_reloc_size' ............................. *Synopsis* unsigned int bfd_get_reloc_size (reloc_howto_type *); *Description* For a reloc_howto_type that operates on a fixed number of bytes, this returns the number of bytes operated on. 2.10.1.5 `arelent_chain' ........................ *Description* How relocs are tied together in an `asection': typedef struct relent_chain { arelent relent; struct relent_chain *next; } arelent_chain; 2.10.1.6 `bfd_check_overflow' ............................. *Synopsis* bfd_reloc_status_type bfd_check_overflow (enum complain_overflow how, unsigned int bitsize, unsigned int rightshift, unsigned int addrsize, bfd_vma relocation); *Description* Perform overflow checking on RELOCATION which has BITSIZE significant bits and will be shifted right by RIGHTSHIFT bits, on a machine with addresses containing ADDRSIZE significant bits. The result is either of `bfd_reloc_ok' or `bfd_reloc_overflow'. 2.10.1.7 `bfd_perform_relocation' ................................. *Synopsis* bfd_reloc_status_type bfd_perform_relocation (bfd *abfd, arelent *reloc_entry, void *data, asection *input_section, bfd *output_bfd, char **error_message); *Description* If OUTPUT_BFD is supplied to this function, the generated image will be relocatable; the relocations are copied to the output file after they have been changed to reflect the new state of the world. There are two ways of reflecting the results of partial linkage in an output file: by modifying the output data in place, and by modifying the relocation record. Some native formats (e.g., basic a.out and basic coff) have no way of specifying an addend in the relocation type, so the addend has to go in the output data. This is no big deal since in these formats the output data slot will always be big enough for the addend. Complex reloc types with addends were invented to solve just this problem. The ERROR_MESSAGE argument is set to an error message if this return `bfd_reloc_dangerous'. 2.10.1.8 `bfd_install_relocation' ................................. *Synopsis* bfd_reloc_status_type bfd_install_relocation (bfd *abfd, arelent *reloc_entry, void *data, bfd_vma data_start, asection *input_section, char **error_message); *Description* This looks remarkably like `bfd_perform_relocation', except it does not expect that the section contents have been filled in. I.e., it's suitable for use when creating, rather than applying a relocation. For now, this function should be considered reserved for the assembler. File: bfd.info, Node: howto manager, Prev: typedef arelent, Up: Relocations 2.10.2 The howto manager ------------------------ When an application wants to create a relocation, but doesn't know what the target machine might call it, it can find out by using this bit of code. 2.10.2.1 `bfd_reloc_code_type' .............................. *Description* The insides of a reloc code. The idea is that, eventually, there will be one enumerator for every type of relocation we ever do. Pass one of these values to `bfd_reloc_type_lookup', and it'll return a howto pointer. This does mean that the application must determine the correct enumerator value; you can't get a howto pointer from a random set of attributes. Here are the possible values for `enum bfd_reloc_code_real': -- : BFD_RELOC_64 -- : BFD_RELOC_32 -- : BFD_RELOC_26 -- : BFD_RELOC_24 -- : BFD_RELOC_16 -- : BFD_RELOC_14 -- : BFD_RELOC_8 Basic absolute relocations of N bits. -- : BFD_RELOC_64_PCREL -- : BFD_RELOC_32_PCREL -- : BFD_RELOC_24_PCREL -- : BFD_RELOC_16_PCREL -- : BFD_RELOC_12_PCREL -- : BFD_RELOC_8_PCREL PC-relative relocations. Sometimes these are relative to the address of the relocation itself; sometimes they are relative to the start of the section containing the relocation. It depends on the specific target. The 24-bit relocation is used in some Intel 960 configurations. -- : BFD_RELOC_32_SECREL Section relative relocations. Some targets need this for DWARF2. -- : BFD_RELOC_32_GOT_PCREL -- : BFD_RELOC_16_GOT_PCREL -- : BFD_RELOC_8_GOT_PCREL -- : BFD_RELOC_32_GOTOFF -- : BFD_RELOC_16_GOTOFF -- : BFD_RELOC_LO16_GOTOFF -- : BFD_RELOC_HI16_GOTOFF -- : BFD_RELOC_HI16_S_GOTOFF -- : BFD_RELOC_8_GOTOFF -- : BFD_RELOC_64_PLT_PCREL -- : BFD_RELOC_32_PLT_PCREL -- : BFD_RELOC_24_PLT_PCREL -- : BFD_RELOC_16_PLT_PCREL -- : BFD_RELOC_8_PLT_PCREL -- : BFD_RELOC_64_PLTOFF -- : BFD_RELOC_32_PLTOFF -- : BFD_RELOC_16_PLTOFF -- : BFD_RELOC_LO16_PLTOFF -- : BFD_RELOC_HI16_PLTOFF -- : BFD_RELOC_HI16_S_PLTOFF -- : BFD_RELOC_8_PLTOFF For ELF. -- : BFD_RELOC_68K_GLOB_DAT -- : BFD_RELOC_68K_JMP_SLOT -- : BFD_RELOC_68K_RELATIVE Relocations used by 68K ELF. -- : BFD_RELOC_32_BASEREL -- : BFD_RELOC_16_BASEREL -- : BFD_RELOC_LO16_BASEREL -- : BFD_RELOC_HI16_BASEREL -- : BFD_RELOC_HI16_S_BASEREL -- : BFD_RELOC_8_BASEREL -- : BFD_RELOC_RVA Linkage-table relative. -- : BFD_RELOC_8_FFnn Absolute 8-bit relocation, but used to form an address like 0xFFnn. -- : BFD_RELOC_32_PCREL_S2 -- : BFD_RELOC_16_PCREL_S2 -- : BFD_RELOC_23_PCREL_S2 These PC-relative relocations are stored as word displacements - i.e., byte displacements shifted right two bits. The 30-bit word displacement (<<32_PCREL_S2>> - 32 bits, shifted 2) is used on the SPARC. (SPARC tools generally refer to this as <<WDISP30>>.) The signed 16-bit displacement is used on the MIPS, and the 23-bit displacement is used on the Alpha. -- : BFD_RELOC_HI22 -- : BFD_RELOC_LO10 High 22 bits and low 10 bits of 32-bit value, placed into lower bits of the target word. These are used on the SPARC. -- : BFD_RELOC_GPREL16 -- : BFD_RELOC_GPREL32 For systems that allocate a Global Pointer register, these are displacements off that register. These relocation types are handled specially, because the value the register will have is decided relatively late. -- : BFD_RELOC_I960_CALLJ Reloc types used for i960/b.out. -- : BFD_RELOC_NONE -- : BFD_RELOC_SPARC_WDISP22 -- : BFD_RELOC_SPARC22 -- : BFD_RELOC_SPARC13 -- : BFD_RELOC_SPARC_GOT10 -- : BFD_RELOC_SPARC_GOT13 -- : BFD_RELOC_SPARC_GOT22 -- : BFD_RELOC_SPARC_PC10 -- : BFD_RELOC_SPARC_PC22 -- : BFD_RELOC_SPARC_WPLT30 -- : BFD_RELOC_SPARC_COPY -- : BFD_RELOC_SPARC_GLOB_DAT -- : BFD_RELOC_SPARC_JMP_SLOT -- : BFD_RELOC_SPARC_RELATIVE -- : BFD_RELOC_SPARC_UA16 -- : BFD_RELOC_SPARC_UA32 -- : BFD_RELOC_SPARC_UA64 SPARC ELF relocations. There is probably some overlap with other relocation types already defined. -- : BFD_RELOC_SPARC_BASE13 -- : BFD_RELOC_SPARC_BASE22 I think these are specific to SPARC a.out (e.g., Sun 4). -- : BFD_RELOC_SPARC_64 -- : BFD_RELOC_SPARC_10 -- : BFD_RELOC_SPARC_11 -- : BFD_RELOC_SPARC_OLO10 -- : BFD_RELOC_SPARC_HH22 -- : BFD_RELOC_SPARC_HM10 -- : BFD_RELOC_SPARC_LM22 -- : BFD_RELOC_SPARC_PC_HH22 -- : BFD_RELOC_SPARC_PC_HM10 -- : BFD_RELOC_SPARC_PC_LM22 -- : BFD_RELOC_SPARC_WDISP16 -- : BFD_RELOC_SPARC_WDISP19 -- : BFD_RELOC_SPARC_7 -- : BFD_RELOC_SPARC_6 -- : BFD_RELOC_SPARC_5 -- : BFD_RELOC_SPARC_DISP64 -- : BFD_RELOC_SPARC_PLT32 -- : BFD_RELOC_SPARC_PLT64 -- : BFD_RELOC_SPARC_HIX22 -- : BFD_RELOC_SPARC_LOX10 -- : BFD_RELOC_SPARC_H44 -- : BFD_RELOC_SPARC_M44 -- : BFD_RELOC_SPARC_L44 -- : BFD_RELOC_SPARC_REGISTER SPARC64 relocations -- : BFD_RELOC_SPARC_REV32 SPARC little endian relocation -- : BFD_RELOC_SPARC_TLS_GD_HI22 -- : BFD_RELOC_SPARC_TLS_GD_LO10 -- : BFD_RELOC_SPARC_TLS_GD_ADD -- : BFD_RELOC_SPARC_TLS_GD_CALL -- : BFD_RELOC_SPARC_TLS_LDM_HI22 -- : BFD_RELOC_SPARC_TLS_LDM_LO10 -- : BFD_RELOC_SPARC_TLS_LDM_ADD -- : BFD_RELOC_SPARC_TLS_LDM_CALL -- : BFD_RELOC_SPARC_TLS_LDO_HIX22 -- : BFD_RELOC_SPARC_TLS_LDO_LOX10 -- : BFD_RELOC_SPARC_TLS_LDO_ADD -- : BFD_RELOC_SPARC_TLS_IE_HI22 -- : BFD_RELOC_SPARC_TLS_IE_LO10 -- : BFD_RELOC_SPARC_TLS_IE_LD -- : BFD_RELOC_SPARC_TLS_IE_LDX -- : BFD_RELOC_SPARC_TLS_IE_ADD -- : BFD_RELOC_SPARC_TLS_LE_HIX22 -- : BFD_RELOC_SPARC_TLS_LE_LOX10 -- : BFD_RELOC_SPARC_TLS_DTPMOD32 -- : BFD_RELOC_SPARC_TLS_DTPMOD64 -- : BFD_RELOC_SPARC_TLS_DTPOFF32 -- : BFD_RELOC_SPARC_TLS_DTPOFF64 -- : BFD_RELOC_SPARC_TLS_TPOFF32 -- : BFD_RELOC_SPARC_TLS_TPOFF64 SPARC TLS relocations -- : BFD_RELOC_SPU_IMM7 -- : BFD_RELOC_SPU_IMM8 -- : BFD_RELOC_SPU_IMM10 -- : BFD_RELOC_SPU_IMM10W -- : BFD_RELOC_SPU_IMM16 -- : BFD_RELOC_SPU_IMM16W -- : BFD_RELOC_SPU_IMM18 -- : BFD_RELOC_SPU_PCREL9a -- : BFD_RELOC_SPU_PCREL9b -- : BFD_RELOC_SPU_PCREL16 -- : BFD_RELOC_SPU_LO16 -- : BFD_RELOC_SPU_HI16 SPU Relocations. -- : BFD_RELOC_ALPHA_GPDISP_HI16 Alpha ECOFF and ELF relocations. Some of these treat the symbol or "addend" in some special way. For GPDISP_HI16 ("gpdisp") relocations, the symbol is ignored when writing; when reading, it will be the absolute section symbol. The addend is the displacement in bytes of the "lda" instruction from the "ldah" instruction (which is at the address of this reloc). -- : BFD_RELOC_ALPHA_GPDISP_LO16 For GPDISP_LO16 ("ignore") relocations, the symbol is handled as with GPDISP_HI16 relocs. The addend is ignored when writing the relocations out, and is filled in with the file's GP value on reading, for convenience. -- : BFD_RELOC_ALPHA_GPDISP The ELF GPDISP relocation is exactly the same as the GPDISP_HI16 relocation except that there is no accompanying GPDISP_LO16 relocation. -- : BFD_RELOC_ALPHA_LITERAL -- : BFD_RELOC_ALPHA_ELF_LITERAL -- : BFD_RELOC_ALPHA_LITUSE The Alpha LITERAL/LITUSE relocs are produced by a symbol reference; the assembler turns it into a LDQ instruction to load the address of the symbol, and then fills in a register in the real instruction. The LITERAL reloc, at the LDQ instruction, refers to the .lita section symbol. The addend is ignored when writing, but is filled in with the file's GP value on reading, for convenience, as with the GPDISP_LO16 reloc. The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_LO16. It should refer to the symbol to be referenced, as with 16_GOTOFF, but it generates output not based on the position within the .got section, but relative to the GP value chosen for the file during the final link stage. The LITUSE reloc, on the instruction using the loaded address, gives information to the linker that it might be able to use to optimize away some literal section references. The symbol is ignored (read as the absolute section symbol), and the "addend" indicates the type of instruction using the register: 1 - "memory" fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (target of branch) -- : BFD_RELOC_ALPHA_HINT The HINT relocation indicates a value that should be filled into the "hint" field of a jmp/jsr/ret instruction, for possible branch- prediction logic which may be provided on some processors. -- : BFD_RELOC_ALPHA_LINKAGE The LINKAGE relocation outputs a linkage pair in the object file, which is filled by the linker. -- : BFD_RELOC_ALPHA_CODEADDR The CODEADDR relocation outputs a STO_CA in the object file, which is filled by the linker. -- : BFD_RELOC_ALPHA_GPREL_HI16 -- : BFD_RELOC_ALPHA_GPREL_LO16 The GPREL_HI/LO relocations together form a 32-bit offset from the GP register. -- : BFD_RELOC_ALPHA_BRSGP Like BFD_RELOC_23_PCREL_S2, except that the source and target must share a common GP, and the target address is adjusted for STO_ALPHA_STD_GPLOAD. -- : BFD_RELOC_ALPHA_TLSGD -- : BFD_RELOC_ALPHA_TLSLDM -- : BFD_RELOC_ALPHA_DTPMOD64 -- : BFD_RELOC_ALPHA_GOTDTPREL16 -- : BFD_RELOC_ALPHA_DTPREL64 -- : BFD_RELOC_ALPHA_DTPREL_HI16 -- : BFD_RELOC_ALPHA_DTPREL_LO16 -- : BFD_RELOC_ALPHA_DTPREL16 -- : BFD_RELOC_ALPHA_GOTTPREL16 -- : BFD_RELOC_ALPHA_TPREL64 -- : BFD_RELOC_ALPHA_TPREL_HI16 -- : BFD_RELOC_ALPHA_TPREL_LO16 -- : BFD_RELOC_ALPHA_TPREL16 Alpha thread-local storage relocations. -- : BFD_RELOC_MIPS_JMP Bits 27..2 of the relocation address shifted right 2 bits; simple reloc otherwise. -- : BFD_RELOC_MIPS16_JMP The MIPS16 jump instruction. -- : BFD_RELOC_MIPS16_GPREL MIPS16 GP relative reloc. -- : BFD_RELOC_HI16 High 16 bits of 32-bit value; simple reloc. -- : BFD_RELOC_HI16_S High 16 bits of 32-bit value but the low 16 bits will be sign extended and added to form the final result. If the low 16 bits form a negative number, we need to add one to the high value to compensate for the borrow when the low bits are added. -- : BFD_RELOC_LO16 Low 16 bits. -- : BFD_RELOC_HI16_PCREL High 16 bits of 32-bit pc-relative value -- : BFD_RELOC_HI16_S_PCREL High 16 bits of 32-bit pc-relative value, adjusted -- : BFD_RELOC_LO16_PCREL Low 16 bits of pc-relative value -- : BFD_RELOC_MIPS16_HI16 MIPS16 high 16 bits of 32-bit value. -- : BFD_RELOC_MIPS16_HI16_S MIPS16 high 16 bits of 32-bit value but the low 16 bits will be sign extended and added to form the final result. If the low 16 bits form a negative number, we need to add one to the high value to compensate for the borrow when the low bits are added. -- : BFD_RELOC_MIPS16_LO16 MIPS16 low 16 bits. -- : BFD_RELOC_MIPS_LITERAL Relocation against a MIPS literal section. -- : BFD_RELOC_MIPS_GOT16 -- : BFD_RELOC_MIPS_CALL16 -- : BFD_RELOC_MIPS_GOT_HI16 -- : BFD_RELOC_MIPS_GOT_LO16 -- : BFD_RELOC_MIPS_CALL_HI16 -- : BFD_RELOC_MIPS_CALL_LO16 -- : BFD_RELOC_MIPS_SUB -- : BFD_RELOC_MIPS_GOT_PAGE -- : BFD_RELOC_MIPS_GOT_OFST -- : BFD_RELOC_MIPS_GOT_DISP -- : BFD_RELOC_MIPS_SHIFT5 -- : BFD_RELOC_MIPS_SHIFT6 -- : BFD_RELOC_MIPS_INSERT_A -- : BFD_RELOC_MIPS_INSERT_B -- : BFD_RELOC_MIPS_DELETE -- : BFD_RELOC_MIPS_HIGHEST -- : BFD_RELOC_MIPS_HIGHER -- : BFD_RELOC_MIPS_SCN_DISP -- : BFD_RELOC_MIPS_REL16 -- : BFD_RELOC_MIPS_RELGOT -- : BFD_RELOC_MIPS_JALR -- : BFD_RELOC_MIPS_TLS_DTPMOD32 -- : BFD_RELOC_MIPS_TLS_DTPREL32 -- : BFD_RELOC_MIPS_TLS_DTPMOD64 -- : BFD_RELOC_MIPS_TLS_DTPREL64 -- : BFD_RELOC_MIPS_TLS_GD -- : BFD_RELOC_MIPS_TLS_LDM -- : BFD_RELOC_MIPS_TLS_DTPREL_HI16 -- : BFD_RELOC_MIPS_TLS_DTPREL_LO16 -- : BFD_RELOC_MIPS_TLS_GOTTPREL -- : BFD_RELOC_MIPS_TLS_TPREL32 -- : BFD_RELOC_MIPS_TLS_TPREL64 -- : BFD_RELOC_MIPS_TLS_TPREL_HI16 -- : BFD_RELOC_MIPS_TLS_TPREL_LO16 MIPS ELF relocations. -- : BFD_RELOC_MIPS_COPY -- : BFD_RELOC_MIPS_JUMP_SLOT MIPS ELF relocations (VxWorks extensions). -- : BFD_RELOC_FRV_LABEL16 -- : BFD_RELOC_FRV_LABEL24 -- : BFD_RELOC_FRV_LO16 -- : BFD_RELOC_FRV_HI16 -- : BFD_RELOC_FRV_GPREL12 -- : BFD_RELOC_FRV_GPRELU12 -- : BFD_RELOC_FRV_GPREL32 -- : BFD_RELOC_FRV_GPRELHI -- : BFD_RELOC_FRV_GPRELLO -- : BFD_RELOC_FRV_GOT12 -- : BFD_RELOC_FRV_GOTHI -- : BFD_RELOC_FRV_GOTLO -- : BFD_RELOC_FRV_FUNCDESC -- : BFD_RELOC_FRV_FUNCDESC_GOT12 -- : BFD_RELOC_FRV_FUNCDESC_GOTHI -- : BFD_RELOC_FRV_FUNCDESC_GOTLO -- : BFD_RELOC_FRV_FUNCDESC_VALUE -- : BFD_RELOC_FRV_FUNCDESC_GOTOFF12 -- : BFD_RELOC_FRV_FUNCDESC_GOTOFFHI -- : BFD_RELOC_FRV_FUNCDESC_GOTOFFLO -- : BFD_RELOC_FRV_GOTOFF12 -- : BFD_RELOC_FRV_GOTOFFHI -- : BFD_RELOC_FRV_GOTOFFLO -- : BFD_RELOC_FRV_GETTLSOFF -- : BFD_RELOC_FRV_TLSDESC_VALUE -- : BFD_RELOC_FRV_GOTTLSDESC12 -- : BFD_RELOC_FRV_GOTTLSDESCHI -- : BFD_RELOC_FRV_GOTTLSDESCLO -- : BFD_RELOC_FRV_TLSMOFF12 -- : BFD_RELOC_FRV_TLSMOFFHI -- : BFD_RELOC_FRV_TLSMOFFLO -- : BFD_RELOC_FRV_GOTTLSOFF12 -- : BFD_RELOC_FRV_GOTTLSOFFHI -- : BFD_RELOC_FRV_GOTTLSOFFLO -- : BFD_RELOC_FRV_TLSOFF -- : BFD_RELOC_FRV_TLSDESC_RELAX -- : BFD_RELOC_FRV_GETTLSOFF_RELAX -- : BFD_RELOC_FRV_TLSOFF_RELAX -- : BFD_RELOC_FRV_TLSMOFF Fujitsu Frv Relocations. -- : BFD_RELOC_MN10300_GOTOFF24 This is a 24bit GOT-relative reloc for the mn10300. -- : BFD_RELOC_MN10300_GOT32 This is a 32bit GOT-relative reloc for the mn10300, offset by two bytes in the instruction. -- : BFD_RELOC_MN10300_GOT24 This is a 24bit GOT-relative reloc for the mn10300, offset by two bytes in the instruction. -- : BFD_RELOC_MN10300_GOT16 This is a 16bit GOT-relative reloc for the mn10300, offset by two bytes in the instruction. -- : BFD_RELOC_MN10300_COPY Copy symbol at runtime. -- : BFD_RELOC_MN10300_GLOB_DAT Create GOT entry. -- : BFD_RELOC_MN10300_JMP_SLOT Create PLT entry. -- : BFD_RELOC_MN10300_RELATIVE Adjust by program base. -- : BFD_RELOC_386_GOT32 -- : BFD_RELOC_386_PLT32 -- : BFD_RELOC_386_COPY -- : BFD_RELOC_386_GLOB_DAT -- : BFD_RELOC_386_JUMP_SLOT -- : BFD_RELOC_386_RELATIVE -- : BFD_RELOC_386_GOTOFF -- : BFD_RELOC_386_GOTPC -- : BFD_RELOC_386_TLS_TPOFF -- : BFD_RELOC_386_TLS_IE -- : BFD_RELOC_386_TLS_GOTIE -- : BFD_RELOC_386_TLS_LE -- : BFD_RELOC_386_TLS_GD -- : BFD_RELOC_386_TLS_LDM -- : BFD_RELOC_386_TLS_LDO_32 -- : BFD_RELOC_386_TLS_IE_32 -- : BFD_RELOC_386_TLS_LE_32 -- : BFD_RELOC_386_TLS_DTPMOD32 -- : BFD_RELOC_386_TLS_DTPOFF32 -- : BFD_RELOC_386_TLS_TPOFF32 -- : BFD_RELOC_386_TLS_GOTDESC -- : BFD_RELOC_386_TLS_DESC_CALL -- : BFD_RELOC_386_TLS_DESC i386/elf relocations -- : BFD_RELOC_X86_64_GOT32 -- : BFD_RELOC_X86_64_PLT32 -- : BFD_RELOC_X86_64_COPY -- : BFD_RELOC_X86_64_GLOB_DAT -- : BFD_RELOC_X86_64_JUMP_SLOT -- : BFD_RELOC_X86_64_RELATIVE -- : BFD_RELOC_X86_64_GOTPCREL -- : BFD_RELOC_X86_64_32S -- : BFD_RELOC_X86_64_DTPMOD64 -- : BFD_RELOC_X86_64_DTPOFF64 -- : BFD_RELOC_X86_64_TPOFF64 -- : BFD_RELOC_X86_64_TLSGD -- : BFD_RELOC_X86_64_TLSLD -- : BFD_RELOC_X86_64_DTPOFF32 -- : BFD_RELOC_X86_64_GOTTPOFF -- : BFD_RELOC_X86_64_TPOFF32 -- : BFD_RELOC_X86_64_GOTOFF64 -- : BFD_RELOC_X86_64_GOTPC32 -- : BFD_RELOC_X86_64_GOT64 -- : BFD_RELOC_X86_64_GOTPCREL64 -- : BFD_RELOC_X86_64_GOTPC64 -- : BFD_RELOC_X86_64_GOTPLT64 -- : BFD_RELOC_X86_64_PLTOFF64 -- : BFD_RELOC_X86_64_GOTPC32_TLSDESC -- : BFD_RELOC_X86_64_TLSDESC_CALL -- : BFD_RELOC_X86_64_TLSDESC x86-64/elf relocations -- : BFD_RELOC_NS32K_IMM_8 -- : BFD_RELOC_NS32K_IMM_16 -- : BFD_RELOC_NS32K_IMM_32 -- : BFD_RELOC_NS32K_IMM_8_PCREL -- : BFD_RELOC_NS32K_IMM_16_PCREL -- : BFD_RELOC_NS32K_IMM_32_PCREL -- : BFD_RELOC_NS32K_DISP_8 -- : BFD_RELOC_NS32K_DISP_16 -- : BFD_RELOC_NS32K_DISP_32 -- : BFD_RELOC_NS32K_DISP_8_PCREL -- : BFD_RELOC_NS32K_DISP_16_PCREL -- : BFD_RELOC_NS32K_DISP_32_PCREL ns32k relocations -- : BFD_RELOC_PDP11_DISP_8_PCREL -- : BFD_RELOC_PDP11_DISP_6_PCREL PDP11 relocations -- : BFD_RELOC_PJ_CODE_HI16 -- : BFD_RELOC_PJ_CODE_LO16 -- : BFD_RELOC_PJ_CODE_DIR16 -- : BFD_RELOC_PJ_CODE_DIR32 -- : BFD_RELOC_PJ_CODE_REL16 -- : BFD_RELOC_PJ_CODE_REL32 Picojava relocs. Not all of these appear in object files. -- : BFD_RELOC_PPC_B26 -- : BFD_RELOC_PPC_BA26 -- : BFD_RELOC_PPC_TOC16 -- : BFD_RELOC_PPC_B16 -- : BFD_RELOC_PPC_B16_BRTAKEN -- : BFD_RELOC_PPC_B16_BRNTAKEN -- : BFD_RELOC_PPC_BA16 -- : BFD_RELOC_PPC_BA16_BRTAKEN -- : BFD_RELOC_PPC_BA16_BRNTAKEN -- : BFD_RELOC_PPC_COPY -- : BFD_RELOC_PPC_GLOB_DAT -- : BFD_RELOC_PPC_JMP_SLOT -- : BFD_RELOC_PPC_RELATIVE -- : BFD_RELOC_PPC_LOCAL24PC -- : BFD_RELOC_PPC_EMB_NADDR32 -- : BFD_RELOC_PPC_EMB_NADDR16 -- : BFD_RELOC_PPC_EMB_NADDR16_LO -- : BFD_RELOC_PPC_EMB_NADDR16_HI -- : BFD_RELOC_PPC_EMB_NADDR16_HA -- : BFD_RELOC_PPC_EMB_SDAI16 -- : BFD_RELOC_PPC_EMB_SDA2I16 -- : BFD_RELOC_PPC_EMB_SDA2REL -- : BFD_RELOC_PPC_EMB_SDA21 -- : BFD_RELOC_PPC_EMB_MRKREF -- : BFD_RELOC_PPC_EMB_RELSEC16 -- : BFD_RELOC_PPC_EMB_RELST_LO -- : BFD_RELOC_PPC_EMB_RELST_HI -- : BFD_RELOC_PPC_EMB_RELST_HA -- : BFD_RELOC_PPC_EMB_BIT_FLD -- : BFD_RELOC_PPC_EMB_RELSDA -- : BFD_RELOC_PPC64_HIGHER -- : BFD_RELOC_PPC64_HIGHER_S -- : BFD_RELOC_PPC64_HIGHEST -- : BFD_RELOC_PPC64_HIGHEST_S -- : BFD_RELOC_PPC64_TOC16_LO -- : BFD_RELOC_PPC64_TOC16_HI -- : BFD_RELOC_PPC64_TOC16_HA -- : BFD_RELOC_PPC64_TOC -- : BFD_RELOC_PPC64_PLTGOT16 -- : BFD_RELOC_PPC64_PLTGOT16_LO -- : BFD_RELOC_PPC64_PLTGOT16_HI -- : BFD_RELOC_PPC64_PLTGOT16_HA -- : BFD_RELOC_PPC64_ADDR16_DS -- : BFD_RELOC_PPC64_ADDR16_LO_DS -- : BFD_RELOC_PPC64_GOT16_DS -- : BFD_RELOC_PPC64_GOT16_LO_DS -- : BFD_RELOC_PPC64_PLT16_LO_DS -- : BFD_RELOC_PPC64_SECTOFF_DS -- : BFD_RELOC_PPC64_SECTOFF_LO_DS -- : BFD_RELOC_PPC64_TOC16_DS -- : BFD_RELOC_PPC64_TOC16_LO_DS -- : BFD_RELOC_PPC64_PLTGOT16_DS -- : BFD_RELOC_PPC64_PLTGOT16_LO_DS Power(rs6000) and PowerPC relocations. -- : BFD_RELOC_PPC_TLS -- : BFD_RELOC_PPC_DTPMOD -- : BFD_RELOC_PPC_TPREL16 -- : BFD_RELOC_PPC_TPREL16_LO -- : BFD_RELOC_PPC_TPREL16_HI -- : BFD_RELOC_PPC_TPREL16_HA -- : BFD_RELOC_PPC_TPREL -- : BFD_RELOC_PPC_DTPREL16 -- : BFD_RELOC_PPC_DTPREL16_LO -- : BFD_RELOC_PPC_DTPREL16_HI -- : BFD_RELOC_PPC_DTPREL16_HA -- : BFD_RELOC_PPC_DTPREL -- : BFD_RELOC_PPC_GOT_TLSGD16 -- : BFD_RELOC_PPC_GOT_TLSGD16_LO -- : BFD_RELOC_PPC_GOT_TLSGD16_HI -- : BFD_RELOC_PPC_GOT_TLSGD16_HA -- : BFD_RELOC_PPC_GOT_TLSLD16 -- : BFD_RELOC_PPC_GOT_TLSLD16_LO -- : BFD_RELOC_PPC_GOT_TLSLD16_HI -- : BFD_RELOC_PPC_GOT_TLSLD16_HA -- : BFD_RELOC_PPC_GOT_TPREL16 -- : BFD_RELOC_PPC_GOT_TPREL16_LO -- : BFD_RELOC_PPC_GOT_TPREL16_HI -- : BFD_RELOC_PPC_GOT_TPREL16_HA -- : BFD_RELOC_PPC_GOT_DTPREL16 -- : BFD_RELOC_PPC_GOT_DTPREL16_LO -- : BFD_RELOC_PPC_GOT_DTPREL16_HI -- : BFD_RELOC_PPC_GOT_DTPREL16_HA -- : BFD_RELOC_PPC64_TPREL16_DS -- : BFD_RELOC_PPC64_TPREL16_LO_DS -- : BFD_RELOC_PPC64_TPREL16_HIGHER -- : BFD_RELOC_PPC64_TPREL16_HIGHERA -- : BFD_RELOC_PPC64_TPREL16_HIGHEST -- : BFD_RELOC_PPC64_TPREL16_HIGHESTA -- : BFD_RELOC_PPC64_DTPREL16_DS -- : BFD_RELOC_PPC64_DTPREL16_LO_DS -- : BFD_RELOC_PPC64_DTPREL16_HIGHER -- : BFD_RELOC_PPC64_DTPREL16_HIGHERA -- : BFD_RELOC_PPC64_DTPREL16_HIGHEST -- : BFD_RELOC_PPC64_DTPREL16_HIGHESTA PowerPC and PowerPC64 thread-local storage relocations. -- : BFD_RELOC_I370_D12 IBM 370/390 relocations -- : BFD_RELOC_CTOR The type of reloc used to build a constructor table - at the moment probably a 32 bit wide absolute relocation, but the target can choose. It generally does map to one of the other relocation types. -- : BFD_RELOC_ARM_PCREL_BRANCH ARM 26 bit pc-relative branch. The lowest two bits must be zero and are not stored in the instruction. -- : BFD_RELOC_ARM_PCREL_BLX ARM 26 bit pc-relative branch. The lowest bit must be zero and is not stored in the instruction. The 2nd lowest bit comes from a 1 bit field in the instruction. -- : BFD_RELOC_THUMB_PCREL_BLX Thumb 22 bit pc-relative branch. The lowest bit must be zero and is not stored in the instruction. The 2nd lowest bit comes from a 1 bit field in the instruction. -- : BFD_RELOC_ARM_PCREL_CALL ARM 26-bit pc-relative branch for an unconditional BL or BLX instruction. -- : BFD_RELOC_ARM_PCREL_JUMP ARM 26-bit pc-relative branch for B or conditional BL instruction. -- : BFD_RELOC_THUMB_PCREL_BRANCH7 -- : BFD_RELOC_THUMB_PCREL_BRANCH9 -- : BFD_RELOC_THUMB_PCREL_BRANCH12 -- : BFD_RELOC_THUMB_PCREL_BRANCH20 -- : BFD_RELOC_THUMB_PCREL_BRANCH23 -- : BFD_RELOC_THUMB_PCREL_BRANCH25 Thumb 7-, 9-, 12-, 20-, 23-, and 25-bit pc-relative branches. The lowest bit must be zero and is not stored in the instruction. Note that the corresponding ELF R_ARM_THM_JUMPnn constant has an "nn" one smaller in all cases. Note further that BRANCH23 corresponds to R_ARM_THM_CALL. -- : BFD_RELOC_ARM_OFFSET_IMM 12-bit immediate offset, used in ARM-format ldr and str instructions. -- : BFD_RELOC_ARM_THUMB_OFFSET 5-bit immediate offset, used in Thumb-format ldr and str instructions. -- : BFD_RELOC_ARM_TARGET1 Pc-relative or absolute relocation depending on target. Used for entries in .init_array sections. -- : BFD_RELOC_ARM_ROSEGREL32 Read-only segment base relative address. -- : BFD_RELOC_ARM_SBREL32 Data segment base relative address. -- : BFD_RELOC_ARM_TARGET2 This reloc is used for references to RTTI data from exception handling tables. The actual definition depends on the target. It may be a pc-relative or some form of GOT-indirect relocation. -- : BFD_RELOC_ARM_PREL31 31-bit PC relative address. -- : BFD_RELOC_ARM_MOVW -- : BFD_RELOC_ARM_MOVT -- : BFD_RELOC_ARM_MOVW_PCREL -- : BFD_RELOC_ARM_MOVT_PCREL -- : BFD_RELOC_ARM_THUMB_MOVW -- : BFD_RELOC_ARM_THUMB_MOVT -- : BFD_RELOC_ARM_THUMB_MOVW_PCREL -- : BFD_RELOC_ARM_THUMB_MOVT_PCREL Low and High halfword relocations for MOVW and MOVT instructions. -- : BFD_RELOC_ARM_JUMP_SLOT -- : BFD_RELOC_ARM_GLOB_DAT -- : BFD_RELOC_ARM_GOT32 -- : BFD_RELOC_ARM_PLT32 -- : BFD_RELOC_ARM_RELATIVE -- : BFD_RELOC_ARM_GOTOFF -- : BFD_RELOC_ARM_GOTPC Relocations for setting up GOTs and PLTs for shared libraries. -- : BFD_RELOC_ARM_TLS_GD32 -- : BFD_RELOC_ARM_TLS_LDO32 -- : BFD_RELOC_ARM_TLS_LDM32 -- : BFD_RELOC_ARM_TLS_DTPOFF32 -- : BFD_RELOC_ARM_TLS_DTPMOD32 -- : BFD_RELOC_ARM_TLS_TPOFF32 -- : BFD_RELOC_ARM_TLS_IE32 -- : BFD_RELOC_ARM_TLS_LE32 ARM thread-local storage relocations. -- : BFD_RELOC_ARM_ALU_PC_G0_NC -- : BFD_RELOC_ARM_ALU_PC_G0 -- : BFD_RELOC_ARM_ALU_PC_G1_NC -- : BFD_RELOC_ARM_ALU_PC_G1 -- : BFD_RELOC_ARM_ALU_PC_G2 -- : BFD_RELOC_ARM_LDR_PC_G0 -- : BFD_RELOC_ARM_LDR_PC_G1 -- : BFD_RELOC_ARM_LDR_PC_G2 -- : BFD_RELOC_ARM_LDRS_PC_G0 -- : BFD_RELOC_ARM_LDRS_PC_G1 -- : BFD_RELOC_ARM_LDRS_PC_G2 -- : BFD_RELOC_ARM_LDC_PC_G0 -- : BFD_RELOC_ARM_LDC_PC_G1 -- : BFD_RELOC_ARM_LDC_PC_G2 -- : BFD_RELOC_ARM_ALU_SB_G0_NC -- : BFD_RELOC_ARM_ALU_SB_G0 -- : BFD_RELOC_ARM_ALU_SB_G1_NC -- : BFD_RELOC_ARM_ALU_SB_G1 -- : BFD_RELOC_ARM_ALU_SB_G2 -- : BFD_RELOC_ARM_LDR_SB_G0 -- : BFD_RELOC_ARM_LDR_SB_G1 -- : BFD_RELOC_ARM_LDR_SB_G2 -- : BFD_RELOC_ARM_LDRS_SB_G0 -- : BFD_RELOC_ARM_LDRS_SB_G1 -- : BFD_RELOC_ARM_LDRS_SB_G2 -- : BFD_RELOC_ARM_LDC_SB_G0 -- : BFD_RELOC_ARM_LDC_SB_G1 -- : BFD_RELOC_ARM_LDC_SB_G2 ARM group relocations. -- : BFD_RELOC_ARM_IMMEDIATE -- : BFD_RELOC_ARM_ADRL_IMMEDIATE -- : BFD_RELOC_ARM_T32_IMMEDIATE -- : BFD_RELOC_ARM_T32_ADD_IMM -- : BFD_RELOC_ARM_T32_IMM12 -- : BFD_RELOC_ARM_T32_ADD_PC12 -- : BFD_RELOC_ARM_SHIFT_IMM -- : BFD_RELOC_ARM_SMC -- : BFD_RELOC_ARM_SWI -- : BFD_RELOC_ARM_MULTI -- : BFD_RELOC_ARM_CP_OFF_IMM -- : BFD_RELOC_ARM_CP_OFF_IMM_S2 -- : BFD_RELOC_ARM_T32_CP_OFF_IMM -- : BFD_RELOC_ARM_T32_CP_OFF_IMM_S2 -- : BFD_RELOC_ARM_ADR_IMM -- : BFD_RELOC_ARM_LDR_IMM -- : BFD_RELOC_ARM_LITERAL -- : BFD_RELOC_ARM_IN_POOL -- : BFD_RELOC_ARM_OFFSET_IMM8 -- : BFD_RELOC_ARM_T32_OFFSET_U8 -- : BFD_RELOC_ARM_T32_OFFSET_IMM -- : BFD_RELOC_ARM_HWLITERAL -- : BFD_RELOC_ARM_THUMB_ADD -- : BFD_RELOC_ARM_THUMB_IMM -- : BFD_RELOC_ARM_THUMB_SHIFT These relocs are only used within the ARM assembler. They are not (at present) written to any object files. -- : BFD_RELOC_SH_PCDISP8BY2 -- : BFD_RELOC_SH_PCDISP12BY2 -- : BFD_RELOC_SH_IMM3 -- : BFD_RELOC_SH_IMM3U -- : BFD_RELOC_SH_DISP12 -- : BFD_RELOC_SH_DISP12BY2 -- : BFD_RELOC_SH_DISP12BY4 -- : BFD_RELOC_SH_DISP12BY8 -- : BFD_RELOC_SH_DISP20 -- : BFD_RELOC_SH_DISP20BY8 -- : BFD_RELOC_SH_IMM4 -- : BFD_RELOC_SH_IMM4BY2 -- : BFD_RELOC_SH_IMM4BY4 -- : BFD_RELOC_SH_IMM8 -- : BFD_RELOC_SH_IMM8BY2 -- : BFD_RELOC_SH_IMM8BY4 -- : BFD_RELOC_SH_PCRELIMM8BY2 -- : BFD_RELOC_SH_PCRELIMM8BY4 -- : BFD_RELOC_SH_SWITCH16 -- : BFD_RELOC_SH_SWITCH32 -- : BFD_RELOC_SH_USES -- : BFD_RELOC_SH_COUNT -- : BFD_RELOC_SH_ALIGN -- : BFD_RELOC_SH_CODE -- : BFD_RELOC_SH_DATA -- : BFD_RELOC_SH_LABEL -- : BFD_RELOC_SH_LOOP_START -- : BFD_RELOC_SH_LOOP_END -- : BFD_RELOC_SH_COPY -- : BFD_RELOC_SH_GLOB_DAT -- : BFD_RELOC_SH_JMP_SLOT -- : BFD_RELOC_SH_RELATIVE -- : BFD_RELOC_SH_GOTPC -- : BFD_RELOC_SH_GOT_LOW16 -- : BFD_RELOC_SH_GOT_MEDLOW16 -- : BFD_RELOC_SH_GOT_MEDHI16 -- : BFD_RELOC_SH_GOT_HI16 -- : BFD_RELOC_SH_GOTPLT_LOW16 -- : BFD_RELOC_SH_GOTPLT_MEDLOW16 -- : BFD_RELOC_SH_GOTPLT_MEDHI16 -- : BFD_RELOC_SH_GOTPLT_HI16 -- : BFD_RELOC_SH_PLT_LOW16 -- : BFD_RELOC_SH_PLT_MEDLOW16 -- : BFD_RELOC_SH_PLT_MEDHI16 -- : BFD_RELOC_SH_PLT_HI16 -- : BFD_RELOC_SH_GOTOFF_LOW16 -- : BFD_RELOC_SH_GOTOFF_MEDLOW16 -- : BFD_RELOC_SH_GOTOFF_MEDHI16 -- : BFD_RELOC_SH_GOTOFF_HI16 -- : BFD_RELOC_SH_GOTPC_LOW16 -- : BFD_RELOC_SH_GOTPC_MEDLOW16 -- : BFD_RELOC_SH_GOTPC_MEDHI16 -- : BFD_RELOC_SH_GOTPC_HI16 -- : BFD_RELOC_SH_COPY64 -- : BFD_RELOC_SH_GLOB_DAT64 -- : BFD_RELOC_SH_JMP_SLOT64 -- : BFD_RELOC_SH_RELATIVE64 -- : BFD_RELOC_SH_GOT10BY4 -- : BFD_RELOC_SH_GOT10BY8 -- : BFD_RELOC_SH_GOTPLT10BY4 -- : BFD_RELOC_SH_GOTPLT10BY8 -- : BFD_RELOC_SH_GOTPLT32 -- : BFD_RELOC_SH_SHMEDIA_CODE -- : BFD_RELOC_SH_IMMU5 -- : BFD_RELOC_SH_IMMS6 -- : BFD_RELOC_SH_IMMS6BY32 -- : BFD_RELOC_SH_IMMU6 -- : BFD_RELOC_SH_IMMS10 -- : BFD_RELOC_SH_IMMS10BY2 -- : BFD_RELOC_SH_IMMS10BY4 -- : BFD_RELOC_SH_IMMS10BY8 -- : BFD_RELOC_SH_IMMS16 -- : BFD_RELOC_SH_IMMU16 -- : BFD_RELOC_SH_IMM_LOW16 -- : BFD_RELOC_SH_IMM_LOW16_PCREL -- : BFD_RELOC_SH_IMM_MEDLOW16 -- : BFD_RELOC_SH_IMM_MEDLOW16_PCREL -- : BFD_RELOC_SH_IMM_MEDHI16 -- : BFD_RELOC_SH_IMM_MEDHI16_PCREL -- : BFD_RELOC_SH_IMM_HI16 -- : BFD_RELOC_SH_IMM_HI16_PCREL -- : BFD_RELOC_SH_PT_16 -- : BFD_RELOC_SH_TLS_GD_32 -- : BFD_RELOC_SH_TLS_LD_32 -- : BFD_RELOC_SH_TLS_LDO_32 -- : BFD_RELOC_SH_TLS_IE_32 -- : BFD_RELOC_SH_TLS_LE_32 -- : BFD_RELOC_SH_TLS_DTPMOD32 -- : BFD_RELOC_SH_TLS_DTPOFF32 -- : BFD_RELOC_SH_TLS_TPOFF32 Renesas / SuperH SH relocs. Not all of these appear in object files. -- : BFD_RELOC_ARC_B22_PCREL ARC Cores relocs. ARC 22 bit pc-relative branch. The lowest two bits must be zero and are not stored in the instruction. The high 20 bits are installed in bits 26 through 7 of the instruction. -- : BFD_RELOC_ARC_B26 ARC 26 bit absolute branch. The lowest two bits must be zero and are not stored in the instruction. The high 24 bits are installed in bits 23 through 0. -- : BFD_RELOC_BFIN_16_IMM ADI Blackfin 16 bit immediate absolute reloc. -- : BFD_RELOC_BFIN_16_HIGH ADI Blackfin 16 bit immediate absolute reloc higher 16 bits. -- : BFD_RELOC_BFIN_4_PCREL ADI Blackfin 'a' part of LSETUP. -- : BFD_RELOC_BFIN_5_PCREL ADI Blackfin. -- : BFD_RELOC_BFIN_16_LOW ADI Blackfin 16 bit immediate absolute reloc lower 16 bits. -- : BFD_RELOC_BFIN_10_PCREL ADI Blackfin. -- : BFD_RELOC_BFIN_11_PCREL ADI Blackfin 'b' part of LSETUP. -- : BFD_RELOC_BFIN_12_PCREL_JUMP ADI Blackfin. -- : BFD_RELOC_BFIN_12_PCREL_JUMP_S ADI Blackfin Short jump, pcrel. -- : BFD_RELOC_BFIN_24_PCREL_CALL_X ADI Blackfin Call.x not implemented. -- : BFD_RELOC_BFIN_24_PCREL_JUMP_L ADI Blackfin Long Jump pcrel. -- : BFD_RELOC_BFIN_GOT17M4 -- : BFD_RELOC_BFIN_GOTHI -- : BFD_RELOC_BFIN_GOTLO -- : BFD_RELOC_BFIN_FUNCDESC -- : BFD_RELOC_BFIN_FUNCDESC_GOT17M4 -- : BFD_RELOC_BFIN_FUNCDESC_GOTHI -- : BFD_RELOC_BFIN_FUNCDESC_GOTLO -- : BFD_RELOC_BFIN_FUNCDESC_VALUE -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4 -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI -- : BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO -- : BFD_RELOC_BFIN_GOTOFF17M4 -- : BFD_RELOC_BFIN_GOTOFFHI -- : BFD_RELOC_BFIN_GOTOFFLO ADI Blackfin FD-PIC relocations. -- : BFD_RELOC_BFIN_GOT ADI Blackfin GOT relocation. -- : BFD_RELOC_BFIN_PLTPC ADI Blackfin PLTPC relocation. -- : BFD_ARELOC_BFIN_PUSH ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_CONST ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_ADD ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_SUB ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_MULT ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_DIV ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_MOD ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_LSHIFT ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_RSHIFT ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_AND ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_OR ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_XOR ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_LAND ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_LOR ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_LEN ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_NEG ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_COMP ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_PAGE ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_HWPAGE ADI Blackfin arithmetic relocation. -- : BFD_ARELOC_BFIN_ADDR ADI Blackfin arithmetic relocation. -- : BFD_RELOC_D10V_10_PCREL_R Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0. -- : BFD_RELOC_D10V_10_PCREL_L Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to be 0. This is the same as the previous reloc except it is in the left container, i.e., shifted left 15 bits. -- : BFD_RELOC_D10V_18 This is an 18-bit reloc with the right 2 bits assumed to be 0. -- : BFD_RELOC_D10V_18_PCREL This is an 18-bit reloc with the right 2 bits assumed to be 0. -- : BFD_RELOC_D30V_6 Mitsubishi D30V relocs. This is a 6-bit absolute reloc. -- : BFD_RELOC_D30V_9_PCREL This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0. -- : BFD_RELOC_D30V_9_PCREL_R This is a 6-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container. -- : BFD_RELOC_D30V_15 This is a 12-bit absolute reloc with the right 3 bitsassumed to be 0. -- : BFD_RELOC_D30V_15_PCREL This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0. -- : BFD_RELOC_D30V_15_PCREL_R This is a 12-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container. -- : BFD_RELOC_D30V_21 This is an 18-bit absolute reloc with the right 3 bits assumed to be 0. -- : BFD_RELOC_D30V_21_PCREL This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0. -- : BFD_RELOC_D30V_21_PCREL_R This is an 18-bit pc-relative reloc with the right 3 bits assumed to be 0. Same as the previous reloc but on the right side of the container. -- : BFD_RELOC_D30V_32 This is a 32-bit absolute reloc. -- : BFD_RELOC_D30V_32_PCREL This is a 32-bit pc-relative reloc. -- : BFD_RELOC_DLX_HI16_S DLX relocs -- : BFD_RELOC_DLX_LO16 DLX relocs -- : BFD_RELOC_DLX_JMP26 DLX relocs -- : BFD_RELOC_M32C_HI8 -- : BFD_RELOC_M32C_RL_JUMP -- : BFD_RELOC_M32C_RL_1ADDR -- : BFD_RELOC_M32C_RL_2ADDR Renesas M16C/M32C Relocations. -- : BFD_RELOC_M32R_24 Renesas M32R (formerly Mitsubishi M32R) relocs. This is a 24 bit absolute address. -- : BFD_RELOC_M32R_10_PCREL This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0. -- : BFD_RELOC_M32R_18_PCREL This is an 18-bit reloc with the right 2 bits assumed to be 0. -- : BFD_RELOC_M32R_26_PCREL This is a 26-bit reloc with the right 2 bits assumed to be 0. -- : BFD_RELOC_M32R_HI16_ULO This is a 16-bit reloc containing the high 16 bits of an address used when the lower 16 bits are treated as unsigned. -- : BFD_RELOC_M32R_HI16_SLO This is a 16-bit reloc containing the high 16 bits of an address used when the lower 16 bits are treated as signed. -- : BFD_RELOC_M32R_LO16 This is a 16-bit reloc containing the lower 16 bits of an address. -- : BFD_RELOC_M32R_SDA16 This is a 16-bit reloc containing the small data area offset for use in add3, load, and store instructions. -- : BFD_RELOC_M32R_GOT24 -- : BFD_RELOC_M32R_26_PLTREL -- : BFD_RELOC_M32R_COPY -- : BFD_RELOC_M32R_GLOB_DAT -- : BFD_RELOC_M32R_JMP_SLOT -- : BFD_RELOC_M32R_RELATIVE -- : BFD_RELOC_M32R_GOTOFF -- : BFD_RELOC_M32R_GOTOFF_HI_ULO -- : BFD_RELOC_M32R_GOTOFF_HI_SLO -- : BFD_RELOC_M32R_GOTOFF_LO -- : BFD_RELOC_M32R_GOTPC24 -- : BFD_RELOC_M32R_GOT16_HI_ULO -- : BFD_RELOC_M32R_GOT16_HI_SLO -- : BFD_RELOC_M32R_GOT16_LO -- : BFD_RELOC_M32R_GOTPC_HI_ULO -- : BFD_RELOC_M32R_GOTPC_HI_SLO -- : BFD_RELOC_M32R_GOTPC_LO For PIC. -- : BFD_RELOC_V850_9_PCREL This is a 9-bit reloc -- : BFD_RELOC_V850_22_PCREL This is a 22-bit reloc -- : BFD_RELOC_V850_SDA_16_16_OFFSET This is a 16 bit offset from the short data area pointer. -- : BFD_RELOC_V850_SDA_15_16_OFFSET This is a 16 bit offset (of which only 15 bits are used) from the short data area pointer. -- : BFD_RELOC_V850_ZDA_16_16_OFFSET This is a 16 bit offset from the zero data area pointer. -- : BFD_RELOC_V850_ZDA_15_16_OFFSET This is a 16 bit offset (of which only 15 bits are used) from the zero data area pointer. -- : BFD_RELOC_V850_TDA_6_8_OFFSET This is an 8 bit offset (of which only 6 bits are used) from the tiny data area pointer. -- : BFD_RELOC_V850_TDA_7_8_OFFSET This is an 8bit offset (of which only 7 bits are used) from the tiny data area pointer. -- : BFD_RELOC_V850_TDA_7_7_OFFSET This is a 7 bit offset from the tiny data area pointer. -- : BFD_RELOC_V850_TDA_16_16_OFFSET This is a 16 bit offset from the tiny data area pointer. -- : BFD_RELOC_V850_TDA_4_5_OFFSET This is a 5 bit offset (of which only 4 bits are used) from the tiny data area pointer. -- : BFD_RELOC_V850_TDA_4_4_OFFSET This is a 4 bit offset from the tiny data area pointer. -- : BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET This is a 16 bit offset from the short data area pointer, with the bits placed non-contiguously in the instruction. -- : BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET This is a 16 bit offset from the zero data area pointer, with the bits placed non-contiguously in the instruction. -- : BFD_RELOC_V850_CALLT_6_7_OFFSET This is a 6 bit offset from the call table base pointer. -- : BFD_RELOC_V850_CALLT_16_16_OFFSET This is a 16 bit offset from the call table base pointer. -- : BFD_RELOC_V850_LONGCALL Used for relaxing indirect function calls. -- : BFD_RELOC_V850_LONGJUMP Used for relaxing indirect jumps. -- : BFD_RELOC_V850_ALIGN Used to maintain alignment whilst relaxing. -- : BFD_RELOC_V850_LO16_SPLIT_OFFSET This is a variation of BFD_RELOC_LO16 that can be used in v850e ld.bu instructions. -- : BFD_RELOC_MN10300_32_PCREL This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the instruction. -- : BFD_RELOC_MN10300_16_PCREL This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the instruction. -- : BFD_RELOC_TIC30_LDP This is a 8bit DP reloc for the tms320c30, where the most significant 8 bits of a 24 bit word are placed into the least significant 8 bits of the opcode. -- : BFD_RELOC_TIC54X_PARTLS7 This is a 7bit reloc for the tms320c54x, where the least significant 7 bits of a 16 bit word are placed into the least significant 7 bits of the opcode. -- : BFD_RELOC_TIC54X_PARTMS9 This is a 9bit DP reloc for the tms320c54x, where the most significant 9 bits of a 16 bit word are placed into the least significant 9 bits of the opcode. -- : BFD_RELOC_TIC54X_23 This is an extended address 23-bit reloc for the tms320c54x. -- : BFD_RELOC_TIC54X_16_OF_23 This is a 16-bit reloc for the tms320c54x, where the least significant 16 bits of a 23-bit extended address are placed into the opcode. -- : BFD_RELOC_TIC54X_MS7_OF_23 This is a reloc for the tms320c54x, where the most significant 7 bits of a 23-bit extended address are placed into the opcode. -- : BFD_RELOC_FR30_48 This is a 48 bit reloc for the FR30 that stores 32 bits. -- : BFD_RELOC_FR30_20 This is a 32 bit reloc for the FR30 that stores 20 bits split up into two sections. -- : BFD_RELOC_FR30_6_IN_4 This is a 16 bit reloc for the FR30 that stores a 6 bit word offset in 4 bits. -- : BFD_RELOC_FR30_8_IN_8 This is a 16 bit reloc for the FR30 that stores an 8 bit byte offset into 8 bits. -- : BFD_RELOC_FR30_9_IN_8 This is a 16 bit reloc for the FR30 that stores a 9 bit short offset into 8 bits. -- : BFD_RELOC_FR30_10_IN_8 This is a 16 bit reloc for the FR30 that stores a 10 bit word offset into 8 bits. -- : BFD_RELOC_FR30_9_PCREL This is a 16 bit reloc for the FR30 that stores a 9 bit pc relative short offset into 8 bits. -- : BFD_RELOC_FR30_12_PCREL This is a 16 bit reloc for the FR30 that stores a 12 bit pc relative short offset into 11 bits. -- : BFD_RELOC_MCORE_PCREL_IMM8BY4 -- : BFD_RELOC_MCORE_PCREL_IMM11BY2 -- : BFD_RELOC_MCORE_PCREL_IMM4BY2 -- : BFD_RELOC_MCORE_PCREL_32 -- : BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2 -- : BFD_RELOC_MCORE_RVA Motorola Mcore relocations. -- : BFD_RELOC_MMIX_GETA -- : BFD_RELOC_MMIX_GETA_1 -- : BFD_RELOC_MMIX_GETA_2 -- : BFD_RELOC_MMIX_GETA_3 These are relocations for the GETA instruction. -- : BFD_RELOC_MMIX_CBRANCH -- : BFD_RELOC_MMIX_CBRANCH_J -- : BFD_RELOC_MMIX_CBRANCH_1 -- : BFD_RELOC_MMIX_CBRANCH_2 -- : BFD_RELOC_MMIX_CBRANCH_3 These are relocations for a conditional branch instruction. -- : BFD_RELOC_MMIX_PUSHJ -- : BFD_RELOC_MMIX_PUSHJ_1 -- : BFD_RELOC_MMIX_PUSHJ_2 -- : BFD_RELOC_MMIX_PUSHJ_3 -- : BFD_RELOC_MMIX_PUSHJ_STUBBABLE These are relocations for the PUSHJ instruction. -- : BFD_RELOC_MMIX_JMP -- : BFD_RELOC_MMIX_JMP_1 -- : BFD_RELOC_MMIX_JMP_2 -- : BFD_RELOC_MMIX_JMP_3 These are relocations for the JMP instruction. -- : BFD_RELOC_MMIX_ADDR19 This is a relocation for a relative address as in a GETA instruction or a branch. -- : BFD_RELOC_MMIX_ADDR27 This is a relocation for a relative address as in a JMP instruction. -- : BFD_RELOC_MMIX_REG_OR_BYTE This is a relocation for an instruction field that may be a general register or a value 0..255. -- : BFD_RELOC_MMIX_REG This is a relocation for an instruction field that may be a general register. -- : BFD_RELOC_MMIX_BASE_PLUS_OFFSET This is a relocation for two instruction fields holding a register and an offset, the equivalent of the relocation. -- : BFD_RELOC_MMIX_LOCAL This relocation is an assertion that the expression is not allocated as a global register. It does not modify contents. -- : BFD_RELOC_AVR_7_PCREL This is a 16 bit reloc for the AVR that stores 8 bit pc relative short offset into 7 bits. -- : BFD_RELOC_AVR_13_PCREL This is a 16 bit reloc for the AVR that stores 13 bit pc relative short offset into 12 bits. -- : BFD_RELOC_AVR_16_PM This is a 16 bit reloc for the AVR that stores 17 bit value (usually program memory address) into 16 bits. -- : BFD_RELOC_AVR_LO8_LDI This is a 16 bit reloc for the AVR that stores 8 bit value (usually data memory address) into 8 bit immediate value of LDI insn. -- : BFD_RELOC_AVR_HI8_LDI This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of data memory address) into 8 bit immediate value of LDI insn. -- : BFD_RELOC_AVR_HH8_LDI This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of program memory address) into 8 bit immediate value of LDI insn. -- : BFD_RELOC_AVR_MS8_LDI This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of 32 bit value) into 8 bit immediate value of LDI insn. -- : BFD_RELOC_AVR_LO8_LDI_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (usually data memory address) into 8 bit immediate value of SUBI insn. -- : BFD_RELOC_AVR_HI8_LDI_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 8 bit of data memory address) into 8 bit immediate value of SUBI insn. -- : BFD_RELOC_AVR_HH8_LDI_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (most high 8 bit of program memory address) into 8 bit immediate value of LDI or SUBI insn. -- : BFD_RELOC_AVR_MS8_LDI_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (msb of 32 bit value) into 8 bit immediate value of LDI insn. -- : BFD_RELOC_AVR_LO8_LDI_PM This is a 16 bit reloc for the AVR that stores 8 bit value (usually command address) into 8 bit immediate value of LDI insn. -- : BFD_RELOC_AVR_LO8_LDI_GS This is a 16 bit reloc for the AVR that stores 8 bit value (command address) into 8 bit immediate value of LDI insn. If the address is beyond the 128k boundary, the linker inserts a jump stub for this reloc in the lower 128k. -- : BFD_RELOC_AVR_HI8_LDI_PM This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of command address) into 8 bit immediate value of LDI insn. -- : BFD_RELOC_AVR_HI8_LDI_GS This is a 16 bit reloc for the AVR that stores 8 bit value (high 8 bit of command address) into 8 bit immediate value of LDI insn. If the address is beyond the 128k boundary, the linker inserts a jump stub for this reloc below 128k. -- : BFD_RELOC_AVR_HH8_LDI_PM This is a 16 bit reloc for the AVR that stores 8 bit value (most high 8 bit of command address) into 8 bit immediate value of LDI insn. -- : BFD_RELOC_AVR_LO8_LDI_PM_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (usually command address) into 8 bit immediate value of SUBI insn. -- : BFD_RELOC_AVR_HI8_LDI_PM_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 8 bit of 16 bit command address) into 8 bit immediate value of SUBI insn. -- : BFD_RELOC_AVR_HH8_LDI_PM_NEG This is a 16 bit reloc for the AVR that stores negated 8 bit value (high 6 bit of 22 bit command address) into 8 bit immediate value of SUBI insn. -- : BFD_RELOC_AVR_CALL This is a 32 bit reloc for the AVR that stores 23 bit value into 22 bits. -- : BFD_RELOC_AVR_LDI This is a 16 bit reloc for the AVR that stores all needed bits for absolute addressing with ldi with overflow check to linktime -- : BFD_RELOC_AVR_6 This is a 6 bit reloc for the AVR that stores offset for ldd/std instructions -- : BFD_RELOC_AVR_6_ADIW This is a 6 bit reloc for the AVR that stores offset for adiw/sbiw instructions -- : BFD_RELOC_390_12 Direct 12 bit. -- : BFD_RELOC_390_GOT12 12 bit GOT offset. -- : BFD_RELOC_390_PLT32 32 bit PC relative PLT address. -- : BFD_RELOC_390_COPY Copy symbol at runtime. -- : BFD_RELOC_390_GLOB_DAT Create GOT entry. -- : BFD_RELOC_390_JMP_SLOT Create PLT entry. -- : BFD_RELOC_390_RELATIVE Adjust by program base. -- : BFD_RELOC_390_GOTPC 32 bit PC relative offset to GOT. -- : BFD_RELOC_390_GOT16 16 bit GOT offset. -- : BFD_RELOC_390_PC16DBL PC relative 16 bit shifted by 1. -- : BFD_RELOC_390_PLT16DBL 16 bit PC rel. PLT shifted by 1. -- : BFD_RELOC_390_PC32DBL PC relative 32 bit shifted by 1. -- : BFD_RELOC_390_PLT32DBL 32 bit PC rel. PLT shifted by 1. -- : BFD_RELOC_390_GOTPCDBL 32 bit PC rel. GOT shifted by 1. -- : BFD_RELOC_390_GOT64 64 bit GOT offset. -- : BFD_RELOC_390_PLT64 64 bit PC relative PLT address. -- : BFD_RELOC_390_GOTENT 32 bit rel. offset to GOT entry. -- : BFD_RELOC_390_GOTOFF64 64 bit offset to GOT. -- : BFD_RELOC_390_GOTPLT12 12-bit offset to symbol-entry within GOT, with PLT handling. -- : BFD_RELOC_390_GOTPLT16 16-bit offset to symbol-entry within GOT, with PLT handling. -- : BFD_RELOC_390_GOTPLT32 32-bit offset to symbol-entry within GOT, with PLT handling. -- : BFD_RELOC_390_GOTPLT64 64-bit offset to symbol-entry within GOT, with PLT handling. -- : BFD_RELOC_390_GOTPLTENT 32-bit rel. offset to symbol-entry within GOT, with PLT handling. -- : BFD_RELOC_390_PLTOFF16 16-bit rel. offset from the GOT to a PLT entry. -- : BFD_RELOC_390_PLTOFF32 32-bit rel. offset from the GOT to a PLT entry. -- : BFD_RELOC_390_PLTOFF64 64-bit rel. offset from the GOT to a PLT entry. -- : BFD_RELOC_390_TLS_LOAD -- : BFD_RELOC_390_TLS_GDCALL -- : BFD_RELOC_390_TLS_LDCALL -- : BFD_RELOC_390_TLS_GD32 -- : BFD_RELOC_390_TLS_GD64 -- : BFD_RELOC_390_TLS_GOTIE12 -- : BFD_RELOC_390_TLS_GOTIE32 -- : BFD_RELOC_390_TLS_GOTIE64 -- : BFD_RELOC_390_TLS_LDM32 -- : BFD_RELOC_390_TLS_LDM64 -- : BFD_RELOC_390_TLS_IE32 -- : BFD_RELOC_390_TLS_IE64 -- : BFD_RELOC_390_TLS_IEENT -- : BFD_RELOC_390_TLS_LE32 -- : BFD_RELOC_390_TLS_LE64 -- : BFD_RELOC_390_TLS_LDO32 -- : BFD_RELOC_390_TLS_LDO64 -- : BFD_RELOC_390_TLS_DTPMOD -- : BFD_RELOC_390_TLS_DTPOFF -- : BFD_RELOC_390_TLS_TPOFF s390 tls relocations. -- : BFD_RELOC_390_20 -- : BFD_RELOC_390_GOT20 -- : BFD_RELOC_390_GOTPLT20 -- : BFD_RELOC_390_TLS_GOTIE20 Long displacement extension. -- : BFD_RELOC_SCORE_DUMMY1 Score relocations -- : BFD_RELOC_SCORE_GPREL15 Low 16 bit for load/store -- : BFD_RELOC_SCORE_DUMMY2 -- : BFD_RELOC_SCORE_JMP This is a 24-bit reloc with the right 1 bit assumed to be 0 -- : BFD_RELOC_SCORE_BRANCH This is a 19-bit reloc with the right 1 bit assumed to be 0 -- : BFD_RELOC_SCORE16_JMP This is a 11-bit reloc with the right 1 bit assumed to be 0 -- : BFD_RELOC_SCORE16_BRANCH This is a 8-bit reloc with the right 1 bit assumed to be 0 -- : BFD_RELOC_SCORE_GOT15 -- : BFD_RELOC_SCORE_GOT_LO16 -- : BFD_RELOC_SCORE_CALL15 -- : BFD_RELOC_SCORE_DUMMY_HI16 Undocumented Score relocs -- : BFD_RELOC_IP2K_FR9 Scenix IP2K - 9-bit register number / data address -- : BFD_RELOC_IP2K_BANK Scenix IP2K - 4-bit register/data bank number -- : BFD_RELOC_IP2K_ADDR16CJP Scenix IP2K - low 13 bits of instruction word address -- : BFD_RELOC_IP2K_PAGE3 Scenix IP2K - high 3 bits of instruction word address -- : BFD_RELOC_IP2K_LO8DATA -- : BFD_RELOC_IP2K_HI8DATA -- : BFD_RELOC_IP2K_EX8DATA Scenix IP2K - ext/low/high 8 bits of data address -- : BFD_RELOC_IP2K_LO8INSN -- : BFD_RELOC_IP2K_HI8INSN Scenix IP2K - low/high 8 bits of instruction word address -- : BFD_RELOC_IP2K_PC_SKIP Scenix IP2K - even/odd PC modifier to modify snb pcl.0 -- : BFD_RELOC_IP2K_TEXT Scenix IP2K - 16 bit word address in text section. -- : BFD_RELOC_IP2K_FR_OFFSET Scenix IP2K - 7-bit sp or dp offset -- : BFD_RELOC_VPE4KMATH_DATA -- : BFD_RELOC_VPE4KMATH_INSN Scenix VPE4K coprocessor - data/insn-space addressing -- : BFD_RELOC_VTABLE_INHERIT -- : BFD_RELOC_VTABLE_ENTRY These two relocations are used by the linker to determine which of the entries in a C++ virtual function table are actually used. When the -gc-sections option is given, the linker will zero out the entries that are not used, so that the code for those functions need not be included in the output. VTABLE_INHERIT is a zero-space relocation used to describe to the linker the inheritance tree of a C++ virtual function table. The relocation's symbol should be the parent class' vtable, and the relocation should be located at the child vtable. VTABLE_ENTRY is a zero-space relocation that describes the use of a virtual function table entry. The reloc's symbol should refer to the table of the class mentioned in the code. Off of that base, an offset describes the entry that is being used. For Rela hosts, this offset is stored in the reloc's addend. For Rel hosts, we are forced to put this offset in the reloc's section offset. -- : BFD_RELOC_IA64_IMM14 -- : BFD_RELOC_IA64_IMM22 -- : BFD_RELOC_IA64_IMM64 -- : BFD_RELOC_IA64_DIR32MSB -- : BFD_RELOC_IA64_DIR32LSB -- : BFD_RELOC_IA64_DIR64MSB -- : BFD_RELOC_IA64_DIR64LSB -- : BFD_RELOC_IA64_GPREL22 -- : BFD_RELOC_IA64_GPREL64I -- : BFD_RELOC_IA64_GPREL32MSB -- : BFD_RELOC_IA64_GPREL32LSB -- : BFD_RELOC_IA64_GPREL64MSB -- : BFD_RELOC_IA64_GPREL64LSB -- : BFD_RELOC_IA64_LTOFF22 -- : BFD_RELOC_IA64_LTOFF64I -- : BFD_RELOC_IA64_PLTOFF22 -- : BFD_RELOC_IA64_PLTOFF64I -- : BFD_RELOC_IA64_PLTOFF64MSB -- : BFD_RELOC_IA64_PLTOFF64LSB -- : BFD_RELOC_IA64_FPTR64I -- : BFD_RELOC_IA64_FPTR32MSB -- : BFD_RELOC_IA64_FPTR32LSB -- : BFD_RELOC_IA64_FPTR64MSB -- : BFD_RELOC_IA64_FPTR64LSB -- : BFD_RELOC_IA64_PCREL21B -- : BFD_RELOC_IA64_PCREL21BI -- : BFD_RELOC_IA64_PCREL21M -- : BFD_RELOC_IA64_PCREL21F -- : BFD_RELOC_IA64_PCREL22 -- : BFD_RELOC_IA64_PCREL60B -- : BFD_RELOC_IA64_PCREL64I -- : BFD_RELOC_IA64_PCREL32MSB -- : BFD_RELOC_IA64_PCREL32LSB -- : BFD_RELOC_IA64_PCREL64MSB -- : BFD_RELOC_IA64_PCREL64LSB -- : BFD_RELOC_IA64_LTOFF_FPTR22 -- : BFD_RELOC_IA64_LTOFF_FPTR64I -- : BFD_RELOC_IA64_LTOFF_FPTR32MSB -- : BFD_RELOC_IA64_LTOFF_FPTR32LSB -- : BFD_RELOC_IA64_LTOFF_FPTR64MSB -- : BFD_RELOC_IA64_LTOFF_FPTR64LSB -- : BFD_RELOC_IA64_SEGREL32MSB -- : BFD_RELOC_IA64_SEGREL32LSB -- : BFD_RELOC_IA64_SEGREL64MSB -- : BFD_RELOC_IA64_SEGREL64LSB -- : BFD_RELOC_IA64_SECREL32MSB -- : BFD_RELOC_IA64_SECREL32LSB -- : BFD_RELOC_IA64_SECREL64MSB -- : BFD_RELOC_IA64_SECREL64LSB -- : BFD_RELOC_IA64_REL32MSB -- : BFD_RELOC_IA64_REL32LSB -- : BFD_RELOC_IA64_REL64MSB -- : BFD_RELOC_IA64_REL64LSB -- : BFD_RELOC_IA64_LTV32MSB -- : BFD_RELOC_IA64_LTV32LSB -- : BFD_RELOC_IA64_LTV64MSB -- : BFD_RELOC_IA64_LTV64LSB -- : BFD_RELOC_IA64_IPLTMSB -- : BFD_RELOC_IA64_IPLTLSB -- : BFD_RELOC_IA64_COPY -- : BFD_RELOC_IA64_LTOFF22X -- : BFD_RELOC_IA64_LDXMOV -- : BFD_RELOC_IA64_TPREL14 -- : BFD_RELOC_IA64_TPREL22 -- : BFD_RELOC_IA64_TPREL64I -- : BFD_RELOC_IA64_TPREL64MSB -- : BFD_RELOC_IA64_TPREL64LSB -- : BFD_RELOC_IA64_LTOFF_TPREL22 -- : BFD_RELOC_IA64_DTPMOD64MSB -- : BFD_RELOC_IA64_DTPMOD64LSB -- : BFD_RELOC_IA64_LTOFF_DTPMOD22 -- : BFD_RELOC_IA64_DTPREL14 -- : BFD_RELOC_IA64_DTPREL22 -- : BFD_RELOC_IA64_DTPREL64I -- : BFD_RELOC_IA64_DTPREL32MSB -- : BFD_RELOC_IA64_DTPREL32LSB -- : BFD_RELOC_IA64_DTPREL64MSB -- : BFD_RELOC_IA64_DTPREL64LSB -- : BFD_RELOC_IA64_LTOFF_DTPREL22 Intel IA64 Relocations. -- : BFD_RELOC_M68HC11_HI8 Motorola 68HC11 reloc. This is the 8 bit high part of an absolute address. -- : BFD_RELOC_M68HC11_LO8 Motorola 68HC11 reloc. This is the 8 bit low part of an absolute address. -- : BFD_RELOC_M68HC11_3B Motorola 68HC11 reloc. This is the 3 bit of a value. -- : BFD_RELOC_M68HC11_RL_JUMP Motorola 68HC11 reloc. This reloc marks the beginning of a jump/call instruction. It is used for linker relaxation to correctly identify beginning of instruction and change some branches to use PC-relative addressing mode. -- : BFD_RELOC_M68HC11_RL_GROUP Motorola 68HC11 reloc. This reloc marks a group of several instructions that gcc generates and for which the linker relaxation pass can modify and/or remove some of them. -- : BFD_RELOC_M68HC11_LO16 Motorola 68HC11 reloc. This is the 16-bit lower part of an address. It is used for 'call' instruction to specify the symbol address without any special transformation (due to memory bank window). -- : BFD_RELOC_M68HC11_PAGE Motorola 68HC11 reloc. This is a 8-bit reloc that specifies the page number of an address. It is used by 'call' instruction to specify the page number of the symbol. -- : BFD_RELOC_M68HC11_24 Motorola 68HC11 reloc. This is a 24-bit reloc that represents the address with a 16-bit value and a 8-bit page number. The symbol address is transformed to follow the 16K memory bank of 68HC12 (seen as mapped in the window). -- : BFD_RELOC_M68HC12_5B Motorola 68HC12 reloc. This is the 5 bits of a value. -- : BFD_RELOC_16C_NUM08 -- : BFD_RELOC_16C_NUM08_C -- : BFD_RELOC_16C_NUM16 -- : BFD_RELOC_16C_NUM16_C -- : BFD_RELOC_16C_NUM32 -- : BFD_RELOC_16C_NUM32_C -- : BFD_RELOC_16C_DISP04 -- : BFD_RELOC_16C_DISP04_C -- : BFD_RELOC_16C_DISP08 -- : BFD_RELOC_16C_DISP08_C -- : BFD_RELOC_16C_DISP16 -- : BFD_RELOC_16C_DISP16_C -- : BFD_RELOC_16C_DISP24 -- : BFD_RELOC_16C_DISP24_C -- : BFD_RELOC_16C_DISP24a -- : BFD_RELOC_16C_DISP24a_C -- : BFD_RELOC_16C_REG04 -- : BFD_RELOC_16C_REG04_C -- : BFD_RELOC_16C_REG04a -- : BFD_RELOC_16C_REG04a_C -- : BFD_RELOC_16C_REG14 -- : BFD_RELOC_16C_REG14_C -- : BFD_RELOC_16C_REG16 -- : BFD_RELOC_16C_REG16_C -- : BFD_RELOC_16C_REG20 -- : BFD_RELOC_16C_REG20_C -- : BFD_RELOC_16C_ABS20 -- : BFD_RELOC_16C_ABS20_C -- : BFD_RELOC_16C_ABS24 -- : BFD_RELOC_16C_ABS24_C -- : BFD_RELOC_16C_IMM04 -- : BFD_RELOC_16C_IMM04_C -- : BFD_RELOC_16C_IMM16 -- : BFD_RELOC_16C_IMM16_C -- : BFD_RELOC_16C_IMM20 -- : BFD_RELOC_16C_IMM20_C -- : BFD_RELOC_16C_IMM24 -- : BFD_RELOC_16C_IMM24_C -- : BFD_RELOC_16C_IMM32 -- : BFD_RELOC_16C_IMM32_C NS CR16C Relocations. -- : BFD_RELOC_CRX_REL4 -- : BFD_RELOC_CRX_REL8 -- : BFD_RELOC_CRX_REL8_CMP -- : BFD_RELOC_CRX_REL16 -- : BFD_RELOC_CRX_REL24 -- : BFD_RELOC_CRX_REL32 -- : BFD_RELOC_CRX_REGREL12 -- : BFD_RELOC_CRX_REGREL22 -- : BFD_RELOC_CRX_REGREL28 -- : BFD_RELOC_CRX_REGREL32 -- : BFD_RELOC_CRX_ABS16 -- : BFD_RELOC_CRX_ABS32 -- : BFD_RELOC_CRX_NUM8 -- : BFD_RELOC_CRX_NUM16 -- : BFD_RELOC_CRX_NUM32 -- : BFD_RELOC_CRX_IMM16 -- : BFD_RELOC_CRX_IMM32 -- : BFD_RELOC_CRX_SWITCH8 -- : BFD_RELOC_CRX_SWITCH16 -- : BFD_RELOC_CRX_SWITCH32 NS CRX Relocations. -- : BFD_RELOC_CRIS_BDISP8 -- : BFD_RELOC_CRIS_UNSIGNED_5 -- : BFD_RELOC_CRIS_SIGNED_6 -- : BFD_RELOC_CRIS_UNSIGNED_6 -- : BFD_RELOC_CRIS_SIGNED_8 -- : BFD_RELOC_CRIS_UNSIGNED_8 -- : BFD_RELOC_CRIS_SIGNED_16 -- : BFD_RELOC_CRIS_UNSIGNED_16 -- : BFD_RELOC_CRIS_LAPCQ_OFFSET -- : BFD_RELOC_CRIS_UNSIGNED_4 These relocs are only used within the CRIS assembler. They are not (at present) written to any object files. -- : BFD_RELOC_CRIS_COPY -- : BFD_RELOC_CRIS_GLOB_DAT -- : BFD_RELOC_CRIS_JUMP_SLOT -- : BFD_RELOC_CRIS_RELATIVE Relocs used in ELF shared libraries for CRIS. -- : BFD_RELOC_CRIS_32_GOT 32-bit offset to symbol-entry within GOT. -- : BFD_RELOC_CRIS_16_GOT 16-bit offset to symbol-entry within GOT. -- : BFD_RELOC_CRIS_32_GOTPLT 32-bit offset to symbol-entry within GOT, with PLT handling. -- : BFD_RELOC_CRIS_16_GOTPLT 16-bit offset to symbol-entry within GOT, with PLT handling. -- : BFD_RELOC_CRIS_32_GOTREL 32-bit offset to symbol, relative to GOT. -- : BFD_RELOC_CRIS_32_PLT_GOTREL 32-bit offset to symbol with PLT entry, relative to GOT. -- : BFD_RELOC_CRIS_32_PLT_PCREL 32-bit offset to symbol with PLT entry, relative to this relocation. -- : BFD_RELOC_860_COPY -- : BFD_RELOC_860_GLOB_DAT -- : BFD_RELOC_860_JUMP_SLOT -- : BFD_RELOC_860_RELATIVE -- : BFD_RELOC_860_PC26 -- : BFD_RELOC_860_PLT26 -- : BFD_RELOC_860_PC16 -- : BFD_RELOC_860_LOW0 -- : BFD_RELOC_860_SPLIT0 -- : BFD_RELOC_860_LOW1 -- : BFD_RELOC_860_SPLIT1 -- : BFD_RELOC_860_LOW2 -- : BFD_RELOC_860_SPLIT2 -- : BFD_RELOC_860_LOW3 -- : BFD_RELOC_860_LOGOT0 -- : BFD_RELOC_860_SPGOT0 -- : BFD_RELOC_860_LOGOT1 -- : BFD_RELOC_860_SPGOT1 -- : BFD_RELOC_860_LOGOTOFF0 -- : BFD_RELOC_860_SPGOTOFF0 -- : BFD_RELOC_860_LOGOTOFF1 -- : BFD_RELOC_860_SPGOTOFF1 -- : BFD_RELOC_860_LOGOTOFF2 -- : BFD_RELOC_860_LOGOTOFF3 -- : BFD_RELOC_860_LOPC -- : BFD_RELOC_860_HIGHADJ -- : BFD_RELOC_860_HAGOT -- : BFD_RELOC_860_HAGOTOFF -- : BFD_RELOC_860_HAPC -- : BFD_RELOC_860_HIGH -- : BFD_RELOC_860_HIGOT -- : BFD_RELOC_860_HIGOTOFF Intel i860 Relocations. -- : BFD_RELOC_OPENRISC_ABS_26 -- : BFD_RELOC_OPENRISC_REL_26 OpenRISC Relocations. -- : BFD_RELOC_H8_DIR16A8 -- : BFD_RELOC_H8_DIR16R8 -- : BFD_RELOC_H8_DIR24A8 -- : BFD_RELOC_H8_DIR24R8 -- : BFD_RELOC_H8_DIR32A16 H8 elf Relocations. -- : BFD_RELOC_XSTORMY16_REL_12 -- : BFD_RELOC_XSTORMY16_12 -- : BFD_RELOC_XSTORMY16_24 -- : BFD_RELOC_XSTORMY16_FPTR16 Sony Xstormy16 Relocations. -- : BFD_RELOC_XC16X_PAG -- : BFD_RELOC_XC16X_POF -- : BFD_RELOC_XC16X_SEG -- : BFD_RELOC_XC16X_SOF Infineon Relocations. -- : BFD_RELOC_VAX_GLOB_DAT -- : BFD_RELOC_VAX_JMP_SLOT -- : BFD_RELOC_VAX_RELATIVE Relocations used by VAX ELF. -- : BFD_RELOC_MT_PC16 Morpho MT - 16 bit immediate relocation. -- : BFD_RELOC_MT_HI16 Morpho MT - Hi 16 bits of an address. -- : BFD_RELOC_MT_LO16 Morpho MT - Low 16 bits of an address. -- : BFD_RELOC_MT_GNU_VTINHERIT Morpho MT - Used to tell the linker which vtable entries are used. -- : BFD_RELOC_MT_GNU_VTENTRY Morpho MT - Used to tell the linker which vtable entries are used. -- : BFD_RELOC_MT_PCINSN8 Morpho MT - 8 bit immediate relocation. -- : BFD_RELOC_MSP430_10_PCREL -- : BFD_RELOC_MSP430_16_PCREL -- : BFD_RELOC_MSP430_16 -- : BFD_RELOC_MSP430_16_PCREL_BYTE -- : BFD_RELOC_MSP430_16_BYTE -- : BFD_RELOC_MSP430_2X_PCREL -- : BFD_RELOC_MSP430_RL_PCREL msp430 specific relocation codes -- : BFD_RELOC_IQ2000_OFFSET_16 -- : BFD_RELOC_IQ2000_OFFSET_21 -- : BFD_RELOC_IQ2000_UHI16 IQ2000 Relocations. -- : BFD_RELOC_XTENSA_RTLD Special Xtensa relocation used only by PLT entries in ELF shared objects to indicate that the runtime linker should set the value to one of its own internal functions or data structures. -- : BFD_RELOC_XTENSA_GLOB_DAT -- : BFD_RELOC_XTENSA_JMP_SLOT -- : BFD_RELOC_XTENSA_RELATIVE Xtensa relocations for ELF shared objects. -- : BFD_RELOC_XTENSA_PLT Xtensa relocation used in ELF object files for symbols that may require PLT entries. Otherwise, this is just a generic 32-bit relocation. -- : BFD_RELOC_XTENSA_DIFF8 -- : BFD_RELOC_XTENSA_DIFF16 -- : BFD_RELOC_XTENSA_DIFF32 Xtensa relocations to mark the difference of two local symbols. These are only needed to support linker relaxation and can be ignored when not relaxing. The field is set to the value of the difference assuming no relaxation. The relocation encodes the position of the first symbol so the linker can determine whether to adjust the field value. -- : BFD_RELOC_XTENSA_SLOT0_OP -- : BFD_RELOC_XTENSA_SLOT1_OP -- : BFD_RELOC_XTENSA_SLOT2_OP -- : BFD_RELOC_XTENSA_SLOT3_OP -- : BFD_RELOC_XTENSA_SLOT4_OP -- : BFD_RELOC_XTENSA_SLOT5_OP -- : BFD_RELOC_XTENSA_SLOT6_OP -- : BFD_RELOC_XTENSA_SLOT7_OP -- : BFD_RELOC_XTENSA_SLOT8_OP -- : BFD_RELOC_XTENSA_SLOT9_OP -- : BFD_RELOC_XTENSA_SLOT10_OP -- : BFD_RELOC_XTENSA_SLOT11_OP -- : BFD_RELOC_XTENSA_SLOT12_OP -- : BFD_RELOC_XTENSA_SLOT13_OP -- : BFD_RELOC_XTENSA_SLOT14_OP Generic Xtensa relocations for instruction operands. Only the slot number is encoded in the relocation. The relocation applies to the last PC-relative immediate operand, or if there are no PC-relative immediates, to the last immediate operand. -- : BFD_RELOC_XTENSA_SLOT0_ALT -- : BFD_RELOC_XTENSA_SLOT1_ALT -- : BFD_RELOC_XTENSA_SLOT2_ALT -- : BFD_RELOC_XTENSA_SLOT3_ALT -- : BFD_RELOC_XTENSA_SLOT4_ALT -- : BFD_RELOC_XTENSA_SLOT5_ALT -- : BFD_RELOC_XTENSA_SLOT6_ALT -- : BFD_RELOC_XTENSA_SLOT7_ALT -- : BFD_RELOC_XTENSA_SLOT8_ALT -- : BFD_RELOC_XTENSA_SLOT9_ALT -- : BFD_RELOC_XTENSA_SLOT10_ALT -- : BFD_RELOC_XTENSA_SLOT11_ALT -- : BFD_RELOC_XTENSA_SLOT12_ALT -- : BFD_RELOC_XTENSA_SLOT13_ALT -- : BFD_RELOC_XTENSA_SLOT14_ALT Alternate Xtensa relocations. Only the slot is encoded in the relocation. The meaning of these relocations is opcode-specific. -- : BFD_RELOC_XTENSA_OP0 -- : BFD_RELOC_XTENSA_OP1 -- : BFD_RELOC_XTENSA_OP2 Xtensa relocations for backward compatibility. These have all been replaced by BFD_RELOC_XTENSA_SLOT0_OP. -- : BFD_RELOC_XTENSA_ASM_EXPAND Xtensa relocation to mark that the assembler expanded the instructions from an original target. The expansion size is encoded in the reloc size. -- : BFD_RELOC_XTENSA_ASM_SIMPLIFY Xtensa relocation to mark that the linker should simplify assembler-expanded instructions. This is commonly used internally by the linker after analysis of a BFD_RELOC_XTENSA_ASM_EXPAND. -- : BFD_RELOC_Z80_DISP8 8 bit signed offset in (ix+d) or (iy+d). -- : BFD_RELOC_Z8K_DISP7 DJNZ offset. -- : BFD_RELOC_Z8K_CALLR CALR offset. -- : BFD_RELOC_Z8K_IMM4L 4 bit value. typedef enum bfd_reloc_code_real bfd_reloc_code_real_type; 2.10.2.2 `bfd_reloc_type_lookup' ................................ *Synopsis* reloc_howto_type *bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code); *Description* Return a pointer to a howto structure which, when invoked, will perform the relocation CODE on data from the architecture noted. 2.10.2.3 `bfd_default_reloc_type_lookup' ........................................ *Synopsis* reloc_howto_type *bfd_default_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code); *Description* Provides a default relocation lookup routine for any architecture. 2.10.2.4 `bfd_get_reloc_code_name' .................................. *Synopsis* const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code); *Description* Provides a printable name for the supplied relocation code. Useful mainly for printing error messages. 2.10.2.5 `bfd_generic_relax_section' .................................... *Synopsis* bfd_boolean bfd_generic_relax_section (bfd *abfd, asection *section, struct bfd_link_info *, bfd_boolean *); *Description* Provides default handling for relaxing for back ends which don't do relaxing. 2.10.2.6 `bfd_generic_gc_sections' .................................. *Synopsis* bfd_boolean bfd_generic_gc_sections (bfd *, struct bfd_link_info *); *Description* Provides default handling for relaxing for back ends which don't do section gc - i.e., does nothing. 2.10.2.7 `bfd_generic_merge_sections' ..................................... *Synopsis* bfd_boolean bfd_generic_merge_sections (bfd *, struct bfd_link_info *); *Description* Provides default handling for SEC_MERGE section merging for back ends which don't have SEC_MERGE support - i.e., does nothing. 2.10.2.8 `bfd_generic_get_relocated_section_contents' ..................................................... *Synopsis* bfd_byte *bfd_generic_get_relocated_section_contents (bfd *abfd, struct bfd_link_info *link_info, struct bfd_link_order *link_order, bfd_byte *data, bfd_boolean relocatable, asymbol **symbols); *Description* Provides default handling of relocation effort for back ends which can't be bothered to do it efficiently. File: bfd.info, Node: Core Files, Next: Targets, Prev: Relocations, Up: BFD front end 2.11 Core files =============== 2.11.1 Core file functions -------------------------- *Description* These are functions pertaining to core files. 2.11.1.1 `bfd_core_file_failing_command' ........................................ *Synopsis* const char *bfd_core_file_failing_command (bfd *abfd); *Description* Return a read-only string explaining which program was running when it failed and produced the core file ABFD. 2.11.1.2 `bfd_core_file_failing_signal' ....................................... *Synopsis* int bfd_core_file_failing_signal (bfd *abfd); *Description* Returns the signal number which caused the core dump which generated the file the BFD ABFD is attached to. 2.11.1.3 `core_file_matches_executable_p' ......................................... *Synopsis* bfd_boolean core_file_matches_executable_p (bfd *core_bfd, bfd *exec_bfd); *Description* Return `TRUE' if the core file attached to CORE_BFD was generated by a run of the executable file attached to EXEC_BFD, `FALSE' otherwise. 2.11.1.4 `generic_core_file_matches_executable_p' ................................................. *Synopsis* bfd_boolean generic_core_file_matches_executable_p (bfd *core_bfd, bfd *exec_bfd); *Description* Return TRUE if the core file attached to CORE_BFD was generated by a run of the executable file attached to EXEC_BFD. The match is based on executable basenames only. Note: When not able to determine the core file failing command or the executable name, we still return TRUE even though we're not sure that core file and executable match. This is to avoid generating a false warning in situations where we really don't know whether they match or not. File: bfd.info, Node: Targets, Next: Architectures, Prev: Core Files, Up: BFD front end 2.12 Targets ============ *Description* Each port of BFD to a different machine requires the creation of a target back end. All the back end provides to the root part of BFD is a structure containing pointers to functions which perform certain low level operations on files. BFD translates the applications's requests through a pointer into calls to the back end routines. When a file is opened with `bfd_openr', its format and target are unknown. BFD uses various mechanisms to determine how to interpret the file. The operations performed are: * Create a BFD by calling the internal routine `_bfd_new_bfd', then call `bfd_find_target' with the target string supplied to `bfd_openr' and the new BFD pointer. * If a null target string was provided to `bfd_find_target', look up the environment variable `GNUTARGET' and use that as the target string. * If the target string is still `NULL', or the target string is `default', then use the first item in the target vector as the target type, and set `target_defaulted' in the BFD to cause `bfd_check_format' to loop through all the targets. *Note bfd_target::. *Note Formats::. * Otherwise, inspect the elements in the target vector one by one, until a match on target name is found. When found, use it. * Otherwise return the error `bfd_error_invalid_target' to `bfd_openr'. * `bfd_openr' attempts to open the file using `bfd_open_file', and returns the BFD. Once the BFD has been opened and the target selected, the file format may be determined. This is done by calling `bfd_check_format' on the BFD with a suggested format. If `target_defaulted' has been set, each possible target type is tried to see if it recognizes the specified format. `bfd_check_format' returns `TRUE' when the caller guesses right. * Menu: * bfd_target:: File: bfd.info, Node: bfd_target, Prev: Targets, Up: Targets 2.12.1 bfd_target ----------------- *Description* This structure contains everything that BFD knows about a target. It includes things like its byte order, name, and which routines to call to do various operations. Every BFD points to a target structure with its `xvec' member. The macros below are used to dispatch to functions through the `bfd_target' vector. They are used in a number of macros further down in `bfd.h', and are also used when calling various routines by hand inside the BFD implementation. The ARGLIST argument must be parenthesized; it contains all the arguments to the called function. They make the documentation (more) unpleasant to read, so if someone wants to fix this and not break the above, please do. #define BFD_SEND(bfd, message, arglist) \ ((*((bfd)->xvec->message)) arglist) #ifdef DEBUG_BFD_SEND #undef BFD_SEND #define BFD_SEND(bfd, message, arglist) \ (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \ ((*((bfd)->xvec->message)) arglist) : \ (bfd_assert (__FILE__,__LINE__), NULL)) #endif For operations which index on the BFD format: #define BFD_SEND_FMT(bfd, message, arglist) \ (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) #ifdef DEBUG_BFD_SEND #undef BFD_SEND_FMT #define BFD_SEND_FMT(bfd, message, arglist) \ (((bfd) && (bfd)->xvec && (bfd)->xvec->message) ? \ (((bfd)->xvec->message[(int) ((bfd)->format)]) arglist) : \ (bfd_assert (__FILE__,__LINE__), NULL)) #endif This is the structure which defines the type of BFD this is. The `xvec' member of the struct `bfd' itself points here. Each module that implements access to a different target under BFD, defines one of these. FIXME, these names should be rationalised with the names of the entry points which call them. Too bad we can't have one macro to define them both! enum bfd_flavour { bfd_target_unknown_flavour, bfd_target_aout_flavour, bfd_target_coff_flavour, bfd_target_ecoff_flavour, bfd_target_xcoff_flavour, bfd_target_elf_flavour, bfd_target_ieee_flavour, bfd_target_nlm_flavour, bfd_target_oasys_flavour, bfd_target_tekhex_flavour, bfd_target_srec_flavour, bfd_target_ihex_flavour, bfd_target_som_flavour, bfd_target_os9k_flavour, bfd_target_versados_flavour, bfd_target_msdos_flavour, bfd_target_ovax_flavour, bfd_target_evax_flavour, bfd_target_mmo_flavour, bfd_target_mach_o_flavour, bfd_target_pef_flavour, bfd_target_pef_xlib_flavour, bfd_target_sym_flavour }; enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN }; /* Forward declaration. */ typedef struct bfd_link_info _bfd_link_info; typedef struct bfd_target { /* Identifies the kind of target, e.g., SunOS4, Ultrix, etc. */ char *name; /* The "flavour" of a back end is a general indication about the contents of a file. */ enum bfd_flavour flavour; /* The order of bytes within the data area of a file. */ enum bfd_endian byteorder; /* The order of bytes within the header parts of a file. */ enum bfd_endian header_byteorder; /* A mask of all the flags which an executable may have set - from the set `BFD_NO_FLAGS', `HAS_RELOC', ...`D_PAGED'. */ flagword object_flags; /* A mask of all the flags which a section may have set - from the set `SEC_NO_FLAGS', `SEC_ALLOC', ...`SET_NEVER_LOAD'. */ flagword section_flags; /* The character normally found at the front of a symbol. (if any), perhaps `_'. */ char symbol_leading_char; /* The pad character for file names within an archive header. */ char ar_pad_char; /* The maximum number of characters in an archive header. */ unsigned short ar_max_namelen; /* Entries for byte swapping for data. These are different from the other entry points, since they don't take a BFD as the first argument. Certain other handlers could do the same. */ bfd_uint64_t (*bfd_getx64) (const void *); bfd_int64_t (*bfd_getx_signed_64) (const void *); void (*bfd_putx64) (bfd_uint64_t, void *); bfd_vma (*bfd_getx32) (const void *); bfd_signed_vma (*bfd_getx_signed_32) (const void *); void (*bfd_putx32) (bfd_vma, void *); bfd_vma (*bfd_getx16) (const void *); bfd_signed_vma (*bfd_getx_signed_16) (const void *); void (*bfd_putx16) (bfd_vma, void *); /* Byte swapping for the headers. */ bfd_uint64_t (*bfd_h_getx64) (const void *); bfd_int64_t (*bfd_h_getx_signed_64) (const void *); void (*bfd_h_putx64) (bfd_uint64_t, void *); bfd_vma (*bfd_h_getx32) (const void *); bfd_signed_vma (*bfd_h_getx_signed_32) (const void *); void (*bfd_h_putx32) (bfd_vma, void *); bfd_vma (*bfd_h_getx16) (const void *); bfd_signed_vma (*bfd_h_getx_signed_16) (const void *); void (*bfd_h_putx16) (bfd_vma, void *); /* Format dependent routines: these are vectors of entry points within the target vector structure, one for each format to check. */ /* Check the format of a file being read. Return a `bfd_target *' or zero. */ const struct bfd_target *(*_bfd_check_format[bfd_type_end]) (bfd *); /* Set the format of a file being written. */ bfd_boolean (*_bfd_set_format[bfd_type_end]) (bfd *); /* Write cached information into a file being written, at `bfd_close'. */ bfd_boolean (*_bfd_write_contents[bfd_type_end]) (bfd *); The general target vector. These vectors are initialized using the BFD_JUMP_TABLE macros. /* Generic entry points. */ #define BFD_JUMP_TABLE_GENERIC(NAME) \ NAME##_close_and_cleanup, \ NAME##_bfd_free_cached_info, \ NAME##_new_section_hook, \ NAME##_get_section_contents, \ NAME##_get_section_contents_in_window /* Called when the BFD is being closed to do any necessary cleanup. */ bfd_boolean (*_close_and_cleanup) (bfd *); /* Ask the BFD to free all cached information. */ bfd_boolean (*_bfd_free_cached_info) (bfd *); /* Called when a new section is created. */ bfd_boolean (*_new_section_hook) (bfd *, sec_ptr); /* Read the contents of a section. */ bfd_boolean (*_bfd_get_section_contents) (bfd *, sec_ptr, void *, file_ptr, bfd_size_type); bfd_boolean (*_bfd_get_section_contents_in_window) (bfd *, sec_ptr, bfd_window *, file_ptr, bfd_size_type); /* Entry points to copy private data. */ #define BFD_JUMP_TABLE_COPY(NAME) \ NAME##_bfd_copy_private_bfd_data, \ NAME##_bfd_merge_private_bfd_data, \ _bfd_generic_init_private_section_data, \ NAME##_bfd_copy_private_section_data, \ NAME##_bfd_copy_private_symbol_data, \ NAME##_bfd_copy_private_header_data, \ NAME##_bfd_set_private_flags, \ NAME##_bfd_print_private_bfd_data /* Called to copy BFD general private data from one object file to another. */ bfd_boolean (*_bfd_copy_private_bfd_data) (bfd *, bfd *); /* Called to merge BFD general private data from one object file to a common output file when linking. */ bfd_boolean (*_bfd_merge_private_bfd_data) (bfd *, bfd *); /* Called to initialize BFD private section data from one object file to another. */ #define bfd_init_private_section_data(ibfd, isec, obfd, osec, link_info) \ BFD_SEND (obfd, _bfd_init_private_section_data, (ibfd, isec, obfd, osec, link_info)) bfd_boolean (*_bfd_init_private_section_data) (bfd *, sec_ptr, bfd *, sec_ptr, struct bfd_link_info *); /* Called to copy BFD private section data from one object file to another. */ bfd_boolean (*_bfd_copy_private_section_data) (bfd *, sec_ptr, bfd *, sec_ptr); /* Called to copy BFD private symbol data from one symbol to another. */ bfd_boolean (*_bfd_copy_private_symbol_data) (bfd *, asymbol *, bfd *, asymbol *); /* Called to copy BFD private header data from one object file to another. */ bfd_boolean (*_bfd_copy_private_header_data) (bfd *, bfd *); /* Called to set private backend flags. */ bfd_boolean (*_bfd_set_private_flags) (bfd *, flagword); /* Called to print private BFD data. */ bfd_boolean (*_bfd_print_private_bfd_data) (bfd *, void *); /* Core file entry points. */ #define BFD_JUMP_TABLE_CORE(NAME) \ NAME##_core_file_failing_command, \ NAME##_core_file_failing_signal, \ NAME##_core_file_matches_executable_p char * (*_core_file_failing_command) (bfd *); int (*_core_file_failing_signal) (bfd *); bfd_boolean (*_core_file_matches_executable_p) (bfd *, bfd *); /* Archive entry points. */ #define BFD_JUMP_TABLE_ARCHIVE(NAME) \ NAME##_slurp_armap, \ NAME##_slurp_extended_name_table, \ NAME##_construct_extended_name_table, \ NAME##_truncate_arname, \ NAME##_write_armap, \ NAME##_read_ar_hdr, \ NAME##_openr_next_archived_file, \ NAME##_get_elt_at_index, \ NAME##_generic_stat_arch_elt, \ NAME##_update_armap_timestamp bfd_boolean (*_bfd_slurp_armap) (bfd *); bfd_boolean (*_bfd_slurp_extended_name_table) (bfd *); bfd_boolean (*_bfd_construct_extended_name_table) (bfd *, char **, bfd_size_type *, const char **); void (*_bfd_truncate_arname) (bfd *, const char *, char *); bfd_boolean (*write_armap) (bfd *, unsigned int, struct orl *, unsigned int, int); void * (*_bfd_read_ar_hdr_fn) (bfd *); bfd * (*openr_next_archived_file) (bfd *, bfd *); #define bfd_get_elt_at_index(b,i) BFD_SEND (b, _bfd_get_elt_at_index, (b,i)) bfd * (*_bfd_get_elt_at_index) (bfd *, symindex); int (*_bfd_stat_arch_elt) (bfd *, struct stat *); bfd_boolean (*_bfd_update_armap_timestamp) (bfd *); /* Entry points used for symbols. */ #define BFD_JUMP_TABLE_SYMBOLS(NAME) \ NAME##_get_symtab_upper_bound, \ NAME##_canonicalize_symtab, \ NAME##_make_empty_symbol, \ NAME##_print_symbol, \ NAME##_get_symbol_info, \ NAME##_bfd_is_local_label_name, \ NAME##_bfd_is_target_special_symbol, \ NAME##_get_lineno, \ NAME##_find_nearest_line, \ _bfd_generic_find_line, \ NAME##_find_inliner_info, \ NAME##_bfd_make_debug_symbol, \ NAME##_read_minisymbols, \ NAME##_minisymbol_to_symbol long (*_bfd_get_symtab_upper_bound) (bfd *); long (*_bfd_canonicalize_symtab) (bfd *, struct bfd_symbol **); struct bfd_symbol * (*_bfd_make_empty_symbol) (bfd *); void (*_bfd_print_symbol) (bfd *, void *, struct bfd_symbol *, bfd_print_symbol_type); #define bfd_print_symbol(b,p,s,e) BFD_SEND (b, _bfd_print_symbol, (b,p,s,e)) void (*_bfd_get_symbol_info) (bfd *, struct bfd_symbol *, symbol_info *); #define bfd_get_symbol_info(b,p,e) BFD_SEND (b, _bfd_get_symbol_info, (b,p,e)) bfd_boolean (*_bfd_is_local_label_name) (bfd *, const char *); bfd_boolean (*_bfd_is_target_special_symbol) (bfd *, asymbol *); alent * (*_get_lineno) (bfd *, struct bfd_symbol *); bfd_boolean (*_bfd_find_nearest_line) (bfd *, struct bfd_section *, struct bfd_symbol **, bfd_vma, const char **, const char **, unsigned int *); bfd_boolean (*_bfd_find_line) (bfd *, struct bfd_symbol **, struct bfd_symbol *, const char **, unsigned int *); bfd_boolean (*_bfd_find_inliner_info) (bfd *, const char **, const char **, unsigned int *); /* Back-door to allow format-aware applications to create debug symbols while using BFD for everything else. Currently used by the assembler when creating COFF files. */ asymbol * (*_bfd_make_debug_symbol) (bfd *, void *, unsigned long size); #define bfd_read_minisymbols(b, d, m, s) \ BFD_SEND (b, _read_minisymbols, (b, d, m, s)) long (*_read_minisymbols) (bfd *, bfd_boolean, void **, unsigned int *); #define bfd_minisymbol_to_symbol(b, d, m, f) \ BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f)) asymbol * (*_minisymbol_to_symbol) (bfd *, bfd_boolean, const void *, asymbol *); /* Routines for relocs. */ #define BFD_JUMP_TABLE_RELOCS(NAME) \ NAME##_get_reloc_upper_bound, \ NAME##_canonicalize_reloc, \ NAME##_bfd_reloc_type_lookup long (*_get_reloc_upper_bound) (bfd *, sec_ptr); long (*_bfd_canonicalize_reloc) (bfd *, sec_ptr, arelent **, struct bfd_symbol **); /* See documentation on reloc types. */ reloc_howto_type * (*reloc_type_lookup) (bfd *, bfd_reloc_code_real_type); /* Routines used when writing an object file. */ #define BFD_JUMP_TABLE_WRITE(NAME) \ NAME##_set_arch_mach, \ NAME##_set_section_contents bfd_boolean (*_bfd_set_arch_mach) (bfd *, enum bfd_architecture, unsigned long); bfd_boolean (*_bfd_set_section_contents) (bfd *, sec_ptr, const void *, file_ptr, bfd_size_type); /* Routines used by the linker. */ #define BFD_JUMP_TABLE_LINK(NAME) \ NAME##_sizeof_headers, \ NAME##_bfd_get_relocated_section_contents, \ NAME##_bfd_relax_section, \ NAME##_bfd_link_hash_table_create, \ NAME##_bfd_link_hash_table_free, \ NAME##_bfd_link_add_symbols, \ NAME##_bfd_link_just_syms, \ NAME##_bfd_final_link, \ NAME##_bfd_link_split_section, \ NAME##_bfd_gc_sections, \ NAME##_bfd_merge_sections, \ NAME##_bfd_is_group_section, \ NAME##_bfd_discard_group, \ NAME##_section_already_linked \ int (*_bfd_sizeof_headers) (bfd *, struct bfd_link_info *); bfd_byte * (*_bfd_get_relocated_section_contents) (bfd *, struct bfd_link_info *, struct bfd_link_order *, bfd_byte *, bfd_boolean, struct bfd_symbol **); bfd_boolean (*_bfd_relax_section) (bfd *, struct bfd_section *, struct bfd_link_info *, bfd_boolean *); /* Create a hash table for the linker. Different backends store different information in this table. */ struct bfd_link_hash_table * (*_bfd_link_hash_table_create) (bfd *); /* Release the memory associated with the linker hash table. */ void (*_bfd_link_hash_table_free) (struct bfd_link_hash_table *); /* Add symbols from this object file into the hash table. */ bfd_boolean (*_bfd_link_add_symbols) (bfd *, struct bfd_link_info *); /* Indicate that we are only retrieving symbol values from this section. */ void (*_bfd_link_just_syms) (asection *, struct bfd_link_info *); /* Do a link based on the link_order structures attached to each section of the BFD. */ bfd_boolean (*_bfd_final_link) (bfd *, struct bfd_link_info *); /* Should this section be split up into smaller pieces during linking. */ bfd_boolean (*_bfd_link_split_section) (bfd *, struct bfd_section *); /* Remove sections that are not referenced from the output. */ bfd_boolean (*_bfd_gc_sections) (bfd *, struct bfd_link_info *); /* Attempt to merge SEC_MERGE sections. */ bfd_boolean (*_bfd_merge_sections) (bfd *, struct bfd_link_info *); /* Is this section a member of a group? */ bfd_boolean (*_bfd_is_group_section) (bfd *, const struct bfd_section *); /* Discard members of a group. */ bfd_boolean (*_bfd_discard_group) (bfd *, struct bfd_section *); /* Check if SEC has been already linked during a reloceatable or final link. */ void (*_section_already_linked) (bfd *, struct bfd_section *, struct bfd_link_info *); /* Routines to handle dynamic symbols and relocs. */ #define BFD_JUMP_TABLE_DYNAMIC(NAME) \ NAME##_get_dynamic_symtab_upper_bound, \ NAME##_canonicalize_dynamic_symtab, \ NAME##_get_synthetic_symtab, \ NAME##_get_dynamic_reloc_upper_bound, \ NAME##_canonicalize_dynamic_reloc /* Get the amount of memory required to hold the dynamic symbols. */ long (*_bfd_get_dynamic_symtab_upper_bound) (bfd *); /* Read in the dynamic symbols. */ long (*_bfd_canonicalize_dynamic_symtab) (bfd *, struct bfd_symbol **); /* Create synthetized symbols. */ long (*_bfd_get_synthetic_symtab) (bfd *, long, struct bfd_symbol **, long, struct bfd_symbol **, struct bfd_symbol **); /* Get the amount of memory required to hold the dynamic relocs. */ long (*_bfd_get_dynamic_reloc_upper_bound) (bfd *); /* Read in the dynamic relocs. */ long (*_bfd_canonicalize_dynamic_reloc) (bfd *, arelent **, struct bfd_symbol **); A pointer to an alternative bfd_target in case the current one is not satisfactory. This can happen when the target cpu supports both big and little endian code, and target chosen by the linker has the wrong endianness. The function open_output() in ld/ldlang.c uses this field to find an alternative output format that is suitable. /* Opposite endian version of this target. */ const struct bfd_target * alternative_target; /* Data for use by back-end routines, which isn't generic enough to belong in this structure. */ const void *backend_data; } bfd_target; 2.12.1.1 `bfd_set_default_target' ................................. *Synopsis* bfd_boolean bfd_set_default_target (const char *name); *Description* Set the default target vector to use when recognizing a BFD. This takes the name of the target, which may be a BFD target name or a configuration triplet. 2.12.1.2 `bfd_find_target' .......................... *Synopsis* const bfd_target *bfd_find_target (const char *target_name, bfd *abfd); *Description* Return a pointer to the transfer vector for the object target named TARGET_NAME. If TARGET_NAME is `NULL', choose the one in the environment variable `GNUTARGET'; if that is null or not defined, then choose the first entry in the target list. Passing in the string "default" or setting the environment variable to "default" will cause the first entry in the target list to be returned, and "target_defaulted" will be set in the BFD if ABFD isn't `NULL'. This causes `bfd_check_format' to loop over all the targets to find the one that matches the file being read. 2.12.1.3 `bfd_target_list' .......................... *Synopsis* const char ** bfd_target_list (void); *Description* Return a freshly malloced NULL-terminated vector of the names of all the valid BFD targets. Do not modify the names. 2.12.1.4 `bfd_seach_for_target' ............................... *Synopsis* const bfd_target *bfd_search_for_target (int (*search_func) (const bfd_target *, void *), void *); *Description* Return a pointer to the first transfer vector in the list of transfer vectors maintained by BFD that produces a non-zero result when passed to the function SEARCH_FUNC. The parameter DATA is passed, unexamined, to the search function. File: bfd.info, Node: Architectures, Next: Opening and Closing, Prev: Targets, Up: BFD front end 2.13 Architectures ================== BFD keeps one atom in a BFD describing the architecture of the data attached to the BFD: a pointer to a `bfd_arch_info_type'. Pointers to structures can be requested independently of a BFD so that an architecture's information can be interrogated without access to an open BFD. The architecture information is provided by each architecture package. The set of default architectures is selected by the macro `SELECT_ARCHITECTURES'. This is normally set up in the `config/TARGET.mt' file of your choice. If the name is not defined, then all the architectures supported are included. When BFD starts up, all the architectures are called with an initialize method. It is up to the architecture back end to insert as many items into the list of architectures as it wants to; generally this would be one for each machine and one for the default case (an item with a machine field of 0). BFD's idea of an architecture is implemented in `archures.c'. 2.13.1 bfd_architecture ----------------------- *Description* This enum gives the object file's CPU architecture, in a global sense--i.e., what processor family does it belong to? Another field indicates which processor within the family is in use. The machine gives a number which distinguishes different versions of the architecture, containing, for example, 2 and 3 for Intel i960 KA and i960 KB, and 68020 and 68030 for Motorola 68020 and 68030. enum bfd_architecture { bfd_arch_unknown, /* File arch not known. */ bfd_arch_obscure, /* Arch known, not one of these. */ bfd_arch_m68k, /* Motorola 68xxx */ #define bfd_mach_m68000 1 #define bfd_mach_m68008 2 #define bfd_mach_m68010 3 #define bfd_mach_m68020 4 #define bfd_mach_m68030 5 #define bfd_mach_m68040 6 #define bfd_mach_m68060 7 #define bfd_mach_cpu32 8 #define bfd_mach_mcf_isa_a_nodiv 9 #define bfd_mach_mcf_isa_a 10 #define bfd_mach_mcf_isa_a_mac 11 #define bfd_mach_mcf_isa_a_emac 12 #define bfd_mach_mcf_isa_aplus 13 #define bfd_mach_mcf_isa_aplus_mac 14 #define bfd_mach_mcf_isa_aplus_emac 15 #define bfd_mach_mcf_isa_b_nousp 16 #define bfd_mach_mcf_isa_b_nousp_mac 17 #define bfd_mach_mcf_isa_b_nousp_emac 18 #define bfd_mach_mcf_isa_b 19 #define bfd_mach_mcf_isa_b_mac 20 #define bfd_mach_mcf_isa_b_emac 21 #define bfd_mach_mcf_isa_b_float 22 #define bfd_mach_mcf_isa_b_float_mac 23 #define bfd_mach_mcf_isa_b_float_emac 24 bfd_arch_vax, /* DEC Vax */ bfd_arch_i960, /* Intel 960 */ /* The order of the following is important. lower number indicates a machine type that only accepts a subset of the instructions available to machines with higher numbers. The exception is the "ca", which is incompatible with all other machines except "core". */ #define bfd_mach_i960_core 1 #define bfd_mach_i960_ka_sa 2 #define bfd_mach_i960_kb_sb 3 #define bfd_mach_i960_mc 4 #define bfd_mach_i960_xa 5 #define bfd_mach_i960_ca 6 #define bfd_mach_i960_jx 7 #define bfd_mach_i960_hx 8 bfd_arch_or32, /* OpenRISC 32 */ bfd_arch_sparc, /* SPARC */ #define bfd_mach_sparc 1 /* The difference between v8plus and v9 is that v9 is a true 64 bit env. */ #define bfd_mach_sparc_sparclet 2 #define bfd_mach_sparc_sparclite 3 #define bfd_mach_sparc_v8plus 4 #define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add'ns. */ #define bfd_mach_sparc_sparclite_le 6 #define bfd_mach_sparc_v9 7 #define bfd_mach_sparc_v9a 8 /* with ultrasparc add'ns. */ #define bfd_mach_sparc_v8plusb 9 /* with cheetah add'ns. */ #define bfd_mach_sparc_v9b 10 /* with cheetah add'ns. */ /* Nonzero if MACH has the v9 instruction set. */ #define bfd_mach_sparc_v9_p(mach) \ ((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9b \ && (mach) != bfd_mach_sparc_sparclite_le) /* Nonzero if MACH is a 64 bit sparc architecture. */ #define bfd_mach_sparc_64bit_p(mach) \ ((mach) >= bfd_mach_sparc_v9 && (mach) != bfd_mach_sparc_v8plusb) bfd_arch_spu, /* PowerPC SPU */ #define bfd_mach_spu 256 bfd_arch_mips, /* MIPS Rxxxx */ #define bfd_mach_mips3000 3000 #define bfd_mach_mips3900 3900 #define bfd_mach_mips4000 4000 #define bfd_mach_mips4010 4010 #define bfd_mach_mips4100 4100 #define bfd_mach_mips4111 4111 #define bfd_mach_mips4120 4120 #define bfd_mach_mips4300 4300 #define bfd_mach_mips4400 4400 #define bfd_mach_mips4600 4600 #define bfd_mach_mips4650 4650 #define bfd_mach_mips5000 5000 #define bfd_mach_mips5400 5400 #define bfd_mach_mips5500 5500 #define bfd_mach_mips6000 6000 #define bfd_mach_mips7000 7000 #define bfd_mach_mips8000 8000 #define bfd_mach_mips9000 9000 #define bfd_mach_mips10000 10000 #define bfd_mach_mips12000 12000 #define bfd_mach_mips16 16 #define bfd_mach_mips5 5 #define bfd_mach_mips_sb1 12310201 /* octal 'SB', 01 */ #define bfd_mach_mipsisa32 32 #define bfd_mach_mipsisa32r2 33 #define bfd_mach_mipsisa64 64 #define bfd_mach_mipsisa64r2 65 bfd_arch_i386, /* Intel 386 */ #define bfd_mach_i386_i386 1 #define bfd_mach_i386_i8086 2 #define bfd_mach_i386_i386_intel_syntax 3 #define bfd_mach_x86_64 64 #define bfd_mach_x86_64_intel_syntax 65 bfd_arch_we32k, /* AT&T WE32xxx */ bfd_arch_tahoe, /* CCI/Harris Tahoe */ bfd_arch_i860, /* Intel 860 */ bfd_arch_i370, /* IBM 360/370 Mainframes */ bfd_arch_romp, /* IBM ROMP PC/RT */ bfd_arch_convex, /* Convex */ bfd_arch_m88k, /* Motorola 88xxx */ bfd_arch_m98k, /* Motorola 98xxx */ bfd_arch_pyramid, /* Pyramid Technology */ bfd_arch_h8300, /* Renesas H8/300 (formerly Hitachi H8/300) */ #define bfd_mach_h8300 1 #define bfd_mach_h8300h 2 #define bfd_mach_h8300s 3 #define bfd_mach_h8300hn 4 #define bfd_mach_h8300sn 5 #define bfd_mach_h8300sx 6 #define bfd_mach_h8300sxn 7 bfd_arch_pdp11, /* DEC PDP-11 */ bfd_arch_powerpc, /* PowerPC */ #define bfd_mach_ppc 32 #define bfd_mach_ppc64 64 #define bfd_mach_ppc_403 403 #define bfd_mach_ppc_403gc 4030 #define bfd_mach_ppc_505 505 #define bfd_mach_ppc_601 601 #define bfd_mach_ppc_602 602 #define bfd_mach_ppc_603 603 #define bfd_mach_ppc_ec603e 6031 #define bfd_mach_ppc_604 604 #define bfd_mach_ppc_620 620 #define bfd_mach_ppc_630 630 #define bfd_mach_ppc_750 750 #define bfd_mach_ppc_860 860 #define bfd_mach_ppc_a35 35 #define bfd_mach_ppc_rs64ii 642 #define bfd_mach_ppc_rs64iii 643 #define bfd_mach_ppc_7400 7400 #define bfd_mach_ppc_e500 500 bfd_arch_rs6000, /* IBM RS/6000 */ #define bfd_mach_rs6k 6000 #define bfd_mach_rs6k_rs1 6001 #define bfd_mach_rs6k_rsc 6003 #define bfd_mach_rs6k_rs2 6002 bfd_arch_hppa, /* HP PA RISC */ #define bfd_mach_hppa10 10 #define bfd_mach_hppa11 11 #define bfd_mach_hppa20 20 #define bfd_mach_hppa20w 25 bfd_arch_d10v, /* Mitsubishi D10V */ #define bfd_mach_d10v 1 #define bfd_mach_d10v_ts2 2 #define bfd_mach_d10v_ts3 3 bfd_arch_d30v, /* Mitsubishi D30V */ bfd_arch_dlx, /* DLX */ bfd_arch_m68hc11, /* Motorola 68HC11 */ bfd_arch_m68hc12, /* Motorola 68HC12 */ #define bfd_mach_m6812_default 0 #define bfd_mach_m6812 1 #define bfd_mach_m6812s 2 bfd_arch_z8k, /* Zilog Z8000 */ #define bfd_mach_z8001 1 #define bfd_mach_z8002 2 bfd_arch_h8500, /* Renesas H8/500 (formerly Hitachi H8/500) */ bfd_arch_sh, /* Renesas / SuperH SH (formerly Hitachi SH) */ #define bfd_mach_sh 1 #define bfd_mach_sh2 0x20 #define bfd_mach_sh_dsp 0x2d #define bfd_mach_sh2a 0x2a #define bfd_mach_sh2a_nofpu 0x2b #define bfd_mach_sh2a_nofpu_or_sh4_nommu_nofpu 0x2a1 #define bfd_mach_sh2a_nofpu_or_sh3_nommu 0x2a2 #define bfd_mach_sh2a_or_sh4 0x2a3 #define bfd_mach_sh2a_or_sh3e 0x2a4 #define bfd_mach_sh2e 0x2e #define bfd_mach_sh3 0x30 #define bfd_mach_sh3_nommu 0x31 #define bfd_mach_sh3_dsp 0x3d #define bfd_mach_sh3e 0x3e #define bfd_mach_sh4 0x40 #define bfd_mach_sh4_nofpu 0x41 #define bfd_mach_sh4_nommu_nofpu 0x42 #define bfd_mach_sh4a 0x4a #define bfd_mach_sh4a_nofpu 0x4b #define bfd_mach_sh4al_dsp 0x4d #define bfd_mach_sh5 0x50 bfd_arch_alpha, /* Dec Alpha */ #define bfd_mach_alpha_ev4 0x10 #define bfd_mach_alpha_ev5 0x20 #define bfd_mach_alpha_ev6 0x30 bfd_arch_arm, /* Advanced Risc Machines ARM. */ #define bfd_mach_arm_unknown 0 #define bfd_mach_arm_2 1 #define bfd_mach_arm_2a 2 #define bfd_mach_arm_3 3 #define bfd_mach_arm_3M 4 #define bfd_mach_arm_4 5 #define bfd_mach_arm_4T 6 #define bfd_mach_arm_5 7 #define bfd_mach_arm_5T 8 #define bfd_mach_arm_5TE 9 #define bfd_mach_arm_XScale 10 #define bfd_mach_arm_ep9312 11 #define bfd_mach_arm_iWMMXt 12 #define bfd_mach_arm_iWMMXt2 13 bfd_arch_ns32k, /* National Semiconductors ns32000 */ bfd_arch_w65, /* WDC 65816 */ bfd_arch_tic30, /* Texas Instruments TMS320C30 */ bfd_arch_tic4x, /* Texas Instruments TMS320C3X/4X */ #define bfd_mach_tic3x 30 #define bfd_mach_tic4x 40 bfd_arch_tic54x, /* Texas Instruments TMS320C54X */ bfd_arch_tic80, /* TI TMS320c80 (MVP) */ bfd_arch_v850, /* NEC V850 */ #define bfd_mach_v850 1 #define bfd_mach_v850e 'E' #define bfd_mach_v850e1 '1' bfd_arch_arc, /* ARC Cores */ #define bfd_mach_arc_5 5 #define bfd_mach_arc_6 6 #define bfd_mach_arc_7 7 #define bfd_mach_arc_8 8 bfd_arch_m32c, /* Renesas M16C/M32C. */ #define bfd_mach_m16c 0x75 #define bfd_mach_m32c 0x78 bfd_arch_m32r, /* Renesas M32R (formerly Mitsubishi M32R/D) */ #define bfd_mach_m32r 1 /* For backwards compatibility. */ #define bfd_mach_m32rx 'x' #define bfd_mach_m32r2 '2' bfd_arch_mn10200, /* Matsushita MN10200 */ bfd_arch_mn10300, /* Matsushita MN10300 */ #define bfd_mach_mn10300 300 #define bfd_mach_am33 330 #define bfd_mach_am33_2 332 bfd_arch_fr30, #define bfd_mach_fr30 0x46523330 bfd_arch_frv, #define bfd_mach_frv 1 #define bfd_mach_frvsimple 2 #define bfd_mach_fr300 300 #define bfd_mach_fr400 400 #define bfd_mach_fr450 450 #define bfd_mach_frvtomcat 499 /* fr500 prototype */ #define bfd_mach_fr500 500 #define bfd_mach_fr550 550 bfd_arch_mcore, bfd_arch_ia64, /* HP/Intel ia64 */ #define bfd_mach_ia64_elf64 64 #define bfd_mach_ia64_elf32 32 bfd_arch_ip2k, /* Ubicom IP2K microcontrollers. */ #define bfd_mach_ip2022 1 #define bfd_mach_ip2022ext 2 bfd_arch_iq2000, /* Vitesse IQ2000. */ #define bfd_mach_iq2000 1 #define bfd_mach_iq10 2 bfd_arch_mt, #define bfd_mach_ms1 1 #define bfd_mach_mrisc2 2 #define bfd_mach_ms2 3 bfd_arch_pj, bfd_arch_avr, /* Atmel AVR microcontrollers. */ #define bfd_mach_avr1 1 #define bfd_mach_avr2 2 #define bfd_mach_avr3 3 #define bfd_mach_avr4 4 #define bfd_mach_avr5 5 #define bfd_mach_avr6 6 bfd_arch_bfin, /* ADI Blackfin */ #define bfd_mach_bfin 1 bfd_arch_cr16c, /* National Semiconductor CompactRISC. */ #define bfd_mach_cr16c 1 bfd_arch_crx, /* National Semiconductor CRX. */ #define bfd_mach_crx 1 bfd_arch_cris, /* Axis CRIS */ #define bfd_mach_cris_v0_v10 255 #define bfd_mach_cris_v32 32 #define bfd_mach_cris_v10_v32 1032 bfd_arch_s390, /* IBM s390 */ #define bfd_mach_s390_31 31 #define bfd_mach_s390_64 64 bfd_arch_score, /* Sunplus score */ bfd_arch_openrisc, /* OpenRISC */ bfd_arch_mmix, /* Donald Knuth's educational processor. */ bfd_arch_xstormy16, #define bfd_mach_xstormy16 1 bfd_arch_msp430, /* Texas Instruments MSP430 architecture. */ #define bfd_mach_msp11 11 #define bfd_mach_msp110 110 #define bfd_mach_msp12 12 #define bfd_mach_msp13 13 #define bfd_mach_msp14 14 #define bfd_mach_msp15 15 #define bfd_mach_msp16 16 #define bfd_mach_msp21 21 #define bfd_mach_msp31 31 #define bfd_mach_msp32 32 #define bfd_mach_msp33 33 #define bfd_mach_msp41 41 #define bfd_mach_msp42 42 #define bfd_mach_msp43 43 #define bfd_mach_msp44 44 bfd_arch_xc16x, /* Infineon's XC16X Series. */ #define bfd_mach_xc16x 1 #define bfd_mach_xc16xl 2 #define bfd_mach_xc16xs 3 bfd_arch_xtensa, /* Tensilica's Xtensa cores. */ #define bfd_mach_xtensa 1 bfd_arch_maxq, /* Dallas MAXQ 10/20 */ #define bfd_mach_maxq10 10 #define bfd_mach_maxq20 20 bfd_arch_z80, #define bfd_mach_z80strict 1 /* No undocumented opcodes. */ #define bfd_mach_z80 3 /* With ixl, ixh, iyl, and iyh. */ #define bfd_mach_z80full 7 /* All undocumented instructions. */ #define bfd_mach_r800 11 /* R800: successor with multiplication. */ bfd_arch_last }; 2.13.2 bfd_arch_info -------------------- *Description* This structure contains information on architectures for use within BFD. typedef struct bfd_arch_info { int bits_per_word; int bits_per_address; int bits_per_byte; enum bfd_architecture arch; unsigned long mach; const char *arch_name; const char *printable_name; unsigned int section_align_power; /* TRUE if this is the default machine for the architecture. The default arch should be the first entry for an arch so that all the entries for that arch can be accessed via `next'. */ bfd_boolean the_default; const struct bfd_arch_info * (*compatible) (const struct bfd_arch_info *a, const struct bfd_arch_info *b); bfd_boolean (*scan) (const struct bfd_arch_info *, const char *); const struct bfd_arch_info *next; } bfd_arch_info_type; 2.13.2.1 `bfd_printable_name' ............................. *Synopsis* const char *bfd_printable_name (bfd *abfd); *Description* Return a printable string representing the architecture and machine from the pointer to the architecture info structure. 2.13.2.2 `bfd_scan_arch' ........................ *Synopsis* const bfd_arch_info_type *bfd_scan_arch (const char *string); *Description* Figure out if BFD supports any cpu which could be described with the name STRING. Return a pointer to an `arch_info' structure if a machine is found, otherwise NULL. 2.13.2.3 `bfd_arch_list' ........................ *Synopsis* const char **bfd_arch_list (void); *Description* Return a freshly malloced NULL-terminated vector of the names of all the valid BFD architectures. Do not modify the names. 2.13.2.4 `bfd_arch_get_compatible' .................................. *Synopsis* const bfd_arch_info_type *bfd_arch_get_compatible (const bfd *abfd, const bfd *bbfd, bfd_boolean accept_unknowns); *Description* Determine whether two BFDs' architectures and machine types are compatible. Calculates the lowest common denominator between the two architectures and machine types implied by the BFDs and returns a pointer to an `arch_info' structure describing the compatible machine. 2.13.2.5 `bfd_default_arch_struct' .................................. *Description* The `bfd_default_arch_struct' is an item of `bfd_arch_info_type' which has been initialized to a fairly generic state. A BFD starts life by pointing to this structure, until the correct back end has determined the real architecture of the file. extern const bfd_arch_info_type bfd_default_arch_struct; 2.13.2.6 `bfd_set_arch_info' ............................ *Synopsis* void bfd_set_arch_info (bfd *abfd, const bfd_arch_info_type *arg); *Description* Set the architecture info of ABFD to ARG. 2.13.2.7 `bfd_default_set_arch_mach' .................................... *Synopsis* bfd_boolean bfd_default_set_arch_mach (bfd *abfd, enum bfd_architecture arch, unsigned long mach); *Description* Set the architecture and machine type in BFD ABFD to ARCH and MACH. Find the correct pointer to a structure and insert it into the `arch_info' pointer. 2.13.2.8 `bfd_get_arch' ....................... *Synopsis* enum bfd_architecture bfd_get_arch (bfd *abfd); *Description* Return the enumerated type which describes the BFD ABFD's architecture. 2.13.2.9 `bfd_get_mach' ....................... *Synopsis* unsigned long bfd_get_mach (bfd *abfd); *Description* Return the long type which describes the BFD ABFD's machine. 2.13.2.10 `bfd_arch_bits_per_byte' .................................. *Synopsis* unsigned int bfd_arch_bits_per_byte (bfd *abfd); *Description* Return the number of bits in one of the BFD ABFD's architecture's bytes. 2.13.2.11 `bfd_arch_bits_per_address' ..................................... *Synopsis* unsigned int bfd_arch_bits_per_address (bfd *abfd); *Description* Return the number of bits in one of the BFD ABFD's architecture's addresses. 2.13.2.12 `bfd_default_compatible' .................................. *Synopsis* const bfd_arch_info_type *bfd_default_compatible (const bfd_arch_info_type *a, const bfd_arch_info_type *b); *Description* The default function for testing for compatibility. 2.13.2.13 `bfd_default_scan' ............................ *Synopsis* bfd_boolean bfd_default_scan (const struct bfd_arch_info *info, const char *string); *Description* The default function for working out whether this is an architecture hit and a machine hit. 2.13.2.14 `bfd_get_arch_info' ............................. *Synopsis* const bfd_arch_info_type *bfd_get_arch_info (bfd *abfd); *Description* Return the architecture info struct in ABFD. 2.13.2.15 `bfd_lookup_arch' ........................... *Synopsis* const bfd_arch_info_type *bfd_lookup_arch (enum bfd_architecture arch, unsigned long machine); *Description* Look for the architecture info structure which matches the arguments ARCH and MACHINE. A machine of 0 matches the machine/architecture structure which marks itself as the default. 2.13.2.16 `bfd_printable_arch_mach' ................................... *Synopsis* const char *bfd_printable_arch_mach (enum bfd_architecture arch, unsigned long machine); *Description* Return a printable string representing the architecture and machine type. This routine is depreciated. 2.13.2.17 `bfd_octets_per_byte' ............................... *Synopsis* unsigned int bfd_octets_per_byte (bfd *abfd); *Description* Return the number of octets (8-bit quantities) per target byte (minimum addressable unit). In most cases, this will be one, but some DSP targets have 16, 32, or even 48 bits per byte. 2.13.2.18 `bfd_arch_mach_octets_per_byte' ......................................... *Synopsis* unsigned int bfd_arch_mach_octets_per_byte (enum bfd_architecture arch, unsigned long machine); *Description* See bfd_octets_per_byte. This routine is provided for those cases where a bfd * is not available File: bfd.info, Node: Opening and Closing, Next: Internal, Prev: Architectures, Up: BFD front end 2.14 Opening and closing BFDs ============================= 2.14.1 Functions for opening and closing ---------------------------------------- 2.14.1.1 `bfd_fopen' .................... *Synopsis* bfd *bfd_fopen (const char *filename, const char *target, const char *mode, int fd); *Description* Open the file FILENAME with the target TARGET. Return a pointer to the created BFD. If FD is not -1, then `fdopen' is used to open the file; otherwise, `fopen' is used. MODE is passed directly to `fopen' or `fdopen'. Calls `bfd_find_target', so TARGET is interpreted as by that function. The new BFD is marked as cacheable iff FD is -1. If `NULL' is returned then an error has occured. Possible errors are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call' error. 2.14.1.2 `bfd_openr' .................... *Synopsis* bfd *bfd_openr (const char *filename, const char *target); *Description* Open the file FILENAME (using `fopen') with the target TARGET. Return a pointer to the created BFD. Calls `bfd_find_target', so TARGET is interpreted as by that function. If `NULL' is returned then an error has occured. Possible errors are `bfd_error_no_memory', `bfd_error_invalid_target' or `system_call' error. 2.14.1.3 `bfd_fdopenr' ...................... *Synopsis* bfd *bfd_fdopenr (const char *filename, const char *target, int fd); *Description* `bfd_fdopenr' is to `bfd_fopenr' much like `fdopen' is to `fopen'. It opens a BFD on a file already described by the FD supplied. When the file is later `bfd_close'd, the file descriptor will be closed. If the caller desires that this file descriptor be cached by BFD (opened as needed, closed as needed to free descriptors for other opens), with the supplied FD used as an initial file descriptor (but subject to closure at any time), call bfd_set_cacheable(bfd, 1) on the returned BFD. The default is to assume no caching; the file descriptor will remain open until `bfd_close', and will not be affected by BFD operations on other files. Possible errors are `bfd_error_no_memory', `bfd_error_invalid_target' and `bfd_error_system_call'. 2.14.1.4 `bfd_openstreamr' .......................... *Synopsis* bfd *bfd_openstreamr (const char *, const char *, void *); *Description* Open a BFD for read access on an existing stdio stream. When the BFD is passed to `bfd_close', the stream will be closed. 2.14.1.5 `bfd_openr_iovec' .......................... *Synopsis* bfd *bfd_openr_iovec (const char *filename, const char *target, void *(*open) (struct bfd *nbfd, void *open_closure), void *open_closure, file_ptr (*pread) (struct bfd *nbfd, void *stream, void *buf, file_ptr nbytes, file_ptr offset), int (*close) (struct bfd *nbfd, void *stream)); *Description* Create and return a BFD backed by a read-only STREAM. The STREAM is created using OPEN, accessed using PREAD and destroyed using CLOSE. Calls `bfd_find_target', so TARGET is interpreted as by that function. Calls OPEN (which can call `bfd_zalloc' and `bfd_get_filename') to obtain the read-only stream backing the BFD. OPEN either succeeds returning the non-`NULL' STREAM, or fails returning `NULL' (setting `bfd_error'). Calls PREAD to request NBYTES of data from STREAM starting at OFFSET (e.g., via a call to `bfd_read'). PREAD either succeeds returning the number of bytes read (which can be less than NBYTES when end-of-file), or fails returning -1 (setting `bfd_error'). Calls CLOSE when the BFD is later closed using `bfd_close'. CLOSE either succeeds returning 0, or fails returning -1 (setting `bfd_error'). If `bfd_openr_iovec' returns `NULL' then an error has occurred. Possible errors are `bfd_error_no_memory', `bfd_error_invalid_target' and `bfd_error_system_call'. 2.14.1.6 `bfd_openw' .................... *Synopsis* bfd *bfd_openw (const char *filename, const char *target); *Description* Create a BFD, associated with file FILENAME, using the file format TARGET, and return a pointer to it. Possible errors are `bfd_error_system_call', `bfd_error_no_memory', `bfd_error_invalid_target'. 2.14.1.7 `bfd_close' .................... *Synopsis* bfd_boolean bfd_close (bfd *abfd); *Description* Close a BFD. If the BFD was open for writing, then pending operations are completed and the file written out and closed. If the created file is executable, then `chmod' is called to mark it as such. All memory attached to the BFD is released. The file descriptor associated with the BFD is closed (even if it was passed in to BFD by `bfd_fdopenr'). *Returns* `TRUE' is returned if all is ok, otherwise `FALSE'. 2.14.1.8 `bfd_close_all_done' ............................. *Synopsis* bfd_boolean bfd_close_all_done (bfd *); *Description* Close a BFD. Differs from `bfd_close' since it does not complete any pending operations. This routine would be used if the application had just used BFD for swapping and didn't want to use any of the writing code. If the created file is executable, then `chmod' is called to mark it as such. All memory attached to the BFD is released. *Returns* `TRUE' is returned if all is ok, otherwise `FALSE'. 2.14.1.9 `bfd_create' ..................... *Synopsis* bfd *bfd_create (const char *filename, bfd *templ); *Description* Create a new BFD in the manner of `bfd_openw', but without opening a file. The new BFD takes the target from the target used by TEMPLATE. The format is always set to `bfd_object'. 2.14.1.10 `bfd_make_writable' ............................. *Synopsis* bfd_boolean bfd_make_writable (bfd *abfd); *Description* Takes a BFD as created by `bfd_create' and converts it into one like as returned by `bfd_openw'. It does this by converting the BFD to BFD_IN_MEMORY. It's assumed that you will call `bfd_make_readable' on this bfd later. *Returns* `TRUE' is returned if all is ok, otherwise `FALSE'. 2.14.1.11 `bfd_make_readable' ............................. *Synopsis* bfd_boolean bfd_make_readable (bfd *abfd); *Description* Takes a BFD as created by `bfd_create' and `bfd_make_writable' and converts it into one like as returned by `bfd_openr'. It does this by writing the contents out to the memory buffer, then reversing the direction. *Returns* `TRUE' is returned if all is ok, otherwise `FALSE'. 2.14.1.12 `bfd_alloc' ..................... *Synopsis* void *bfd_alloc (bfd *abfd, bfd_size_type wanted); *Description* Allocate a block of WANTED bytes of memory attached to `abfd' and return a pointer to it. 2.14.1.13 `bfd_alloc2' ...................... *Synopsis* void *bfd_alloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size); *Description* Allocate a block of NMEMB elements of SIZE bytes each of memory attached to `abfd' and return a pointer to it. 2.14.1.14 `bfd_zalloc' ...................... *Synopsis* void *bfd_zalloc (bfd *abfd, bfd_size_type wanted); *Description* Allocate a block of WANTED bytes of zeroed memory attached to `abfd' and return a pointer to it. 2.14.1.15 `bfd_zalloc2' ....................... *Synopsis* void *bfd_zalloc2 (bfd *abfd, bfd_size_type nmemb, bfd_size_type size); *Description* Allocate a block of NMEMB elements of SIZE bytes each of zeroed memory attached to `abfd' and return a pointer to it. 2.14.1.16 `bfd_calc_gnu_debuglink_crc32' ........................................ *Synopsis* unsigned long bfd_calc_gnu_debuglink_crc32 (unsigned long crc, const unsigned char *buf, bfd_size_type len); *Description* Computes a CRC value as used in the .gnu_debuglink section. Advances the previously computed CRC value by computing and adding in the crc32 for LEN bytes of BUF. *Returns* Return the updated CRC32 value. 2.14.1.17 `get_debug_link_info' ............................... *Synopsis* char *get_debug_link_info (bfd *abfd, unsigned long *crc32_out); *Description* fetch the filename and CRC32 value for any separate debuginfo associated with ABFD. Return NULL if no such info found, otherwise return filename and update CRC32_OUT. 2.14.1.18 `separate_debug_file_exists' ...................................... *Synopsis* bfd_boolean separate_debug_file_exists (char *name, unsigned long crc32); *Description* Checks to see if NAME is a file and if its contents match CRC32. 2.14.1.19 `find_separate_debug_file' .................................... *Synopsis* char *find_separate_debug_file (bfd *abfd); *Description* Searches ABFD for a reference to separate debugging information, scans various locations in the filesystem, including the file tree rooted at DEBUG_FILE_DIRECTORY, and returns a filename of such debugging information if the file is found and has matching CRC32. Returns NULL if no reference to debugging file exists, or file cannot be found. 2.14.1.20 `bfd_follow_gnu_debuglink' .................................... *Synopsis* char *bfd_follow_gnu_debuglink (bfd *abfd, const char *dir); *Description* Takes a BFD and searches it for a .gnu_debuglink section. If this section is found, it examines the section for the name and checksum of a '.debug' file containing auxiliary debugging information. It then searches the filesystem for this .debug file in some standard locations, including the directory tree rooted at DIR, and if found returns the full filename. If DIR is NULL, it will search a default path configured into libbfd at build time. [XXX this feature is not currently implemented]. *Returns* `NULL' on any errors or failure to locate the .debug file, otherwise a pointer to a heap-allocated string containing the filename. The caller is responsible for freeing this string. 2.14.1.21 `bfd_create_gnu_debuglink_section' ............................................ *Synopsis* struct bfd_section *bfd_create_gnu_debuglink_section (bfd *abfd, const char *filename); *Description* Takes a BFD and adds a .gnu_debuglink section to it. The section is sized to be big enough to contain a link to the specified FILENAME. *Returns* A pointer to the new section is returned if all is ok. Otherwise `NULL' is returned and bfd_error is set. 2.14.1.22 `bfd_fill_in_gnu_debuglink_section' ............................................. *Synopsis* bfd_boolean bfd_fill_in_gnu_debuglink_section (bfd *abfd, struct bfd_section *sect, const char *filename); *Description* Takes a BFD and containing a .gnu_debuglink section SECT and fills in the contents of the section to contain a link to the specified FILENAME. The filename should be relative to the current directory. *Returns* `TRUE' is returned if all is ok. Otherwise `FALSE' is returned and bfd_error is set. File: bfd.info, Node: Internal, Next: File Caching, Prev: Opening and Closing, Up: BFD front end 2.15 Implementation details =========================== 2.15.1 Internal functions ------------------------- *Description* These routines are used within BFD. They are not intended for export, but are documented here for completeness. 2.15.1.1 `bfd_write_bigendian_4byte_int' ........................................ *Synopsis* bfd_boolean bfd_write_bigendian_4byte_int (bfd *, unsigned int); *Description* Write a 4 byte integer I to the output BFD ABFD, in big endian order regardless of what else is going on. This is useful in archives. 2.15.1.2 `bfd_put_size' ....................... 2.15.1.3 `bfd_get_size' ....................... *Description* These macros as used for reading and writing raw data in sections; each access (except for bytes) is vectored through the target format of the BFD and mangled accordingly. The mangling performs any necessary endian translations and removes alignment restrictions. Note that types accepted and returned by these macros are identical so they can be swapped around in macros--for example, `libaout.h' defines `GET_WORD' to either `bfd_get_32' or `bfd_get_64'. In the put routines, VAL must be a `bfd_vma'. If we are on a system without prototypes, the caller is responsible for making sure that is true, with a cast if necessary. We don't cast them in the macro definitions because that would prevent `lint' or `gcc -Wall' from detecting sins such as passing a pointer. To detect calling these with less than a `bfd_vma', use `gcc -Wconversion' on a host with 64 bit `bfd_vma''s. /* Byte swapping macros for user section data. */ #define bfd_put_8(abfd, val, ptr) \ ((void) (*((unsigned char *) (ptr)) = (val) & 0xff)) #define bfd_put_signed_8 \ bfd_put_8 #define bfd_get_8(abfd, ptr) \ (*(unsigned char *) (ptr) & 0xff) #define bfd_get_signed_8(abfd, ptr) \ (((*(unsigned char *) (ptr) & 0xff) ^ 0x80) - 0x80) #define bfd_put_16(abfd, val, ptr) \ BFD_SEND (abfd, bfd_putx16, ((val),(ptr))) #define bfd_put_signed_16 \ bfd_put_16 #define bfd_get_16(abfd, ptr) \ BFD_SEND (abfd, bfd_getx16, (ptr)) #define bfd_get_signed_16(abfd, ptr) \ BFD_SEND (abfd, bfd_getx_signed_16, (ptr)) #define bfd_put_32(abfd, val, ptr) \ BFD_SEND (abfd, bfd_putx32, ((val),(ptr))) #define bfd_put_signed_32 \ bfd_put_32 #define bfd_get_32(abfd, ptr) \ BFD_SEND (abfd, bfd_getx32, (ptr)) #define bfd_get_signed_32(abfd, ptr) \ BFD_SEND (abfd, bfd_getx_signed_32, (ptr)) #define bfd_put_64(abfd, val, ptr) \ BFD_SEND (abfd, bfd_putx64, ((val), (ptr))) #define bfd_put_signed_64 \ bfd_put_64 #define bfd_get_64(abfd, ptr) \ BFD_SEND (abfd, bfd_getx64, (ptr)) #define bfd_get_signed_64(abfd, ptr) \ BFD_SEND (abfd, bfd_getx_signed_64, (ptr)) #define bfd_get(bits, abfd, ptr) \ ((bits) == 8 ? (bfd_vma) bfd_get_8 (abfd, ptr) \ : (bits) == 16 ? bfd_get_16 (abfd, ptr) \ : (bits) == 32 ? bfd_get_32 (abfd, ptr) \ : (bits) == 64 ? bfd_get_64 (abfd, ptr) \ : (abort (), (bfd_vma) - 1)) #define bfd_put(bits, abfd, val, ptr) \ ((bits) == 8 ? bfd_put_8 (abfd, val, ptr) \ : (bits) == 16 ? bfd_put_16 (abfd, val, ptr) \ : (bits) == 32 ? bfd_put_32 (abfd, val, ptr) \ : (bits) == 64 ? bfd_put_64 (abfd, val, ptr) \ : (abort (), (void) 0)) 2.15.1.4 `bfd_h_put_size' ......................... *Description* These macros have the same function as their `bfd_get_x' brethren, except that they are used for removing information for the header records of object files. Believe it or not, some object files keep their header records in big endian order and their data in little endian order. /* Byte swapping macros for file header data. */ #define bfd_h_put_8(abfd, val, ptr) \ bfd_put_8 (abfd, val, ptr) #define bfd_h_put_signed_8(abfd, val, ptr) \ bfd_put_8 (abfd, val, ptr) #define bfd_h_get_8(abfd, ptr) \ bfd_get_8 (abfd, ptr) #define bfd_h_get_signed_8(abfd, ptr) \ bfd_get_signed_8 (abfd, ptr) #define bfd_h_put_16(abfd, val, ptr) \ BFD_SEND (abfd, bfd_h_putx16, (val, ptr)) #define bfd_h_put_signed_16 \ bfd_h_put_16 #define bfd_h_get_16(abfd, ptr) \ BFD_SEND (abfd, bfd_h_getx16, (ptr)) #define bfd_h_get_signed_16(abfd, ptr) \ BFD_SEND (abfd, bfd_h_getx_signed_16, (ptr)) #define bfd_h_put_32(abfd, val, ptr) \ BFD_SEND (abfd, bfd_h_putx32, (val, ptr)) #define bfd_h_put_signed_32 \ bfd_h_put_32 #define bfd_h_get_32(abfd, ptr) \ BFD_SEND (abfd, bfd_h_getx32, (ptr)) #define bfd_h_get_signed_32(abfd, ptr) \ BFD_SEND (abfd, bfd_h_getx_signed_32, (ptr)) #define bfd_h_put_64(abfd, val, ptr) \ BFD_SEND (abfd, bfd_h_putx64, (val, ptr)) #define bfd_h_put_signed_64 \ bfd_h_put_64 #define bfd_h_get_64(abfd, ptr) \ BFD_SEND (abfd, bfd_h_getx64, (ptr)) #define bfd_h_get_signed_64(abfd, ptr) \ BFD_SEND (abfd, bfd_h_getx_signed_64, (ptr)) /* Aliases for the above, which should eventually go away. */ #define H_PUT_64 bfd_h_put_64 #define H_PUT_32 bfd_h_put_32 #define H_PUT_16 bfd_h_put_16 #define H_PUT_8 bfd_h_put_8 #define H_PUT_S64 bfd_h_put_signed_64 #define H_PUT_S32 bfd_h_put_signed_32 #define H_PUT_S16 bfd_h_put_signed_16 #define H_PUT_S8 bfd_h_put_signed_8 #define H_GET_64 bfd_h_get_64 #define H_GET_32 bfd_h_get_32 #define H_GET_16 bfd_h_get_16 #define H_GET_8 bfd_h_get_8 #define H_GET_S64 bfd_h_get_signed_64 #define H_GET_S32 bfd_h_get_signed_32 #define H_GET_S16 bfd_h_get_signed_16 #define H_GET_S8 bfd_h_get_signed_8 2.15.1.5 `bfd_log2' ................... *Synopsis* unsigned int bfd_log2 (bfd_vma x); *Description* Return the log base 2 of the value supplied, rounded up. E.g., an X of 1025 returns 11. A X of 0 returns 0. File: bfd.info, Node: File Caching, Next: Linker Functions, Prev: Internal, Up: BFD front end 2.16 File caching ================= The file caching mechanism is embedded within BFD and allows the application to open as many BFDs as it wants without regard to the underlying operating system's file descriptor limit (often as low as 20 open files). The module in `cache.c' maintains a least recently used list of `BFD_CACHE_MAX_OPEN' files, and exports the name `bfd_cache_lookup', which runs around and makes sure that the required BFD is open. If not, then it chooses a file to close, closes it and opens the one wanted, returning its file handle. 2.16.1 Caching functions ------------------------ 2.16.1.1 `bfd_cache_init' ......................... *Synopsis* bfd_boolean bfd_cache_init (bfd *abfd); *Description* Add a newly opened BFD to the cache. 2.16.1.2 `bfd_cache_close' .......................... *Synopsis* bfd_boolean bfd_cache_close (bfd *abfd); *Description* Remove the BFD ABFD from the cache. If the attached file is open, then close it too. *Returns* `FALSE' is returned if closing the file fails, `TRUE' is returned if all is well. 2.16.1.3 `bfd_cache_close_all' .............................. *Synopsis* bfd_boolean bfd_cache_close_all (void); *Description* Remove all BFDs from the cache. If the attached file is open, then close it too. *Returns* `FALSE' is returned if closing one of the file fails, `TRUE' is returned if all is well. 2.16.1.4 `bfd_open_file' ........................ *Synopsis* FILE* bfd_open_file (bfd *abfd); *Description* Call the OS to open a file for ABFD. Return the `FILE *' (possibly `NULL') that results from this operation. Set up the BFD so that future accesses know the file is open. If the `FILE *' returned is `NULL', then it won't have been put in the cache, so it won't have to be removed from it. File: bfd.info, Node: Linker Functions, Next: Hash Tables, Prev: File Caching, Up: BFD front end 2.17 Linker Functions ===================== The linker uses three special entry points in the BFD target vector. It is not necessary to write special routines for these entry points when creating a new BFD back end, since generic versions are provided. However, writing them can speed up linking and make it use significantly less runtime memory. The first routine creates a hash table used by the other routines. The second routine adds the symbols from an object file to the hash table. The third routine takes all the object files and links them together to create the output file. These routines are designed so that the linker proper does not need to know anything about the symbols in the object files that it is linking. The linker merely arranges the sections as directed by the linker script and lets BFD handle the details of symbols and relocs. The second routine and third routines are passed a pointer to a `struct bfd_link_info' structure (defined in `bfdlink.h') which holds information relevant to the link, including the linker hash table (which was created by the first routine) and a set of callback functions to the linker proper. The generic linker routines are in `linker.c', and use the header file `genlink.h'. As of this writing, the only back ends which have implemented versions of these routines are a.out (in `aoutx.h') and ECOFF (in `ecoff.c'). The a.out routines are used as examples throughout this section. * Menu: * Creating a Linker Hash Table:: * Adding Symbols to the Hash Table:: * Performing the Final Link:: File: bfd.info, Node: Creating a Linker Hash Table, Next: Adding Symbols to the Hash Table, Prev: Linker Functions, Up: Linker Functions 2.17.1 Creating a linker hash table ----------------------------------- The linker routines must create a hash table, which must be derived from `struct bfd_link_hash_table' described in `bfdlink.c'. *Note Hash Tables::, for information on how to create a derived hash table. This entry point is called using the target vector of the linker output file. The `_bfd_link_hash_table_create' entry point must allocate and initialize an instance of the desired hash table. If the back end does not require any additional information to be stored with the entries in the hash table, the entry point may simply create a `struct bfd_link_hash_table'. Most likely, however, some additional information will be needed. For example, with each entry in the hash table the a.out linker keeps the index the symbol has in the final output file (this index number is used so that when doing a relocatable link the symbol index used in the output file can be quickly filled in when copying over a reloc). The a.out linker code defines the required structures and functions for a hash table derived from `struct bfd_link_hash_table'. The a.out linker hash table is created by the function `NAME(aout,link_hash_table_create)'; it simply allocates space for the hash table, initializes it, and returns a pointer to it. When writing the linker routines for a new back end, you will generally not know exactly which fields will be required until you have finished. You should simply create a new hash table which defines no additional fields, and then simply add fields as they become necessary. File: bfd.info, Node: Adding Symbols to the Hash Table, Next: Performing the Final Link, Prev: Creating a Linker Hash Table, Up: Linker Functions 2.17.2 Adding symbols to the hash table --------------------------------------- The linker proper will call the `_bfd_link_add_symbols' entry point for each object file or archive which is to be linked (typically these are the files named on the command line, but some may also come from the linker script). The entry point is responsible for examining the file. For an object file, BFD must add any relevant symbol information to the hash table. For an archive, BFD must determine which elements of the archive should be used and adding them to the link. The a.out version of this entry point is `NAME(aout,link_add_symbols)'. * Menu: * Differing file formats:: * Adding symbols from an object file:: * Adding symbols from an archive:: File: bfd.info, Node: Differing file formats, Next: Adding symbols from an object file, Prev: Adding Symbols to the Hash Table, Up: Adding Symbols to the Hash Table 2.17.2.1 Differing file formats ............................... Normally all the files involved in a link will be of the same format, but it is also possible to link together different format object files, and the back end must support that. The `_bfd_link_add_symbols' entry point is called via the target vector of the file to be added. This has an important consequence: the function may not assume that the hash table is the type created by the corresponding `_bfd_link_hash_table_create' vector. All the `_bfd_link_add_symbols' function can assume about the hash table is that it is derived from `struct bfd_link_hash_table'. Sometimes the `_bfd_link_add_symbols' function must store some information in the hash table entry to be used by the `_bfd_final_link' function. In such a case the `creator' field of the hash table must be checked to make sure that the hash table was created by an object file of the same format. The `_bfd_final_link' routine must be prepared to handle a hash entry without any extra information added by the `_bfd_link_add_symbols' function. A hash entry without extra information will also occur when the linker script directs the linker to create a symbol. Note that, regardless of how a hash table entry is added, all the fields will be initialized to some sort of null value by the hash table entry initialization function. See `ecoff_link_add_externals' for an example of how to check the `creator' field before saving information (in this case, the ECOFF external symbol debugging information) in a hash table entry. File: bfd.info, Node: Adding symbols from an object file, Next: Adding symbols from an archive, Prev: Differing file formats, Up: Adding Symbols to the Hash Table 2.17.2.2 Adding symbols from an object file ........................................... When the `_bfd_link_add_symbols' routine is passed an object file, it must add all externally visible symbols in that object file to the hash table. The actual work of adding the symbol to the hash table is normally handled by the function `_bfd_generic_link_add_one_symbol'. The `_bfd_link_add_symbols' routine is responsible for reading all the symbols from the object file and passing the correct information to `_bfd_generic_link_add_one_symbol'. The `_bfd_link_add_symbols' routine should not use `bfd_canonicalize_symtab' to read the symbols. The point of providing this routine is to avoid the overhead of converting the symbols into generic `asymbol' structures. `_bfd_generic_link_add_one_symbol' handles the details of combining common symbols, warning about multiple definitions, and so forth. It takes arguments which describe the symbol to add, notably symbol flags, a section, and an offset. The symbol flags include such things as `BSF_WEAK' or `BSF_INDIRECT'. The section is a section in the object file, or something like `bfd_und_section_ptr' for an undefined symbol or `bfd_com_section_ptr' for a common symbol. If the `_bfd_final_link' routine is also going to need to read the symbol information, the `_bfd_link_add_symbols' routine should save it somewhere attached to the object file BFD. However, the information should only be saved if the `keep_memory' field of the `info' argument is TRUE, so that the `-no-keep-memory' linker switch is effective. The a.out function which adds symbols from an object file is `aout_link_add_object_symbols', and most of the interesting work is in `aout_link_add_symbols'. The latter saves pointers to the hash tables entries created by `_bfd_generic_link_add_one_symbol' indexed by symbol number, so that the `_bfd_final_link' routine does not have to call the hash table lookup routine to locate the entry. File: bfd.info, Node: Adding symbols from an archive, Prev: Adding symbols from an object file, Up: Adding Symbols to the Hash Table 2.17.2.3 Adding symbols from an archive ....................................... When the `_bfd_link_add_symbols' routine is passed an archive, it must look through the symbols defined by the archive and decide which elements of the archive should be included in the link. For each such element it must call the `add_archive_element' linker callback, and it must add the symbols from the object file to the linker hash table. In most cases the work of looking through the symbols in the archive should be done by the `_bfd_generic_link_add_archive_symbols' function. This function builds a hash table from the archive symbol table and looks through the list of undefined symbols to see which elements should be included. `_bfd_generic_link_add_archive_symbols' is passed a function to call to make the final decision about adding an archive element to the link and to do the actual work of adding the symbols to the linker hash table. The function passed to `_bfd_generic_link_add_archive_symbols' must read the symbols of the archive element and decide whether the archive element should be included in the link. If the element is to be included, the `add_archive_element' linker callback routine must be called with the element as an argument, and the elements symbols must be added to the linker hash table just as though the element had itself been passed to the `_bfd_link_add_symbols' function. When the a.out `_bfd_link_add_symbols' function receives an archive, it calls `_bfd_generic_link_add_archive_symbols' passing `aout_link_check_archive_element' as the function argument. `aout_link_check_archive_element' calls `aout_link_check_ar_symbols'. If the latter decides to add the element (an element is only added if it provides a real, non-common, definition for a previously undefined or common symbol) it calls the `add_archive_element' callback and then `aout_link_check_archive_element' calls `aout_link_add_symbols' to actually add the symbols to the linker hash table. The ECOFF back end is unusual in that it does not normally call `_bfd_generic_link_add_archive_symbols', because ECOFF archives already contain a hash table of symbols. The ECOFF back end searches the archive itself to avoid the overhead of creating a new hash table. File: bfd.info, Node: Performing the Final Link, Prev: Adding Symbols to the Hash Table, Up: Linker Functions 2.17.3 Performing the final link -------------------------------- When all the input files have been processed, the linker calls the `_bfd_final_link' entry point of the output BFD. This routine is responsible for producing the final output file, which has several aspects. It must relocate the contents of the input sections and copy the data into the output sections. It must build an output symbol table including any local symbols from the input files and the global symbols from the hash table. When producing relocatable output, it must modify the input relocs and write them into the output file. There may also be object format dependent work to be done. The linker will also call the `write_object_contents' entry point when the BFD is closed. The two entry points must work together in order to produce the correct output file. The details of how this works are inevitably dependent upon the specific object file format. The a.out `_bfd_final_link' routine is `NAME(aout,final_link)'. * Menu: * Information provided by the linker:: * Relocating the section contents:: * Writing the symbol table:: File: bfd.info, Node: Information provided by the linker, Next: Relocating the section contents, Prev: Performing the Final Link, Up: Performing the Final Link 2.17.3.1 Information provided by the linker ........................................... Before the linker calls the `_bfd_final_link' entry point, it sets up some data structures for the function to use. The `input_bfds' field of the `bfd_link_info' structure will point to a list of all the input files included in the link. These files are linked through the `link_next' field of the `bfd' structure. Each section in the output file will have a list of `link_order' structures attached to the `map_head.link_order' field (the `link_order' structure is defined in `bfdlink.h'). These structures describe how to create the contents of the output section in terms of the contents of various input sections, fill constants, and, eventually, other types of information. They also describe relocs that must be created by the BFD backend, but do not correspond to any input file; this is used to support -Ur, which builds constructors while generating a relocatable object file. File: bfd.info, Node: Relocating the section contents, Next: Writing the symbol table, Prev: Information provided by the linker, Up: Performing the Final Link 2.17.3.2 Relocating the section contents ........................................ The `_bfd_final_link' function should look through the `link_order' structures attached to each section of the output file. Each `link_order' structure should either be handled specially, or it should be passed to the function `_bfd_default_link_order' which will do the right thing (`_bfd_default_link_order' is defined in `linker.c'). For efficiency, a `link_order' of type `bfd_indirect_link_order' whose associated section belongs to a BFD of the same format as the output BFD must be handled specially. This type of `link_order' describes part of an output section in terms of a section belonging to one of the input files. The `_bfd_final_link' function should read the contents of the section and any associated relocs, apply the relocs to the section contents, and write out the modified section contents. If performing a relocatable link, the relocs themselves must also be modified and written out. The functions `_bfd_relocate_contents' and `_bfd_final_link_relocate' provide some general support for performing the actual relocations, notably overflow checking. Their arguments include information about the symbol the relocation is against and a `reloc_howto_type' argument which describes the relocation to perform. These functions are defined in `reloc.c'. The a.out function which handles reading, relocating, and writing section contents is `aout_link_input_section'. The actual relocation is done in `aout_link_input_section_std' and `aout_link_input_section_ext'. File: bfd.info, Node: Writing the symbol table, Prev: Relocating the section contents, Up: Performing the Final Link 2.17.3.3 Writing the symbol table ................................. The `_bfd_final_link' function must gather all the symbols in the input files and write them out. It must also write out all the symbols in the global hash table. This must be controlled by the `strip' and `discard' fields of the `bfd_link_info' structure. The local symbols of the input files will not have been entered into the linker hash table. The `_bfd_final_link' routine must consider each input file and include the symbols in the output file. It may be convenient to do this when looking through the `link_order' structures, or it may be done by stepping through the `input_bfds' list. The `_bfd_final_link' routine must also traverse the global hash table to gather all the externally visible symbols. It is possible that most of the externally visible symbols may be written out when considering the symbols of each input file, but it is still necessary to traverse the hash table since the linker script may have defined some symbols that are not in any of the input files. The `strip' field of the `bfd_link_info' structure controls which symbols are written out. The possible values are listed in `bfdlink.h'. If the value is `strip_some', then the `keep_hash' field of the `bfd_link_info' structure is a hash table of symbols to keep; each symbol should be looked up in this hash table, and only symbols which are present should be included in the output file. If the `strip' field of the `bfd_link_info' structure permits local symbols to be written out, the `discard' field is used to further controls which local symbols are included in the output file. If the value is `discard_l', then all local symbols which begin with a certain prefix are discarded; this is controlled by the `bfd_is_local_label_name' entry point. The a.out backend handles symbols by calling `aout_link_write_symbols' on each input BFD and then traversing the global hash table with the function `aout_link_write_other_symbol'. It builds a string table while writing out the symbols, which is written to the output file at the end of `NAME(aout,final_link)'. 2.17.3.4 `bfd_link_split_section' ................................. *Synopsis* bfd_boolean bfd_link_split_section (bfd *abfd, asection *sec); *Description* Return nonzero if SEC should be split during a reloceatable or final link. #define bfd_link_split_section(abfd, sec) \ BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec)) 2.17.3.5 `bfd_section_already_linked' ..................................... *Synopsis* void bfd_section_already_linked (bfd *abfd, asection *sec, struct bfd_link_info *info); *Description* Check if SEC has been already linked during a reloceatable or final link. #define bfd_section_already_linked(abfd, sec, info) \ BFD_SEND (abfd, _section_already_linked, (abfd, sec, info)) File: bfd.info, Node: Hash Tables, Prev: Linker Functions, Up: BFD front end 2.18 Hash Tables ================ BFD provides a simple set of hash table functions. Routines are provided to initialize a hash table, to free a hash table, to look up a string in a hash table and optionally create an entry for it, and to traverse a hash table. There is currently no routine to delete an string from a hash table. The basic hash table does not permit any data to be stored with a string. However, a hash table is designed to present a base class from which other types of hash tables may be derived. These derived types may store additional information with the string. Hash tables were implemented in this way, rather than simply providing a data pointer in a hash table entry, because they were designed for use by the linker back ends. The linker may create thousands of hash table entries, and the overhead of allocating private data and storing and following pointers becomes noticeable. The basic hash table code is in `hash.c'. * Menu: * Creating and Freeing a Hash Table:: * Looking Up or Entering a String:: * Traversing a Hash Table:: * Deriving a New Hash Table Type:: File: bfd.info, Node: Creating and Freeing a Hash Table, Next: Looking Up or Entering a String, Prev: Hash Tables, Up: Hash Tables 2.18.1 Creating and freeing a hash table ---------------------------------------- To create a hash table, create an instance of a `struct bfd_hash_table' (defined in `bfd.h') and call `bfd_hash_table_init' (if you know approximately how many entries you will need, the function `bfd_hash_table_init_n', which takes a SIZE argument, may be used). `bfd_hash_table_init' returns `FALSE' if some sort of error occurs. The function `bfd_hash_table_init' take as an argument a function to use to create new entries. For a basic hash table, use the function `bfd_hash_newfunc'. *Note Deriving a New Hash Table Type::, for why you would want to use a different value for this argument. `bfd_hash_table_init' will create an objalloc which will be used to allocate new entries. You may allocate memory on this objalloc using `bfd_hash_allocate'. Use `bfd_hash_table_free' to free up all the memory that has been allocated for a hash table. This will not free up the `struct bfd_hash_table' itself, which you must provide. Use `bfd_hash_set_default_size' to set the default size of hash table to use. File: bfd.info, Node: Looking Up or Entering a String, Next: Traversing a Hash Table, Prev: Creating and Freeing a Hash Table, Up: Hash Tables 2.18.2 Looking up or entering a string -------------------------------------- The function `bfd_hash_lookup' is used both to look up a string in the hash table and to create a new entry. If the CREATE argument is `FALSE', `bfd_hash_lookup' will look up a string. If the string is found, it will returns a pointer to a `struct bfd_hash_entry'. If the string is not found in the table `bfd_hash_lookup' will return `NULL'. You should not modify any of the fields in the returns `struct bfd_hash_entry'. If the CREATE argument is `TRUE', the string will be entered into the hash table if it is not already there. Either way a pointer to a `struct bfd_hash_entry' will be returned, either to the existing structure or to a newly created one. In this case, a `NULL' return means that an error occurred. If the CREATE argument is `TRUE', and a new entry is created, the COPY argument is used to decide whether to copy the string onto the hash table objalloc or not. If COPY is passed as `FALSE', you must be careful not to deallocate or modify the string as long as the hash table exists. File: bfd.info, Node: Traversing a Hash Table, Next: Deriving a New Hash Table Type, Prev: Looking Up or Entering a String, Up: Hash Tables 2.18.3 Traversing a hash table ------------------------------ The function `bfd_hash_traverse' may be used to traverse a hash table, calling a function on each element. The traversal is done in a random order. `bfd_hash_traverse' takes as arguments a function and a generic `void *' pointer. The function is called with a hash table entry (a `struct bfd_hash_entry *') and the generic pointer passed to `bfd_hash_traverse'. The function must return a `boolean' value, which indicates whether to continue traversing the hash table. If the function returns `FALSE', `bfd_hash_traverse' will stop the traversal and return immediately. File: bfd.info, Node: Deriving a New Hash Table Type, Prev: Traversing a Hash Table, Up: Hash Tables 2.18.4 Deriving a new hash table type ------------------------------------- Many uses of hash tables want to store additional information which each entry in the hash table. Some also find it convenient to store additional information with the hash table itself. This may be done using a derived hash table. Since C is not an object oriented language, creating a derived hash table requires sticking together some boilerplate routines with a few differences specific to the type of hash table you want to create. An example of a derived hash table is the linker hash table. The structures for this are defined in `bfdlink.h'. The functions are in `linker.c'. You may also derive a hash table from an already derived hash table. For example, the a.out linker backend code uses a hash table derived from the linker hash table. * Menu: * Define the Derived Structures:: * Write the Derived Creation Routine:: * Write Other Derived Routines:: File: bfd.info, Node: Define the Derived Structures, Next: Write the Derived Creation Routine, Prev: Deriving a New Hash Table Type, Up: Deriving a New Hash Table Type 2.18.4.1 Define the derived structures ...................................... You must define a structure for an entry in the hash table, and a structure for the hash table itself. The first field in the structure for an entry in the hash table must be of the type used for an entry in the hash table you are deriving from. If you are deriving from a basic hash table this is `struct bfd_hash_entry', which is defined in `bfd.h'. The first field in the structure for the hash table itself must be of the type of the hash table you are deriving from itself. If you are deriving from a basic hash table, this is `struct bfd_hash_table'. For example, the linker hash table defines `struct bfd_link_hash_entry' (in `bfdlink.h'). The first field, `root', is of type `struct bfd_hash_entry'. Similarly, the first field in `struct bfd_link_hash_table', `table', is of type `struct bfd_hash_table'. File: bfd.info, Node: Write the Derived Creation Routine, Next: Write Other Derived Routines, Prev: Define the Derived Structures, Up: Deriving a New Hash Table Type 2.18.4.2 Write the derived creation routine ........................................... You must write a routine which will create and initialize an entry in the hash table. This routine is passed as the function argument to `bfd_hash_table_init'. In order to permit other hash tables to be derived from the hash table you are creating, this routine must be written in a standard way. The first argument to the creation routine is a pointer to a hash table entry. This may be `NULL', in which case the routine should allocate the right amount of space. Otherwise the space has already been allocated by a hash table type derived from this one. After allocating space, the creation routine must call the creation routine of the hash table type it is derived from, passing in a pointer to the space it just allocated. This will initialize any fields used by the base hash table. Finally the creation routine must initialize any local fields for the new hash table type. Here is a boilerplate example of a creation routine. FUNCTION_NAME is the name of the routine. ENTRY_TYPE is the type of an entry in the hash table you are creating. BASE_NEWFUNC is the name of the creation routine of the hash table type your hash table is derived from. struct bfd_hash_entry * FUNCTION_NAME (struct bfd_hash_entry *entry, struct bfd_hash_table *table, const char *string) { struct ENTRY_TYPE *ret = (ENTRY_TYPE *) entry; /* Allocate the structure if it has not already been allocated by a derived class. */ if (ret == NULL) { ret = bfd_hash_allocate (table, sizeof (* ret)); if (ret == NULL) return NULL; } /* Call the allocation method of the base class. */ ret = ((ENTRY_TYPE *) BASE_NEWFUNC ((struct bfd_hash_entry *) ret, table, string)); /* Initialize the local fields here. */ return (struct bfd_hash_entry *) ret; } *Description* The creation routine for the linker hash table, which is in `linker.c', looks just like this example. FUNCTION_NAME is `_bfd_link_hash_newfunc'. ENTRY_TYPE is `struct bfd_link_hash_entry'. BASE_NEWFUNC is `bfd_hash_newfunc', the creation routine for a basic hash table. `_bfd_link_hash_newfunc' also initializes the local fields in a linker hash table entry: `type', `written' and `next'. File: bfd.info, Node: Write Other Derived Routines, Prev: Write the Derived Creation Routine, Up: Deriving a New Hash Table Type 2.18.4.3 Write other derived routines ..................................... You will want to write other routines for your new hash table, as well. You will want an initialization routine which calls the initialization routine of the hash table you are deriving from and initializes any other local fields. For the linker hash table, this is `_bfd_link_hash_table_init' in `linker.c'. You will want a lookup routine which calls the lookup routine of the hash table you are deriving from and casts the result. The linker hash table uses `bfd_link_hash_lookup' in `linker.c' (this actually takes an additional argument which it uses to decide how to return the looked up value). You may want a traversal routine. This should just call the traversal routine of the hash table you are deriving from with appropriate casts. The linker hash table uses `bfd_link_hash_traverse' in `linker.c'. These routines may simply be defined as macros. For example, the a.out backend linker hash table, which is derived from the linker hash table, uses macros for the lookup and traversal routines. These are `aout_link_hash_lookup' and `aout_link_hash_traverse' in aoutx.h. File: bfd.info, Node: BFD back ends, Next: GNU Free Documentation License, Prev: BFD front end, Up: Top 3 BFD back ends *************** * Menu: * What to Put Where:: * aout :: a.out backends * coff :: coff backends * elf :: elf backends * mmo :: mmo backend File: bfd.info, Node: What to Put Where, Next: aout, Prev: BFD back ends, Up: BFD back ends 3.1 What to Put Where ===================== All of BFD lives in one directory. File: bfd.info, Node: aout, Next: coff, Prev: What to Put Where, Up: BFD back ends 3.2 a.out backends ================== *Description* BFD supports a number of different flavours of a.out format, though the major differences are only the sizes of the structures on disk, and the shape of the relocation information. The support is split into a basic support file `aoutx.h' and other files which derive functions from the base. One derivation file is `aoutf1.h' (for a.out flavour 1), and adds to the basic a.out functions support for sun3, sun4, 386 and 29k a.out files, to create a target jump vector for a specific target. This information is further split out into more specific files for each machine, including `sunos.c' for sun3 and sun4, `newsos3.c' for the Sony NEWS, and `demo64.c' for a demonstration of a 64 bit a.out format. The base file `aoutx.h' defines general mechanisms for reading and writing records to and from disk and various other methods which BFD requires. It is included by `aout32.c' and `aout64.c' to form the names `aout_32_swap_exec_header_in', `aout_64_swap_exec_header_in', etc. As an example, this is what goes on to make the back end for a sun4, from `aout32.c': #define ARCH_SIZE 32 #include "aoutx.h" Which exports names: ... aout_32_canonicalize_reloc aout_32_find_nearest_line aout_32_get_lineno aout_32_get_reloc_upper_bound ... from `sunos.c': #define TARGET_NAME "a.out-sunos-big" #define VECNAME sunos_big_vec #include "aoutf1.h" requires all the names from `aout32.c', and produces the jump vector sunos_big_vec The file `host-aout.c' is a special case. It is for a large set of hosts that use "more or less standard" a.out files, and for which cross-debugging is not interesting. It uses the standard 32-bit a.out support routines, but determines the file offsets and addresses of the text, data, and BSS sections, the machine architecture and machine type, and the entry point address, in a host-dependent manner. Once these values have been determined, generic code is used to handle the object file. When porting it to run on a new system, you must supply: HOST_PAGE_SIZE HOST_SEGMENT_SIZE HOST_MACHINE_ARCH (optional) HOST_MACHINE_MACHINE (optional) HOST_TEXT_START_ADDR HOST_STACK_END_ADDR in the file `../include/sys/h-XXX.h' (for your host). These values, plus the structures and macros defined in `a.out.h' on your host system, will produce a BFD target that will access ordinary a.out files on your host. To configure a new machine to use `host-aout.c', specify: TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec TDEPFILES= host-aout.o trad-core.o in the `config/XXX.mt' file, and modify `configure.in' to use the `XXX.mt' file (by setting "`bfd_target=XXX'") when your configuration is selected. 3.2.1 Relocations ----------------- *Description* The file `aoutx.h' provides for both the _standard_ and _extended_ forms of a.out relocation records. The standard records contain only an address, a symbol index, and a type field. The extended records (used on 29ks and sparcs) also have a full integer for an addend. 3.2.2 Internal entry points --------------------------- *Description* `aoutx.h' exports several routines for accessing the contents of an a.out file, which are gathered and exported in turn by various format specific files (eg sunos.c). 3.2.2.1 `aout_SIZE_swap_exec_header_in' ....................................... *Synopsis* void aout_SIZE_swap_exec_header_in, (bfd *abfd, struct external_exec *bytes, struct internal_exec *execp); *Description* Swap the information in an executable header RAW_BYTES taken from a raw byte stream memory image into the internal exec header structure EXECP. 3.2.2.2 `aout_SIZE_swap_exec_header_out' ........................................ *Synopsis* void aout_SIZE_swap_exec_header_out (bfd *abfd, struct internal_exec *execp, struct external_exec *raw_bytes); *Description* Swap the information in an internal exec header structure EXECP into the buffer RAW_BYTES ready for writing to disk. 3.2.2.3 `aout_SIZE_some_aout_object_p' ...................................... *Synopsis* const bfd_target *aout_SIZE_some_aout_object_p (bfd *abfd, struct internal_exec *execp, const bfd_target *(*callback_to_real_object_p) (bfd *)); *Description* Some a.out variant thinks that the file open in ABFD checking is an a.out file. Do some more checking, and set up for access if it really is. Call back to the calling environment's "finish up" function just before returning, to handle any last-minute setup. 3.2.2.4 `aout_SIZE_mkobject' ............................ *Synopsis* bfd_boolean aout_SIZE_mkobject, (bfd *abfd); *Description* Initialize BFD ABFD for use with a.out files. 3.2.2.5 `aout_SIZE_machine_type' ................................ *Synopsis* enum machine_type aout_SIZE_machine_type (enum bfd_architecture arch, unsigned long machine, bfd_boolean *unknown); *Description* Keep track of machine architecture and machine type for a.out's. Return the `machine_type' for a particular architecture and machine, or `M_UNKNOWN' if that exact architecture and machine can't be represented in a.out format. If the architecture is understood, machine type 0 (default) is always understood. 3.2.2.6 `aout_SIZE_set_arch_mach' ................................. *Synopsis* bfd_boolean aout_SIZE_set_arch_mach, (bfd *, enum bfd_architecture arch, unsigned long machine); *Description* Set the architecture and the machine of the BFD ABFD to the values ARCH and MACHINE. Verify that ABFD's format can support the architecture required. 3.2.2.7 `aout_SIZE_new_section_hook' .................................... *Synopsis* bfd_boolean aout_SIZE_new_section_hook, (bfd *abfd, asection *newsect); *Description* Called by the BFD in response to a `bfd_make_section' request. File: bfd.info, Node: coff, Next: elf, Prev: aout, Up: BFD back ends 3.3 coff backends ================= BFD supports a number of different flavours of coff format. The major differences between formats are the sizes and alignments of fields in structures on disk, and the occasional extra field. Coff in all its varieties is implemented with a few common files and a number of implementation specific files. For example, The 88k bcs coff format is implemented in the file `coff-m88k.c'. This file `#include's `coff/m88k.h' which defines the external structure of the coff format for the 88k, and `coff/internal.h' which defines the internal structure. `coff-m88k.c' also defines the relocations used by the 88k format *Note Relocations::. The Intel i960 processor version of coff is implemented in `coff-i960.c'. This file has the same structure as `coff-m88k.c', except that it includes `coff/i960.h' rather than `coff-m88k.h'. 3.3.1 Porting to a new version of coff -------------------------------------- The recommended method is to select from the existing implementations the version of coff which is most like the one you want to use. For example, we'll say that i386 coff is the one you select, and that your coff flavour is called foo. Copy `i386coff.c' to `foocoff.c', copy `../include/coff/i386.h' to `../include/coff/foo.h', and add the lines to `targets.c' and `Makefile.in' so that your new back end is used. Alter the shapes of the structures in `../include/coff/foo.h' so that they match what you need. You will probably also have to add `#ifdef's to the code in `coff/internal.h' and `coffcode.h' if your version of coff is too wild. You can verify that your new BFD backend works quite simply by building `objdump' from the `binutils' directory, and making sure that its version of what's going on and your host system's idea (assuming it has the pretty standard coff dump utility, usually called `att-dump' or just `dump') are the same. Then clean up your code, and send what you've done to Cygnus. Then your stuff will be in the next release, and you won't have to keep integrating it. 3.3.2 How the coff backend works -------------------------------- 3.3.2.1 File layout ................... The Coff backend is split into generic routines that are applicable to any Coff target and routines that are specific to a particular target. The target-specific routines are further split into ones which are basically the same for all Coff targets except that they use the external symbol format or use different values for certain constants. The generic routines are in `coffgen.c'. These routines work for any Coff target. They use some hooks into the target specific code; the hooks are in a `bfd_coff_backend_data' structure, one of which exists for each target. The essentially similar target-specific routines are in `coffcode.h'. This header file includes executable C code. The various Coff targets first include the appropriate Coff header file, make any special defines that are needed, and then include `coffcode.h'. Some of the Coff targets then also have additional routines in the target source file itself. For example, `coff-i960.c' includes `coff/internal.h' and `coff/i960.h'. It then defines a few constants, such as `I960', and includes `coffcode.h'. Since the i960 has complex relocation types, `coff-i960.c' also includes some code to manipulate the i960 relocs. This code is not in `coffcode.h' because it would not be used by any other target. 3.3.2.2 Bit twiddling ..................... Each flavour of coff supported in BFD has its own header file describing the external layout of the structures. There is also an internal description of the coff layout, in `coff/internal.h'. A major function of the coff backend is swapping the bytes and twiddling the bits to translate the external form of the structures into the normal internal form. This is all performed in the `bfd_swap'_thing_direction routines. Some elements are different sizes between different versions of coff; it is the duty of the coff version specific include file to override the definitions of various packing routines in `coffcode.h'. E.g., the size of line number entry in coff is sometimes 16 bits, and sometimes 32 bits. `#define'ing `PUT_LNSZ_LNNO' and `GET_LNSZ_LNNO' will select the correct one. No doubt, some day someone will find a version of coff which has a varying field size not catered to at the moment. To port BFD, that person will have to add more `#defines'. Three of the bit twiddling routines are exported to `gdb'; `coff_swap_aux_in', `coff_swap_sym_in' and `coff_swap_lineno_in'. `GDB' reads the symbol table on its own, but uses BFD to fix things up. More of the bit twiddlers are exported for `gas'; `coff_swap_aux_out', `coff_swap_sym_out', `coff_swap_lineno_out', `coff_swap_reloc_out', `coff_swap_filehdr_out', `coff_swap_aouthdr_out', `coff_swap_scnhdr_out'. `Gas' currently keeps track of all the symbol table and reloc drudgery itself, thereby saving the internal BFD overhead, but uses BFD to swap things on the way out, making cross ports much safer. Doing so also allows BFD (and thus the linker) to use the same header files as `gas', which makes one avenue to disaster disappear. 3.3.2.3 Symbol reading ...................... The simple canonical form for symbols used by BFD is not rich enough to keep all the information available in a coff symbol table. The back end gets around this problem by keeping the original symbol table around, "behind the scenes". When a symbol table is requested (through a call to `bfd_canonicalize_symtab'), a request gets through to `coff_get_normalized_symtab'. This reads the symbol table from the coff file and swaps all the structures inside into the internal form. It also fixes up all the pointers in the table (represented in the file by offsets from the first symbol in the table) into physical pointers to elements in the new internal table. This involves some work since the meanings of fields change depending upon context: a field that is a pointer to another structure in the symbol table at one moment may be the size in bytes of a structure at the next. Another pass is made over the table. All symbols which mark file names (`C_FILE' symbols) are modified so that the internal string points to the value in the auxent (the real filename) rather than the normal text associated with the symbol (`".file"'). At this time the symbol names are moved around. Coff stores all symbols less than nine characters long physically within the symbol table; longer strings are kept at the end of the file in the string table. This pass moves all strings into memory and replaces them with pointers to the strings. The symbol table is massaged once again, this time to create the canonical table used by the BFD application. Each symbol is inspected in turn, and a decision made (using the `sclass' field) about the various flags to set in the `asymbol'. *Note Symbols::. The generated canonical table shares strings with the hidden internal symbol table. Any linenumbers are read from the coff file too, and attached to the symbols which own the functions the linenumbers belong to. 3.3.2.4 Symbol writing ...................... Writing a symbol to a coff file which didn't come from a coff file will lose any debugging information. The `asymbol' structure remembers the BFD from which the symbol was taken, and on output the back end makes sure that the same destination target as source target is present. When the symbols have come from a coff file then all the debugging information is preserved. Symbol tables are provided for writing to the back end in a vector of pointers to pointers. This allows applications like the linker to accumulate and output large symbol tables without having to do too much byte copying. This function runs through the provided symbol table and patches each symbol marked as a file place holder (`C_FILE') to point to the next file place holder in the list. It also marks each `offset' field in the list with the offset from the first symbol of the current symbol. Another function of this procedure is to turn the canonical value form of BFD into the form used by coff. Internally, BFD expects symbol values to be offsets from a section base; so a symbol physically at 0x120, but in a section starting at 0x100, would have the value 0x20. Coff expects symbols to contain their final value, so symbols have their values changed at this point to reflect their sum with their owning section. This transformation uses the `output_section' field of the `asymbol''s `asection' *Note Sections::. * `coff_mangle_symbols' This routine runs though the provided symbol table and uses the offsets generated by the previous pass and the pointers generated when the symbol table was read in to create the structured hierarchy required by coff. It changes each pointer to a symbol into the index into the symbol table of the asymbol. * `coff_write_symbols' This routine runs through the symbol table and patches up the symbols from their internal form into the coff way, calls the bit twiddlers, and writes out the table to the file. 3.3.2.5 `coff_symbol_type' .......................... *Description* The hidden information for an `asymbol' is described in a `combined_entry_type': typedef struct coff_ptr_struct { /* Remembers the offset from the first symbol in the file for this symbol. Generated by coff_renumber_symbols. */ unsigned int offset; /* Should the value of this symbol be renumbered. Used for XCOFF C_BSTAT symbols. Set by coff_slurp_symbol_table. */ unsigned int fix_value : 1; /* Should the tag field of this symbol be renumbered. Created by coff_pointerize_aux. */ unsigned int fix_tag : 1; /* Should the endidx field of this symbol be renumbered. Created by coff_pointerize_aux. */ unsigned int fix_end : 1; /* Should the x_csect.x_scnlen field be renumbered. Created by coff_pointerize_aux. */ unsigned int fix_scnlen : 1; /* Fix up an XCOFF C_BINCL/C_EINCL symbol. The value is the index into the line number entries. Set by coff_slurp_symbol_table. */ unsigned int fix_line : 1; /* The container for the symbol structure as read and translated from the file. */ union { union internal_auxent auxent; struct internal_syment syment; } u; } combined_entry_type; /* Each canonical asymbol really looks like this: */ typedef struct coff_symbol_struct { /* The actual symbol which the rest of BFD works with */ asymbol symbol; /* A pointer to the hidden information for this symbol */ combined_entry_type *native; /* A pointer to the linenumber information for this symbol */ struct lineno_cache_entry *lineno; /* Have the line numbers been relocated yet ? */ bfd_boolean done_lineno; } coff_symbol_type; 3.3.2.6 `bfd_coff_backend_data' ............................... /* COFF symbol classifications. */ enum coff_symbol_classification { /* Global symbol. */ COFF_SYMBOL_GLOBAL, /* Common symbol. */ COFF_SYMBOL_COMMON, /* Undefined symbol. */ COFF_SYMBOL_UNDEFINED, /* Local symbol. */ COFF_SYMBOL_LOCAL, /* PE section symbol. */ COFF_SYMBOL_PE_SECTION }; Special entry points for gdb to swap in coff symbol table parts: typedef struct { void (*_bfd_coff_swap_aux_in) (bfd *, void *, int, int, int, int, void *); void (*_bfd_coff_swap_sym_in) (bfd *, void *, void *); void (*_bfd_coff_swap_lineno_in) (bfd *, void *, void *); unsigned int (*_bfd_coff_swap_aux_out) (bfd *, void *, int, int, int, int, void *); unsigned int (*_bfd_coff_swap_sym_out) (bfd *, void *, void *); unsigned int (*_bfd_coff_swap_lineno_out) (bfd *, void *, void *); unsigned int (*_bfd_coff_swap_reloc_out) (bfd *, void *, void *); unsigned int (*_bfd_coff_swap_filehdr_out) (bfd *, void *, void *); unsigned int (*_bfd_coff_swap_aouthdr_out) (bfd *, void *, void *); unsigned int (*_bfd_coff_swap_scnhdr_out) (bfd *, void *, void *); unsigned int _bfd_filhsz; unsigned int _bfd_aoutsz; unsigned int _bfd_scnhsz; unsigned int _bfd_symesz; unsigned int _bfd_auxesz; unsigned int _bfd_relsz; unsigned int _bfd_linesz; unsigned int _bfd_filnmlen; bfd_boolean _bfd_coff_long_filenames; bfd_boolean _bfd_coff_long_section_names; unsigned int _bfd_coff_default_section_alignment_power; bfd_boolean _bfd_coff_force_symnames_in_strings; unsigned int _bfd_coff_debug_string_prefix_length; void (*_bfd_coff_swap_filehdr_in) (bfd *, void *, void *); void (*_bfd_coff_swap_aouthdr_in) (bfd *, void *, void *); void (*_bfd_coff_swap_scnhdr_in) (bfd *, void *, void *); void (*_bfd_coff_swap_reloc_in) (bfd *abfd, void *, void *); bfd_boolean (*_bfd_coff_bad_format_hook) (bfd *, void *); bfd_boolean (*_bfd_coff_set_arch_mach_hook) (bfd *, void *); void * (*_bfd_coff_mkobject_hook) (bfd *, void *, void *); bfd_boolean (*_bfd_styp_to_sec_flags_hook) (bfd *, void *, const char *, asection *, flagword *); void (*_bfd_set_alignment_hook) (bfd *, asection *, void *); bfd_boolean (*_bfd_coff_slurp_symbol_table) (bfd *); bfd_boolean (*_bfd_coff_symname_in_debug) (bfd *, struct internal_syment *); bfd_boolean (*_bfd_coff_pointerize_aux_hook) (bfd *, combined_entry_type *, combined_entry_type *, unsigned int, combined_entry_type *); bfd_boolean (*_bfd_coff_print_aux) (bfd *, FILE *, combined_entry_type *, combined_entry_type *, combined_entry_type *, unsigned int); void (*_bfd_coff_reloc16_extra_cases) (bfd *, struct bfd_link_info *, struct bfd_link_order *, arelent *, bfd_byte *, unsigned int *, unsigned int *); int (*_bfd_coff_reloc16_estimate) (bfd *, asection *, arelent *, unsigned int, struct bfd_link_info *); enum coff_symbol_classification (*_bfd_coff_classify_symbol) (bfd *, struct internal_syment *); bfd_boolean (*_bfd_coff_compute_section_file_positions) (bfd *); bfd_boolean (*_bfd_coff_start_final_link) (bfd *, struct bfd_link_info *); bfd_boolean (*_bfd_coff_relocate_section) (bfd *, struct bfd_link_info *, bfd *, asection *, bfd_byte *, struct internal_reloc *, struct internal_syment *, asection **); reloc_howto_type *(*_bfd_coff_rtype_to_howto) (bfd *, asection *, struct internal_reloc *, struct coff_link_hash_entry *, struct internal_syment *, bfd_vma *); bfd_boolean (*_bfd_coff_adjust_symndx) (bfd *, struct bfd_link_info *, bfd *, asection *, struct internal_reloc *, bfd_boolean *); bfd_boolean (*_bfd_coff_link_add_one_symbol) (struct bfd_link_info *, bfd *, const char *, flagword, asection *, bfd_vma, const char *, bfd_boolean, bfd_boolean, struct bfd_link_hash_entry **); bfd_boolean (*_bfd_coff_link_output_has_begun) (bfd *, struct coff_final_link_info *); bfd_boolean (*_bfd_coff_final_link_postscript) (bfd *, struct coff_final_link_info *); } bfd_coff_backend_data; #define coff_backend_info(abfd) \ ((bfd_coff_backend_data *) (abfd)->xvec->backend_data) #define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \ ((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i)) #define bfd_coff_swap_sym_in(a,e,i) \ ((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i)) #define bfd_coff_swap_lineno_in(a,e,i) \ ((coff_backend_info ( a)->_bfd_coff_swap_lineno_in) (a,e,i)) #define bfd_coff_swap_reloc_out(abfd, i, o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o)) #define bfd_coff_swap_lineno_out(abfd, i, o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o)) #define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o) \ ((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,o)) #define bfd_coff_swap_sym_out(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, o)) #define bfd_coff_swap_scnhdr_out(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o)) #define bfd_coff_swap_filehdr_out(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o)) #define bfd_coff_swap_aouthdr_out(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, o)) #define bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz) #define bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz) #define bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz) #define bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz) #define bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz) #define bfd_coff_relsz(abfd) (coff_backend_info (abfd)->_bfd_relsz) #define bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz) #define bfd_coff_filnmlen(abfd) (coff_backend_info (abfd)->_bfd_filnmlen) #define bfd_coff_long_filenames(abfd) \ (coff_backend_info (abfd)->_bfd_coff_long_filenames) #define bfd_coff_long_section_names(abfd) \ (coff_backend_info (abfd)->_bfd_coff_long_section_names) #define bfd_coff_default_section_alignment_power(abfd) \ (coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power) #define bfd_coff_swap_filehdr_in(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o)) #define bfd_coff_swap_aouthdr_in(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o)) #define bfd_coff_swap_scnhdr_in(abfd, i,o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o)) #define bfd_coff_swap_reloc_in(abfd, i, o) \ ((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o)) #define bfd_coff_bad_format_hook(abfd, filehdr) \ ((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr)) #define bfd_coff_set_arch_mach_hook(abfd, filehdr)\ ((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr)) #define bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\ ((coff_backend_info (abfd)->_bfd_coff_mkobject_hook)\ (abfd, filehdr, aouthdr)) #define bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name, section, flags_ptr)\ ((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook)\ (abfd, scnhdr, name, section, flags_ptr)) #define bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\ ((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr)) #define bfd_coff_slurp_symbol_table(abfd)\ ((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd)) #define bfd_coff_symname_in_debug(abfd, sym)\ ((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym)) #define bfd_coff_force_symnames_in_strings(abfd)\ (coff_backend_info (abfd)->_bfd_coff_force_symnames_in_strings) #define bfd_coff_debug_string_prefix_length(abfd)\ (coff_backend_info (abfd)->_bfd_coff_debug_string_prefix_length) #define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\ ((coff_backend_info (abfd)->_bfd_coff_print_aux)\ (abfd, file, base, symbol, aux, indaux)) #define bfd_coff_reloc16_extra_cases(abfd, link_info, link_order,\ reloc, data, src_ptr, dst_ptr)\ ((coff_backend_info (abfd)->_bfd_coff_reloc16_extra_cases)\ (abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr)) #define bfd_coff_reloc16_estimate(abfd, section, reloc, shrink, link_info)\ ((coff_backend_info (abfd)->_bfd_coff_reloc16_estimate)\ (abfd, section, reloc, shrink, link_info)) #define bfd_coff_classify_symbol(abfd, sym)\ ((coff_backend_info (abfd)->_bfd_coff_classify_symbol)\ (abfd, sym)) #define bfd_coff_compute_section_file_positions(abfd)\ ((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\ (abfd)) #define bfd_coff_start_final_link(obfd, info)\ ((coff_backend_info (obfd)->_bfd_coff_start_final_link)\ (obfd, info)) #define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\ ((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\ (obfd, info, ibfd, o, con, rel, isyms, secs)) #define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\ ((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\ (abfd, sec, rel, h, sym, addendp)) #define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\ ((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\ (obfd, info, ibfd, sec, rel, adjustedp)) #define bfd_coff_link_add_one_symbol(info, abfd, name, flags, section,\ value, string, cp, coll, hashp)\ ((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\ (info, abfd, name, flags, section, value, string, cp, coll, hashp)) #define bfd_coff_link_output_has_begun(a,p) \ ((coff_backend_info (a)->_bfd_coff_link_output_has_begun) (a, p)) #define bfd_coff_final_link_postscript(a,p) \ ((coff_backend_info (a)->_bfd_coff_final_link_postscript) (a, p)) 3.3.2.7 Writing relocations ........................... To write relocations, the back end steps though the canonical relocation table and create an `internal_reloc'. The symbol index to use is removed from the `offset' field in the symbol table supplied. The address comes directly from the sum of the section base address and the relocation offset; the type is dug directly from the howto field. Then the `internal_reloc' is swapped into the shape of an `external_reloc' and written out to disk. 3.3.2.8 Reading linenumbers ........................... Creating the linenumber table is done by reading in the entire coff linenumber table, and creating another table for internal use. A coff linenumber table is structured so that each function is marked as having a line number of 0. Each line within the function is an offset from the first line in the function. The base of the line number information for the table is stored in the symbol associated with the function. Note: The PE format uses line number 0 for a flag indicating a new source file. The information is copied from the external to the internal table, and each symbol which marks a function is marked by pointing its... How does this work ? 3.3.2.9 Reading relocations ........................... Coff relocations are easily transformed into the internal BFD form (`arelent'). Reading a coff relocation table is done in the following stages: * Read the entire coff relocation table into memory. * Process each relocation in turn; first swap it from the external to the internal form. * Turn the symbol referenced in the relocation's symbol index into a pointer into the canonical symbol table. This table is the same as the one returned by a call to `bfd_canonicalize_symtab'. The back end will call that routine and save the result if a canonicalization hasn't been done. * The reloc index is turned into a pointer to a howto structure, in a back end specific way. For instance, the 386 and 960 use the `r_type' to directly produce an index into a howto table vector; the 88k subtracts a number from the `r_type' field and creates an addend field. File: bfd.info, Node: elf, Next: mmo, Prev: coff, Up: BFD back ends 3.4 ELF backends ================ BFD support for ELF formats is being worked on. Currently, the best supported back ends are for sparc and i386 (running svr4 or Solaris 2). Documentation of the internals of the support code still needs to be written. The code is changing quickly enough that we haven't bothered yet. 3.4.0.1 `bfd_elf_find_section' .............................. *Synopsis* struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name); *Description* Helper functions for GDB to locate the string tables. Since BFD hides string tables from callers, GDB needs to use an internal hook to find them. Sun's .stabstr, in particular, isn't even pointed to by the .stab section, so ordinary mechanisms wouldn't work to find it, even if we had some. File: bfd.info, Node: mmo, Prev: elf, Up: BFD back ends 3.5 mmo backend =============== The mmo object format is used exclusively together with Professor Donald E. Knuth's educational 64-bit processor MMIX. The simulator `mmix' which is available at `http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz' understands this format. That package also includes a combined assembler and linker called `mmixal'. The mmo format has no advantages feature-wise compared to e.g. ELF. It is a simple non-relocatable object format with no support for archives or debugging information, except for symbol value information and line numbers (which is not yet implemented in BFD). See `http://www-cs-faculty.stanford.edu/~knuth/mmix.html' for more information about MMIX. The ELF format is used for intermediate object files in the BFD implementation. * Menu: * File layout:: * Symbol-table:: * mmo section mapping:: File: bfd.info, Node: File layout, Next: Symbol-table, Prev: mmo, Up: mmo 3.5.1 File layout ----------------- The mmo file contents is not partitioned into named sections as with e.g. ELF. Memory areas is formed by specifying the location of the data that follows. Only the memory area `0x0000...00' to `0x01ff...ff' is executable, so it is used for code (and constants) and the area `0x2000...00' to `0x20ff...ff' is used for writable data. *Note mmo section mapping::. There is provision for specifying "special data" of 65536 different types. We use type 80 (decimal), arbitrarily chosen the same as the ELF `e_machine' number for MMIX, filling it with section information normally found in ELF objects. *Note mmo section mapping::. Contents is entered as 32-bit words, xor:ed over previous contents, always zero-initialized. A word that starts with the byte `0x98' forms a command called a `lopcode', where the next byte distinguished between the thirteen lopcodes. The two remaining bytes, called the `Y' and `Z' fields, or the `YZ' field (a 16-bit big-endian number), are used for various purposes different for each lopcode. As documented in `http://www-cs-faculty.stanford.edu/~knuth/mmixal-intro.ps.gz', the lopcodes are: `lop_quote' 0x98000001. The next word is contents, regardless of whether it starts with 0x98 or not. `lop_loc' 0x9801YYZZ, where `Z' is 1 or 2. This is a location directive, setting the location for the next data to the next 32-bit word (for Z = 1) or 64-bit word (for Z = 2), plus Y * 2^56. Normally `Y' is 0 for the text segment and 2 for the data segment. `lop_skip' 0x9802YYZZ. Increase the current location by `YZ' bytes. `lop_fixo' 0x9803YYZZ, where `Z' is 1 or 2. Store the current location as 64 bits into the location pointed to by the next 32-bit (Z = 1) or 64-bit (Z = 2) word, plus Y * 2^56. `lop_fixr' 0x9804YYZZ. `YZ' is stored into the current location plus 2 - 4 * YZ. `lop_fixrx' 0x980500ZZ. `Z' is 16 or 24. A value `L' derived from the following 32-bit word are used in a manner similar to `YZ' in lop_fixr: it is xor:ed into the current location minus 4 * L. The first byte of the word is 0 or 1. If it is 1, then L = (LOWEST 24 BITS OF WORD) - 2^Z, if 0, then L = (LOWEST 24 BITS OF WORD). `lop_file' 0x9806YYZZ. `Y' is the file number, `Z' is count of 32-bit words. Set the file number to `Y' and the line counter to 0. The next Z * 4 bytes contain the file name, padded with zeros if the count is not a multiple of four. The same `Y' may occur multiple times, but `Z' must be 0 for all but the first occurrence. `lop_line' 0x9807YYZZ. `YZ' is the line number. Together with lop_file, it forms the source location for the next 32-bit word. Note that for each non-lopcode 32-bit word, line numbers are assumed incremented by one. `lop_spec' 0x9808YYZZ. `YZ' is the type number. Data until the next lopcode other than lop_quote forms special data of type `YZ'. *Note mmo section mapping::. Other types than 80, (or type 80 with a content that does not parse) is stored in sections named `.MMIX.spec_data.N' where N is the `YZ'-type. The flags for such a sections say not to allocate or load the data. The vma is 0. Contents of multiple occurrences of special data N is concatenated to the data of the previous lop_spec Ns. The location in data or code at which the lop_spec occurred is lost. `lop_pre' 0x980901ZZ. The first lopcode in a file. The `Z' field forms the length of header information in 32-bit words, where the first word tells the time in seconds since `00:00:00 GMT Jan 1 1970'. `lop_post' 0x980a00ZZ. Z > 32. This lopcode follows after all content-generating lopcodes in a program. The `Z' field denotes the value of `rG' at the beginning of the program. The following 256 - Z big-endian 64-bit words are loaded into global registers `$G' ... `$255'. `lop_stab' 0x980b0000. The next-to-last lopcode in a program. Must follow immediately after the lop_post lopcode and its data. After this lopcode follows all symbols in a compressed format (*note Symbol-table::). `lop_end' 0x980cYYZZ. The last lopcode in a program. It must follow the lop_stab lopcode and its data. The `YZ' field contains the number of 32-bit words of symbol table information after the preceding lop_stab lopcode. Note that the lopcode "fixups"; `lop_fixr', `lop_fixrx' and `lop_fixo' are not generated by BFD, but are handled. They are generated by `mmixal'. This trivial one-label, one-instruction file: :Main TRAP 1,2,3 can be represented this way in mmo: 0x98090101 - lop_pre, one 32-bit word with timestamp. <timestamp> 0x98010002 - lop_loc, text segment, using a 64-bit address. Note that mmixal does not emit this for the file above. 0x00000000 - Address, high 32 bits. 0x00000000 - Address, low 32 bits. 0x98060002 - lop_file, 2 32-bit words for file-name. 0x74657374 - "test" 0x2e730000 - ".s\0\0" 0x98070001 - lop_line, line 1. 0x00010203 - TRAP 1,2,3 0x980a00ff - lop_post, setting $255 to 0. 0x00000000 0x00000000 0x980b0000 - lop_stab for ":Main" = 0, serial 1. 0x203a4040 *Note Symbol-table::. 0x10404020 0x4d206120 0x69016e00 0x81000000 0x980c0005 - lop_end; symbol table contained five 32-bit words. File: bfd.info, Node: Symbol-table, Next: mmo section mapping, Prev: File layout, Up: mmo 3.5.2 Symbol table format ------------------------- From mmixal.w (or really, the generated mmixal.tex) in `http://www-cs-faculty.stanford.edu/~knuth/programs/mmix.tar.gz'): "Symbols are stored and retrieved by means of a `ternary search trie', following ideas of Bentley and Sedgewick. (See ACM-SIAM Symp. on Discrete Algorithms `8' (1997), 360-369; R.Sedgewick, `Algorithms in C' (Reading, Mass. Addison-Wesley, 1998), `15.4'.) Each trie node stores a character, and there are branches to subtries for the cases where a given character is less than, equal to, or greater than the character in the trie. There also is a pointer to a symbol table entry if a symbol ends at the current node." So it's a tree encoded as a stream of bytes. The stream of bytes acts on a single virtual global symbol, adding and removing characters and signalling complete symbol points. Here, we read the stream and create symbols at the completion points. First, there's a control byte `m'. If any of the listed bits in `m' is nonzero, we execute what stands at the right, in the listed order: (MMO3_LEFT) 0x40 - Traverse left trie. (Read a new command byte and recurse.) (MMO3_SYMBITS) 0x2f - Read the next byte as a character and store it in the current character position; increment character position. Test the bits of `m': (MMO3_WCHAR) 0x80 - The character is 16-bit (so read another byte, merge into current character. (MMO3_TYPEBITS) 0xf - We have a complete symbol; parse the type, value and serial number and do what should be done with a symbol. The type and length information is in j = (m & 0xf). (MMO3_REGQUAL_BITS) j == 0xf: A register variable. The following byte tells which register. j <= 8: An absolute symbol. Read j bytes as the big-endian number the symbol equals. A j = 2 with two zero bytes denotes an unknown symbol. j > 8: As with j <= 8, but add (0x20 << 56) to the value in the following j - 8 bytes. Then comes the serial number, as a variant of uleb128, but better named ubeb128: Read bytes and shift the previous value left 7 (multiply by 128). Add in the new byte, repeat until a byte has bit 7 set. The serial number is the computed value minus 128. (MMO3_MIDDLE) 0x20 - Traverse middle trie. (Read a new command byte and recurse.) Decrement character position. (MMO3_RIGHT) 0x10 - Traverse right trie. (Read a new command byte and recurse.) Let's look again at the `lop_stab' for the trivial file (*note File layout::). 0x980b0000 - lop_stab for ":Main" = 0, serial 1. 0x203a4040 0x10404020 0x4d206120 0x69016e00 0x81000000 This forms the trivial trie (note that the path between ":" and "M" is redundant): 203a ":" 40 / 40 / 10 \ 40 / 40 / 204d "M" 2061 "a" 2069 "i" 016e "n" is the last character in a full symbol, and with a value represented in one byte. 00 The value is 0. 81 The serial number is 1. File: bfd.info, Node: mmo section mapping, Prev: Symbol-table, Up: mmo 3.5.3 mmo section mapping ------------------------- The implementation in BFD uses special data type 80 (decimal) to encapsulate and describe named sections, containing e.g. debug information. If needed, any datum in the encapsulation will be quoted using lop_quote. First comes a 32-bit word holding the number of 32-bit words containing the zero-terminated zero-padded segment name. After the name there's a 32-bit word holding flags describing the section type. Then comes a 64-bit big-endian word with the section length (in bytes), then another with the section start address. Depending on the type of section, the contents might follow, zero-padded to 32-bit boundary. For a loadable section (such as data or code), the contents might follow at some later point, not necessarily immediately, as a lop_loc with the same start address as in the section description, followed by the contents. This in effect forms a descriptor that must be emitted before the actual contents. Sections described this way must not overlap. For areas that don't have such descriptors, synthetic sections are formed by BFD. Consecutive contents in the two memory areas `0x0000...00' to `0x01ff...ff' and `0x2000...00' to `0x20ff...ff' are entered in sections named `.text' and `.data' respectively. If an area is not otherwise described, but would together with a neighboring lower area be less than `0x40000000' bytes long, it is joined with the lower area and the gap is zero-filled. For other cases, a new section is formed, named `.MMIX.sec.N'. Here, N is a number, a running count through the mmo file, starting at 0. A loadable section specified as: .section secname,"ax" TETRA 1,2,3,4,-1,-2009 BYTE 80 and linked to address `0x4', is represented by the sequence: 0x98080050 - lop_spec 80 0x00000002 - two 32-bit words for the section name 0x7365636e - "secn" 0x616d6500 - "ame\0" 0x00000033 - flags CODE, READONLY, LOAD, ALLOC 0x00000000 - high 32 bits of section length 0x0000001c - section length is 28 bytes; 6 * 4 + 1 + alignment to 32 bits 0x00000000 - high 32 bits of section address 0x00000004 - section address is 4 0x98010002 - 64 bits with address of following data 0x00000000 - high 32 bits of address 0x00000004 - low 32 bits: data starts at address 4 0x00000001 - 1 0x00000002 - 2 0x00000003 - 3 0x00000004 - 4 0xffffffff - -1 0xfffff827 - -2009 0x50000000 - 80 as a byte, padded with zeros. Note that the lop_spec wrapping does not include the section contents. Compare this to a non-loaded section specified as: .section thirdsec TETRA 200001,100002 BYTE 38,40 This, when linked to address `0x200000000000001c', is represented by: 0x98080050 - lop_spec 80 0x00000002 - two 32-bit words for the section name 0x7365636e - "thir" 0x616d6500 - "dsec" 0x00000010 - flag READONLY 0x00000000 - high 32 bits of section length 0x0000000c - section length is 12 bytes; 2 * 4 + 2 + alignment to 32 bits 0x20000000 - high 32 bits of address 0x0000001c - low 32 bits of address 0x200000000000001c 0x00030d41 - 200001 0x000186a2 - 100002 0x26280000 - 38, 40 as bytes, padded with zeros For the latter example, the section contents must not be loaded in memory, and is therefore specified as part of the special data. The address is usually unimportant but might provide information for e.g. the DWARF 2 debugging format. File: bfd.info, Node: GNU Free Documentation License, Next: BFD Index, Prev: BFD back ends, Up: Top Appendix A GNU Free Documentation License ***************************************** Version 1.1, March 2000 Copyright (C) 2000, 2003 Free Software Foundation, Inc. 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. 0. PREAMBLE The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others. This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software. We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference. 1. APPLICABILITY AND DEFINITIONS This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you." A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language. A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them. The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License. The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License. A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not "Transparent" is called "Opaque." Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML produced by some word processors for output purposes only. The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text. 2. VERBATIM COPYING You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3. You may also lend copies, under the same conditions stated above, and you may publicly display copies. 3. COPYING IN QUANTITY If you publish printed copies of the Document numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects. If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages. If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of added material, which the general network-using public has access to download anonymously at no charge using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public. It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document. 4. MODIFICATIONS You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version: A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission. B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five). C. State on the Title page the name of the publisher of the Modified Version, as the publisher. D. Preserve all the copyright notices of the Document. E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices. F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below. G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice. H. Include an unaltered copy of this License. I. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence. J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission. K. In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein. L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles. M. Delete any section entitled "Endorsements." Such a section may not be included in the Modified Version. N. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section. If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles. You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties-for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard. You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one. The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version. 5. COMBINING DOCUMENTS You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice. The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work. In the combination, you must combine any sections entitled "History" in the various original documents, forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any sections entitled "Dedications." You must delete all sections entitled "Endorsements." 6. COLLECTIONS OF DOCUMENTS You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects. You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document. 7. AGGREGATION WITH INDEPENDENT WORKS A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an "aggregate", and this License does not apply to the other self-contained works thus compiled with the Document, on account of their being thus compiled, if they are not themselves derivative works of the Document. If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate. 8. TRANSLATION Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License provided that you also include the original English version of this License. In case of a disagreement between the translation and the original English version of this License, the original English version will prevail. 9. TERMINATION You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance. 10. FUTURE REVISIONS OF THIS LICENSE The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/. Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation. ADDENDUM: How to use this License for your documents ==================================================== To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page: Copyright (C) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section entitled "GNU Free Documentation License." If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts. If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software. File: bfd.info, Node: BFD Index, Prev: GNU Free Documentation License, Up: Top BFD Index ********* [index ] * Menu: * _bfd_final_link_relocate: Relocating the section contents. (line 22) * _bfd_generic_link_add_archive_symbols: Adding symbols from an archive. (line 12) * _bfd_generic_link_add_one_symbol: Adding symbols from an object file. (line 19) * _bfd_generic_make_empty_symbol: symbol handling functions. (line 92) * _bfd_link_add_symbols in target vector: Adding Symbols to the Hash Table. (line 6) * _bfd_link_final_link in target vector: Performing the Final Link. (line 6) * _bfd_link_hash_table_create in target vector: Creating a Linker Hash Table. (line 6) * _bfd_relocate_contents: Relocating the section contents. (line 22) * aout_SIZE_machine_type: aout. (line 147) * aout_SIZE_mkobject: aout. (line 139) * aout_SIZE_new_section_hook: aout. (line 177) * aout_SIZE_set_arch_mach: aout. (line 164) * aout_SIZE_some_aout_object_p: aout. (line 125) * aout_SIZE_swap_exec_header_in: aout. (line 101) * aout_SIZE_swap_exec_header_out: aout. (line 113) * arelent_chain: typedef arelent. (line 339) * BFD: Overview. (line 6) * BFD canonical format: Canonical format. (line 11) * bfd_alloc: Opening and Closing. (line 203) * bfd_alloc2: Opening and Closing. (line 212) * bfd_alt_mach_code: BFD front end. (line 602) * bfd_arch_bits_per_address: Architectures. (line 481) * bfd_arch_bits_per_byte: Architectures. (line 473) * bfd_arch_get_compatible: Architectures. (line 416) * bfd_arch_list: Architectures. (line 407) * bfd_arch_mach_octets_per_byte: Architectures. (line 550) * BFD_ARELOC_BFIN_ADD: howto manager. (line 942) * BFD_ARELOC_BFIN_ADDR: howto manager. (line 993) * BFD_ARELOC_BFIN_AND: howto manager. (line 963) * BFD_ARELOC_BFIN_COMP: howto manager. (line 984) * BFD_ARELOC_BFIN_CONST: howto manager. (line 939) * BFD_ARELOC_BFIN_DIV: howto manager. (line 951) * BFD_ARELOC_BFIN_HWPAGE: howto manager. (line 990) * BFD_ARELOC_BFIN_LAND: howto manager. (line 972) * BFD_ARELOC_BFIN_LEN: howto manager. (line 978) * BFD_ARELOC_BFIN_LOR: howto manager. (line 975) * BFD_ARELOC_BFIN_LSHIFT: howto manager. (line 957) * BFD_ARELOC_BFIN_MOD: howto manager. (line 954) * BFD_ARELOC_BFIN_MULT: howto manager. (line 948) * BFD_ARELOC_BFIN_NEG: howto manager. (line 981) * BFD_ARELOC_BFIN_OR: howto manager. (line 966) * BFD_ARELOC_BFIN_PAGE: howto manager. (line 987) * BFD_ARELOC_BFIN_PUSH: howto manager. (line 936) * BFD_ARELOC_BFIN_RSHIFT: howto manager. (line 960) * BFD_ARELOC_BFIN_SUB: howto manager. (line 945) * BFD_ARELOC_BFIN_XOR: howto manager. (line 969) * bfd_cache_close: File Caching. (line 26) * bfd_cache_close_all: File Caching. (line 39) * bfd_cache_init: File Caching. (line 18) * bfd_calc_gnu_debuglink_crc32: Opening and Closing. (line 239) * bfd_canonicalize_reloc: BFD front end. (line 321) * bfd_canonicalize_symtab: symbol handling functions. (line 50) * bfd_check_format: Formats. (line 21) * bfd_check_format_matches: Formats. (line 52) * bfd_check_overflow: typedef arelent. (line 351) * bfd_close: Opening and Closing. (line 128) * bfd_close_all_done: Opening and Closing. (line 146) * bfd_coff_backend_data: coff. (line 246) * bfd_copy_private_bfd_data: BFD front end. (line 460) * bfd_copy_private_header_data: BFD front end. (line 442) * bfd_copy_private_section_data: section prototypes. (line 255) * bfd_copy_private_symbol_data: symbol handling functions. (line 140) * bfd_core_file_failing_command: Core Files. (line 12) * bfd_core_file_failing_signal: Core Files. (line 21) * bfd_create: Opening and Closing. (line 165) * bfd_create_gnu_debuglink_section: Opening and Closing. (line 305) * bfd_decode_symclass: symbol handling functions. (line 111) * bfd_default_arch_struct: Architectures. (line 428) * bfd_default_compatible: Architectures. (line 490) * bfd_default_reloc_type_lookup: howto manager. (line 2023) * bfd_default_scan: Architectures. (line 499) * bfd_default_set_arch_mach: Architectures. (line 446) * bfd_elf_find_section: elf. (line 13) * bfd_emul_get_commonpagesize: BFD front end. (line 680) * bfd_emul_get_maxpagesize: BFD front end. (line 660) * bfd_emul_set_commonpagesize: BFD front end. (line 691) * bfd_emul_set_maxpagesize: BFD front end. (line 671) * bfd_errmsg: BFD front end. (line 246) * bfd_fdopenr: Opening and Closing. (line 46) * bfd_fill_in_gnu_debuglink_section: Opening and Closing. (line 319) * bfd_find_target: bfd_target. (line 435) * bfd_follow_gnu_debuglink: Opening and Closing. (line 284) * bfd_fopen: Opening and Closing. (line 9) * bfd_format_string: Formats. (line 79) * bfd_generic_discard_group: section prototypes. (line 281) * bfd_generic_gc_sections: howto manager. (line 2054) * bfd_generic_get_relocated_section_contents: howto manager. (line 2074) * bfd_generic_is_group_section: section prototypes. (line 273) * bfd_generic_merge_sections: howto manager. (line 2064) * bfd_generic_relax_section: howto manager. (line 2041) * bfd_get_arch: Architectures. (line 457) * bfd_get_arch_info: Architectures. (line 509) * bfd_get_arch_size: BFD front end. (line 365) * bfd_get_error: BFD front end. (line 227) * bfd_get_error_handler: BFD front end. (line 297) * bfd_get_gp_size: BFD front end. (line 406) * bfd_get_mach: Architectures. (line 465) * bfd_get_mtime: BFD front end. (line 730) * bfd_get_next_mapent: Archives. (line 52) * bfd_get_reloc_code_name: howto manager. (line 2032) * bfd_get_reloc_size: typedef arelent. (line 330) * bfd_get_reloc_upper_bound: BFD front end. (line 311) * bfd_get_section_by_name: section prototypes. (line 17) * bfd_get_section_by_name_if: section prototypes. (line 31) * bfd_get_section_contents: section prototypes. (line 228) * bfd_get_sign_extend_vma: BFD front end. (line 378) * bfd_get_size <1>: Internal. (line 25) * bfd_get_size: BFD front end. (line 739) * bfd_get_symtab_upper_bound: symbol handling functions. (line 6) * bfd_get_unique_section_name: section prototypes. (line 50) * bfd_h_put_size: Internal. (line 97) * bfd_hash_allocate: Creating and Freeing a Hash Table. (line 17) * bfd_hash_lookup: Looking Up or Entering a String. (line 6) * bfd_hash_newfunc: Creating and Freeing a Hash Table. (line 12) * bfd_hash_set_default_size: Creating and Freeing a Hash Table. (line 25) * bfd_hash_table_free: Creating and Freeing a Hash Table. (line 21) * bfd_hash_table_init: Creating and Freeing a Hash Table. (line 6) * bfd_hash_table_init_n: Creating and Freeing a Hash Table. (line 6) * bfd_hash_traverse: Traversing a Hash Table. (line 6) * bfd_init: Initialization. (line 11) * bfd_install_relocation: typedef arelent. (line 392) * bfd_is_local_label: symbol handling functions. (line 17) * bfd_is_local_label_name: symbol handling functions. (line 26) * bfd_is_target_special_symbol: symbol handling functions. (line 38) * bfd_is_undefined_symclass: symbol handling functions. (line 120) * bfd_link_split_section: Writing the symbol table. (line 44) * bfd_log2: Internal. (line 164) * bfd_lookup_arch: Architectures. (line 517) * bfd_make_debug_symbol: symbol handling functions. (line 102) * bfd_make_empty_symbol: symbol handling functions. (line 78) * bfd_make_readable: Opening and Closing. (line 189) * bfd_make_section: section prototypes. (line 129) * bfd_make_section_anyway: section prototypes. (line 100) * bfd_make_section_anyway_with_flags: section prototypes. (line 82) * bfd_make_section_old_way: section prototypes. (line 62) * bfd_make_section_with_flags: section prototypes. (line 116) * bfd_make_writable: Opening and Closing. (line 175) * bfd_malloc_and_get_section: section prototypes. (line 245) * bfd_map_over_sections: section prototypes. (line 155) * bfd_merge_private_bfd_data: BFD front end. (line 476) * bfd_octets_per_byte: Architectures. (line 540) * bfd_open_file: File Caching. (line 52) * bfd_openr: Opening and Closing. (line 30) * bfd_openr_iovec: Opening and Closing. (line 76) * bfd_openr_next_archived_file: Archives. (line 78) * bfd_openstreamr: Opening and Closing. (line 67) * bfd_openw: Opening and Closing. (line 116) * bfd_perform_relocation: typedef arelent. (line 367) * bfd_perror: BFD front end. (line 255) * bfd_preserve_finish: BFD front end. (line 650) * bfd_preserve_restore: BFD front end. (line 640) * bfd_preserve_save: BFD front end. (line 624) * bfd_print_symbol_vandf: symbol handling functions. (line 70) * bfd_printable_arch_mach: Architectures. (line 528) * bfd_printable_name: Architectures. (line 388) * bfd_put_size: Internal. (line 22) * BFD_RELOC_12_PCREL: howto manager. (line 39) * BFD_RELOC_14: howto manager. (line 31) * BFD_RELOC_16: howto manager. (line 30) * BFD_RELOC_16_BASEREL: howto manager. (line 80) * BFD_RELOC_16_GOT_PCREL: howto manager. (line 52) * BFD_RELOC_16_GOTOFF: howto manager. (line 55) * BFD_RELOC_16_PCREL: howto manager. (line 38) * BFD_RELOC_16_PCREL_S2: howto manager. (line 92) * BFD_RELOC_16_PLT_PCREL: howto manager. (line 63) * BFD_RELOC_16_PLTOFF: howto manager. (line 67) * BFD_RELOC_16C_ABS20: howto manager. (line 1747) * BFD_RELOC_16C_ABS20_C: howto manager. (line 1748) * BFD_RELOC_16C_ABS24: howto manager. (line 1749) * BFD_RELOC_16C_ABS24_C: howto manager. (line 1750) * BFD_RELOC_16C_DISP04: howto manager. (line 1727) * BFD_RELOC_16C_DISP04_C: howto manager. (line 1728) * BFD_RELOC_16C_DISP08: howto manager. (line 1729) * BFD_RELOC_16C_DISP08_C: howto manager. (line 1730) * BFD_RELOC_16C_DISP16: howto manager. (line 1731) * BFD_RELOC_16C_DISP16_C: howto manager. (line 1732) * BFD_RELOC_16C_DISP24: howto manager. (line 1733) * BFD_RELOC_16C_DISP24_C: howto manager. (line 1734) * BFD_RELOC_16C_DISP24a: howto manager. (line 1735) * BFD_RELOC_16C_DISP24a_C: howto manager. (line 1736) * BFD_RELOC_16C_IMM04: howto manager. (line 1751) * BFD_RELOC_16C_IMM04_C: howto manager. (line 1752) * BFD_RELOC_16C_IMM16: howto manager. (line 1753) * BFD_RELOC_16C_IMM16_C: howto manager. (line 1754) * BFD_RELOC_16C_IMM20: howto manager. (line 1755) * BFD_RELOC_16C_IMM20_C: howto manager. (line 1756) * BFD_RELOC_16C_IMM24: howto manager. (line 1757) * BFD_RELOC_16C_IMM24_C: howto manager. (line 1758) * BFD_RELOC_16C_IMM32: howto manager. (line 1759) * BFD_RELOC_16C_IMM32_C: howto manager. (line 1760) * BFD_RELOC_16C_NUM08: howto manager. (line 1721) * BFD_RELOC_16C_NUM08_C: howto manager. (line 1722) * BFD_RELOC_16C_NUM16: howto manager. (line 1723) * BFD_RELOC_16C_NUM16_C: howto manager. (line 1724) * BFD_RELOC_16C_NUM32: howto manager. (line 1725) * BFD_RELOC_16C_NUM32_C: howto manager. (line 1726) * BFD_RELOC_16C_REG04: howto manager. (line 1737) * BFD_RELOC_16C_REG04_C: howto manager. (line 1738) * BFD_RELOC_16C_REG04a: howto manager. (line 1739) * BFD_RELOC_16C_REG04a_C: howto manager. (line 1740) * BFD_RELOC_16C_REG14: howto manager. (line 1741) * BFD_RELOC_16C_REG14_C: howto manager. (line 1742) * BFD_RELOC_16C_REG16: howto manager. (line 1743) * BFD_RELOC_16C_REG16_C: howto manager. (line 1744) * BFD_RELOC_16C_REG20: howto manager. (line 1745) * BFD_RELOC_16C_REG20_C: howto manager. (line 1746) * BFD_RELOC_23_PCREL_S2: howto manager. (line 93) * BFD_RELOC_24: howto manager. (line 29) * BFD_RELOC_24_PCREL: howto manager. (line 37) * BFD_RELOC_24_PLT_PCREL: howto manager. (line 62) * BFD_RELOC_26: howto manager. (line 28) * BFD_RELOC_32: howto manager. (line 27) * BFD_RELOC_32_BASEREL: howto manager. (line 79) * BFD_RELOC_32_GOT_PCREL: howto manager. (line 51) * BFD_RELOC_32_GOTOFF: howto manager. (line 54) * BFD_RELOC_32_PCREL: howto manager. (line 36) * BFD_RELOC_32_PCREL_S2: howto manager. (line 91) * BFD_RELOC_32_PLT_PCREL: howto manager. (line 61) * BFD_RELOC_32_PLTOFF: howto manager. (line 66) * BFD_RELOC_32_SECREL: howto manager. (line 48) * BFD_RELOC_386_COPY: howto manager. (line 449) * BFD_RELOC_386_GLOB_DAT: howto manager. (line 450) * BFD_RELOC_386_GOT32: howto manager. (line 447) * BFD_RELOC_386_GOTOFF: howto manager. (line 453) * BFD_RELOC_386_GOTPC: howto manager. (line 454) * BFD_RELOC_386_JUMP_SLOT: howto manager. (line 451) * BFD_RELOC_386_PLT32: howto manager. (line 448) * BFD_RELOC_386_RELATIVE: howto manager. (line 452) * BFD_RELOC_386_TLS_DESC: howto manager. (line 469) * BFD_RELOC_386_TLS_DESC_CALL: howto manager. (line 468) * BFD_RELOC_386_TLS_DTPMOD32: howto manager. (line 464) * BFD_RELOC_386_TLS_DTPOFF32: howto manager. (line 465) * BFD_RELOC_386_TLS_GD: howto manager. (line 459) * BFD_RELOC_386_TLS_GOTDESC: howto manager. (line 467) * BFD_RELOC_386_TLS_GOTIE: howto manager. (line 457) * BFD_RELOC_386_TLS_IE: howto manager. (line 456) * BFD_RELOC_386_TLS_IE_32: howto manager. (line 462) * BFD_RELOC_386_TLS_LDM: howto manager. (line 460) * BFD_RELOC_386_TLS_LDO_32: howto manager. (line 461) * BFD_RELOC_386_TLS_LE: howto manager. (line 458) * BFD_RELOC_386_TLS_LE_32: howto manager. (line 463) * BFD_RELOC_386_TLS_TPOFF: howto manager. (line 455) * BFD_RELOC_386_TLS_TPOFF32: howto manager. (line 466) * BFD_RELOC_390_12: howto manager. (line 1413) * BFD_RELOC_390_20: howto manager. (line 1513) * BFD_RELOC_390_COPY: howto manager. (line 1422) * BFD_RELOC_390_GLOB_DAT: howto manager. (line 1425) * BFD_RELOC_390_GOT12: howto manager. (line 1416) * BFD_RELOC_390_GOT16: howto manager. (line 1437) * BFD_RELOC_390_GOT20: howto manager. (line 1514) * BFD_RELOC_390_GOT64: howto manager. (line 1455) * BFD_RELOC_390_GOTENT: howto manager. (line 1461) * BFD_RELOC_390_GOTOFF64: howto manager. (line 1464) * BFD_RELOC_390_GOTPC: howto manager. (line 1434) * BFD_RELOC_390_GOTPCDBL: howto manager. (line 1452) * BFD_RELOC_390_GOTPLT12: howto manager. (line 1467) * BFD_RELOC_390_GOTPLT16: howto manager. (line 1470) * BFD_RELOC_390_GOTPLT20: howto manager. (line 1515) * BFD_RELOC_390_GOTPLT32: howto manager. (line 1473) * BFD_RELOC_390_GOTPLT64: howto manager. (line 1476) * BFD_RELOC_390_GOTPLTENT: howto manager. (line 1479) * BFD_RELOC_390_JMP_SLOT: howto manager. (line 1428) * BFD_RELOC_390_PC16DBL: howto manager. (line 1440) * BFD_RELOC_390_PC32DBL: howto manager. (line 1446) * BFD_RELOC_390_PLT16DBL: howto manager. (line 1443) * BFD_RELOC_390_PLT32: howto manager. (line 1419) * BFD_RELOC_390_PLT32DBL: howto manager. (line 1449) * BFD_RELOC_390_PLT64: howto manager. (line 1458) * BFD_RELOC_390_PLTOFF16: howto manager. (line 1482) * BFD_RELOC_390_PLTOFF32: howto manager. (line 1485) * BFD_RELOC_390_PLTOFF64: howto manager. (line 1488) * BFD_RELOC_390_RELATIVE: howto manager. (line 1431) * BFD_RELOC_390_TLS_DTPMOD: howto manager. (line 1508) * BFD_RELOC_390_TLS_DTPOFF: howto manager. (line 1509) * BFD_RELOC_390_TLS_GD32: howto manager. (line 1494) * BFD_RELOC_390_TLS_GD64: howto manager. (line 1495) * BFD_RELOC_390_TLS_GDCALL: howto manager. (line 1492) * BFD_RELOC_390_TLS_GOTIE12: howto manager. (line 1496) * BFD_RELOC_390_TLS_GOTIE20: howto manager. (line 1516) * BFD_RELOC_390_TLS_GOTIE32: howto manager. (line 1497) * BFD_RELOC_390_TLS_GOTIE64: howto manager. (line 1498) * BFD_RELOC_390_TLS_IE32: howto manager. (line 1501) * BFD_RELOC_390_TLS_IE64: howto manager. (line 1502) * BFD_RELOC_390_TLS_IEENT: howto manager. (line 1503) * BFD_RELOC_390_TLS_LDCALL: howto manager. (line 1493) * BFD_RELOC_390_TLS_LDM32: howto manager. (line 1499) * BFD_RELOC_390_TLS_LDM64: howto manager. (line 1500) * BFD_RELOC_390_TLS_LDO32: howto manager. (line 1506) * BFD_RELOC_390_TLS_LDO64: howto manager. (line 1507) * BFD_RELOC_390_TLS_LE32: howto manager. (line 1504) * BFD_RELOC_390_TLS_LE64: howto manager. (line 1505) * BFD_RELOC_390_TLS_LOAD: howto manager. (line 1491) * BFD_RELOC_390_TLS_TPOFF: howto manager. (line 1510) * BFD_RELOC_64: howto manager. (line 26) * BFD_RELOC_64_PCREL: howto manager. (line 35) * BFD_RELOC_64_PLT_PCREL: howto manager. (line 60) * BFD_RELOC_64_PLTOFF: howto manager. (line 65) * BFD_RELOC_68K_GLOB_DAT: howto manager. (line 74) * BFD_RELOC_68K_JMP_SLOT: howto manager. (line 75) * BFD_RELOC_68K_RELATIVE: howto manager. (line 76) * BFD_RELOC_8: howto manager. (line 32) * BFD_RELOC_860_COPY: howto manager. (line 1826) * BFD_RELOC_860_GLOB_DAT: howto manager. (line 1827) * BFD_RELOC_860_HAGOT: howto manager. (line 1852) * BFD_RELOC_860_HAGOTOFF: howto manager. (line 1853) * BFD_RELOC_860_HAPC: howto manager. (line 1854) * BFD_RELOC_860_HIGH: howto manager. (line 1855) * BFD_RELOC_860_HIGHADJ: howto manager. (line 1851) * BFD_RELOC_860_HIGOT: howto manager. (line 1856) * BFD_RELOC_860_HIGOTOFF: howto manager. (line 1857) * BFD_RELOC_860_JUMP_SLOT: howto manager. (line 1828) * BFD_RELOC_860_LOGOT0: howto manager. (line 1840) * BFD_RELOC_860_LOGOT1: howto manager. (line 1842) * BFD_RELOC_860_LOGOTOFF0: howto manager. (line 1844) * BFD_RELOC_860_LOGOTOFF1: howto manager. (line 1846) * BFD_RELOC_860_LOGOTOFF2: howto manager. (line 1848) * BFD_RELOC_860_LOGOTOFF3: howto manager. (line 1849) * BFD_RELOC_860_LOPC: howto manager. (line 1850) * BFD_RELOC_860_LOW0: howto manager. (line 1833) * BFD_RELOC_860_LOW1: howto manager. (line 1835) * BFD_RELOC_860_LOW2: howto manager. (line 1837) * BFD_RELOC_860_LOW3: howto manager. (line 1839) * BFD_RELOC_860_PC16: howto manager. (line 1832) * BFD_RELOC_860_PC26: howto manager. (line 1830) * BFD_RELOC_860_PLT26: howto manager. (line 1831) * BFD_RELOC_860_RELATIVE: howto manager. (line 1829) * BFD_RELOC_860_SPGOT0: howto manager. (line 1841) * BFD_RELOC_860_SPGOT1: howto manager. (line 1843) * BFD_RELOC_860_SPGOTOFF0: howto manager. (line 1845) * BFD_RELOC_860_SPGOTOFF1: howto manager. (line 1847) * BFD_RELOC_860_SPLIT0: howto manager. (line 1834) * BFD_RELOC_860_SPLIT1: howto manager. (line 1836) * BFD_RELOC_860_SPLIT2: howto manager. (line 1838) * BFD_RELOC_8_BASEREL: howto manager. (line 84) * BFD_RELOC_8_FFnn: howto manager. (line 88) * BFD_RELOC_8_GOT_PCREL: howto manager. (line 53) * BFD_RELOC_8_GOTOFF: howto manager. (line 59) * BFD_RELOC_8_PCREL: howto manager. (line 40) * BFD_RELOC_8_PLT_PCREL: howto manager. (line 64) * BFD_RELOC_8_PLTOFF: howto manager. (line 71) * BFD_RELOC_ALPHA_BRSGP: howto manager. (line 273) * BFD_RELOC_ALPHA_CODEADDR: howto manager. (line 264) * BFD_RELOC_ALPHA_DTPMOD64: howto manager. (line 280) * BFD_RELOC_ALPHA_DTPREL16: howto manager. (line 285) * BFD_RELOC_ALPHA_DTPREL64: howto manager. (line 282) * BFD_RELOC_ALPHA_DTPREL_HI16: howto manager. (line 283) * BFD_RELOC_ALPHA_DTPREL_LO16: howto manager. (line 284) * BFD_RELOC_ALPHA_ELF_LITERAL: howto manager. (line 229) * BFD_RELOC_ALPHA_GOTDTPREL16: howto manager. (line 281) * BFD_RELOC_ALPHA_GOTTPREL16: howto manager. (line 286) * BFD_RELOC_ALPHA_GPDISP: howto manager. (line 223) * BFD_RELOC_ALPHA_GPDISP_HI16: howto manager. (line 209) * BFD_RELOC_ALPHA_GPDISP_LO16: howto manager. (line 217) * BFD_RELOC_ALPHA_GPREL_HI16: howto manager. (line 268) * BFD_RELOC_ALPHA_GPREL_LO16: howto manager. (line 269) * BFD_RELOC_ALPHA_HINT: howto manager. (line 255) * BFD_RELOC_ALPHA_LINKAGE: howto manager. (line 260) * BFD_RELOC_ALPHA_LITERAL: howto manager. (line 228) * BFD_RELOC_ALPHA_LITUSE: howto manager. (line 230) * BFD_RELOC_ALPHA_TLSGD: howto manager. (line 278) * BFD_RELOC_ALPHA_TLSLDM: howto manager. (line 279) * BFD_RELOC_ALPHA_TPREL16: howto manager. (line 290) * BFD_RELOC_ALPHA_TPREL64: howto manager. (line 287) * BFD_RELOC_ALPHA_TPREL_HI16: howto manager. (line 288) * BFD_RELOC_ALPHA_TPREL_LO16: howto manager. (line 289) * BFD_RELOC_ARC_B22_PCREL: howto manager. (line 871) * BFD_RELOC_ARC_B26: howto manager. (line 876) * BFD_RELOC_ARM_ADR_IMM: howto manager. (line 764) * BFD_RELOC_ARM_ADRL_IMMEDIATE: howto manager. (line 751) * BFD_RELOC_ARM_ALU_PC_G0: howto manager. (line 721) * BFD_RELOC_ARM_ALU_PC_G0_NC: howto manager. (line 720) * BFD_RELOC_ARM_ALU_PC_G1: howto manager. (line 723) * BFD_RELOC_ARM_ALU_PC_G1_NC: howto manager. (line 722) * BFD_RELOC_ARM_ALU_PC_G2: howto manager. (line 724) * BFD_RELOC_ARM_ALU_SB_G0: howto manager. (line 735) * BFD_RELOC_ARM_ALU_SB_G0_NC: howto manager. (line 734) * BFD_RELOC_ARM_ALU_SB_G1: howto manager. (line 737) * BFD_RELOC_ARM_ALU_SB_G1_NC: howto manager. (line 736) * BFD_RELOC_ARM_ALU_SB_G2: howto manager. (line 738) * BFD_RELOC_ARM_CP_OFF_IMM: howto manager. (line 760) * BFD_RELOC_ARM_CP_OFF_IMM_S2: howto manager. (line 761) * BFD_RELOC_ARM_GLOB_DAT: howto manager. (line 702) * BFD_RELOC_ARM_GOT32: howto manager. (line 703) * BFD_RELOC_ARM_GOTOFF: howto manager. (line 706) * BFD_RELOC_ARM_GOTPC: howto manager. (line 707) * BFD_RELOC_ARM_HWLITERAL: howto manager. (line 771) * BFD_RELOC_ARM_IMMEDIATE: howto manager. (line 750) * BFD_RELOC_ARM_IN_POOL: howto manager. (line 767) * BFD_RELOC_ARM_JUMP_SLOT: howto manager. (line 701) * BFD_RELOC_ARM_LDC_PC_G0: howto manager. (line 731) * BFD_RELOC_ARM_LDC_PC_G1: howto manager. (line 732) * BFD_RELOC_ARM_LDC_PC_G2: howto manager. (line 733) * BFD_RELOC_ARM_LDC_SB_G0: howto manager. (line 745) * BFD_RELOC_ARM_LDC_SB_G1: howto manager. (line 746) * BFD_RELOC_ARM_LDC_SB_G2: howto manager. (line 747) * BFD_RELOC_ARM_LDR_IMM: howto manager. (line 765) * BFD_RELOC_ARM_LDR_PC_G0: howto manager. (line 725) * BFD_RELOC_ARM_LDR_PC_G1: howto manager. (line 726) * BFD_RELOC_ARM_LDR_PC_G2: howto manager. (line 727) * BFD_RELOC_ARM_LDR_SB_G0: howto manager. (line 739) * BFD_RELOC_ARM_LDR_SB_G1: howto manager. (line 740) * BFD_RELOC_ARM_LDR_SB_G2: howto manager. (line 741) * BFD_RELOC_ARM_LDRS_PC_G0: howto manager. (line 728) * BFD_RELOC_ARM_LDRS_PC_G1: howto manager. (line 729) * BFD_RELOC_ARM_LDRS_PC_G2: howto manager. (line 730) * BFD_RELOC_ARM_LDRS_SB_G0: howto manager. (line 742) * BFD_RELOC_ARM_LDRS_SB_G1: howto manager. (line 743) * BFD_RELOC_ARM_LDRS_SB_G2: howto manager. (line 744) * BFD_RELOC_ARM_LITERAL: howto manager. (line 766) * BFD_RELOC_ARM_MOVT: howto manager. (line 692) * BFD_RELOC_ARM_MOVT_PCREL: howto manager. (line 694) * BFD_RELOC_ARM_MOVW: howto manager. (line 691) * BFD_RELOC_ARM_MOVW_PCREL: howto manager. (line 693) * BFD_RELOC_ARM_MULTI: howto manager. (line 759) * BFD_RELOC_ARM_OFFSET_IMM: howto manager. (line 665) * BFD_RELOC_ARM_OFFSET_IMM8: howto manager. (line 768) * BFD_RELOC_ARM_PCREL_BLX: howto manager. (line 636) * BFD_RELOC_ARM_PCREL_BRANCH: howto manager. (line 632) * BFD_RELOC_ARM_PCREL_CALL: howto manager. (line 646) * BFD_RELOC_ARM_PCREL_JUMP: howto manager. (line 650) * BFD_RELOC_ARM_PLT32: howto manager. (line 704) * BFD_RELOC_ARM_PREL31: howto manager. (line 688) * BFD_RELOC_ARM_RELATIVE: howto manager. (line 705) * BFD_RELOC_ARM_ROSEGREL32: howto manager. (line 677) * BFD_RELOC_ARM_SBREL32: howto manager. (line 680) * BFD_RELOC_ARM_SHIFT_IMM: howto manager. (line 756) * BFD_RELOC_ARM_SMC: howto manager. (line 757) * BFD_RELOC_ARM_SWI: howto manager. (line 758) * BFD_RELOC_ARM_T32_ADD_IMM: howto manager. (line 753) * BFD_RELOC_ARM_T32_ADD_PC12: howto manager. (line 755) * BFD_RELOC_ARM_T32_CP_OFF_IMM: howto manager. (line 762) * BFD_RELOC_ARM_T32_CP_OFF_IMM_S2: howto manager. (line 763) * BFD_RELOC_ARM_T32_IMM12: howto manager. (line 754) * BFD_RELOC_ARM_T32_IMMEDIATE: howto manager. (line 752) * BFD_RELOC_ARM_T32_OFFSET_IMM: howto manager. (line 770) * BFD_RELOC_ARM_T32_OFFSET_U8: howto manager. (line 769) * BFD_RELOC_ARM_TARGET1: howto manager. (line 673) * BFD_RELOC_ARM_TARGET2: howto manager. (line 683) * BFD_RELOC_ARM_THUMB_ADD: howto manager. (line 772) * BFD_RELOC_ARM_THUMB_IMM: howto manager. (line 773) * BFD_RELOC_ARM_THUMB_MOVT: howto manager. (line 696) * BFD_RELOC_ARM_THUMB_MOVT_PCREL: howto manager. (line 698) * BFD_RELOC_ARM_THUMB_MOVW: howto manager. (line 695) * BFD_RELOC_ARM_THUMB_MOVW_PCREL: howto manager. (line 697) * BFD_RELOC_ARM_THUMB_OFFSET: howto manager. (line 669) * BFD_RELOC_ARM_THUMB_SHIFT: howto manager. (line 774) * BFD_RELOC_ARM_TLS_DTPMOD32: howto manager. (line 714) * BFD_RELOC_ARM_TLS_DTPOFF32: howto manager. (line 713) * BFD_RELOC_ARM_TLS_GD32: howto manager. (line 710) * BFD_RELOC_ARM_TLS_IE32: howto manager. (line 716) * BFD_RELOC_ARM_TLS_LDM32: howto manager. (line 712) * BFD_RELOC_ARM_TLS_LDO32: howto manager. (line 711) * BFD_RELOC_ARM_TLS_LE32: howto manager. (line 717) * BFD_RELOC_ARM_TLS_TPOFF32: howto manager. (line 715) * BFD_RELOC_AVR_13_PCREL: howto manager. (line 1314) * BFD_RELOC_AVR_16_PM: howto manager. (line 1318) * BFD_RELOC_AVR_6: howto manager. (line 1405) * BFD_RELOC_AVR_6_ADIW: howto manager. (line 1409) * BFD_RELOC_AVR_7_PCREL: howto manager. (line 1310) * BFD_RELOC_AVR_CALL: howto manager. (line 1397) * BFD_RELOC_AVR_HH8_LDI: howto manager. (line 1330) * BFD_RELOC_AVR_HH8_LDI_NEG: howto manager. (line 1349) * BFD_RELOC_AVR_HH8_LDI_PM: howto manager. (line 1378) * BFD_RELOC_AVR_HH8_LDI_PM_NEG: howto manager. (line 1392) * BFD_RELOC_AVR_HI8_LDI: howto manager. (line 1326) * BFD_RELOC_AVR_HI8_LDI_GS: howto manager. (line 1372) * BFD_RELOC_AVR_HI8_LDI_NEG: howto manager. (line 1344) * BFD_RELOC_AVR_HI8_LDI_PM: howto manager. (line 1368) * BFD_RELOC_AVR_HI8_LDI_PM_NEG: howto manager. (line 1387) * BFD_RELOC_AVR_LDI: howto manager. (line 1401) * BFD_RELOC_AVR_LO8_LDI: howto manager. (line 1322) * BFD_RELOC_AVR_LO8_LDI_GS: howto manager. (line 1362) * BFD_RELOC_AVR_LO8_LDI_NEG: howto manager. (line 1339) * BFD_RELOC_AVR_LO8_LDI_PM: howto manager. (line 1358) * BFD_RELOC_AVR_LO8_LDI_PM_NEG: howto manager. (line 1383) * BFD_RELOC_AVR_MS8_LDI: howto manager. (line 1335) * BFD_RELOC_AVR_MS8_LDI_NEG: howto manager. (line 1354) * BFD_RELOC_BFIN_10_PCREL: howto manager. (line 896) * BFD_RELOC_BFIN_11_PCREL: howto manager. (line 899) * BFD_RELOC_BFIN_12_PCREL_JUMP: howto manager. (line 902) * BFD_RELOC_BFIN_12_PCREL_JUMP_S: howto manager. (line 905) * BFD_RELOC_BFIN_16_HIGH: howto manager. (line 884) * BFD_RELOC_BFIN_16_IMM: howto manager. (line 881) * BFD_RELOC_BFIN_16_LOW: howto manager. (line 893) * BFD_RELOC_BFIN_24_PCREL_CALL_X: howto manager. (line 908) * BFD_RELOC_BFIN_24_PCREL_JUMP_L: howto manager. (line 911) * BFD_RELOC_BFIN_4_PCREL: howto manager. (line 887) * BFD_RELOC_BFIN_5_PCREL: howto manager. (line 890) * BFD_RELOC_BFIN_FUNCDESC: howto manager. (line 917) * BFD_RELOC_BFIN_FUNCDESC_GOT17M4: howto manager. (line 918) * BFD_RELOC_BFIN_FUNCDESC_GOTHI: howto manager. (line 919) * BFD_RELOC_BFIN_FUNCDESC_GOTLO: howto manager. (line 920) * BFD_RELOC_BFIN_FUNCDESC_GOTOFF17M4: howto manager. (line 922) * BFD_RELOC_BFIN_FUNCDESC_GOTOFFHI: howto manager. (line 923) * BFD_RELOC_BFIN_FUNCDESC_GOTOFFLO: howto manager. (line 924) * BFD_RELOC_BFIN_FUNCDESC_VALUE: howto manager. (line 921) * BFD_RELOC_BFIN_GOT: howto manager. (line 930) * BFD_RELOC_BFIN_GOT17M4: howto manager. (line 914) * BFD_RELOC_BFIN_GOTHI: howto manager. (line 915) * BFD_RELOC_BFIN_GOTLO: howto manager. (line 916) * BFD_RELOC_BFIN_GOTOFF17M4: howto manager. (line 925) * BFD_RELOC_BFIN_GOTOFFHI: howto manager. (line 926) * BFD_RELOC_BFIN_GOTOFFLO: howto manager. (line 927) * BFD_RELOC_BFIN_PLTPC: howto manager. (line 933) * bfd_reloc_code_type: howto manager. (line 10) * BFD_RELOC_CRIS_16_GOT: howto manager. (line 1807) * BFD_RELOC_CRIS_16_GOTPLT: howto manager. (line 1813) * BFD_RELOC_CRIS_32_GOT: howto manager. (line 1804) * BFD_RELOC_CRIS_32_GOTPLT: howto manager. (line 1810) * BFD_RELOC_CRIS_32_GOTREL: howto manager. (line 1816) * BFD_RELOC_CRIS_32_PLT_GOTREL: howto manager. (line 1819) * BFD_RELOC_CRIS_32_PLT_PCREL: howto manager. (line 1822) * BFD_RELOC_CRIS_BDISP8: howto manager. (line 1785) * BFD_RELOC_CRIS_COPY: howto manager. (line 1798) * BFD_RELOC_CRIS_GLOB_DAT: howto manager. (line 1799) * BFD_RELOC_CRIS_JUMP_SLOT: howto manager. (line 1800) * BFD_RELOC_CRIS_LAPCQ_OFFSET: howto manager. (line 1793) * BFD_RELOC_CRIS_RELATIVE: howto manager. (line 1801) * BFD_RELOC_CRIS_SIGNED_16: howto manager. (line 1791) * BFD_RELOC_CRIS_SIGNED_6: howto manager. (line 1787) * BFD_RELOC_CRIS_SIGNED_8: howto manager. (line 1789) * BFD_RELOC_CRIS_UNSIGNED_16: howto manager. (line 1792) * BFD_RELOC_CRIS_UNSIGNED_4: howto manager. (line 1794) * BFD_RELOC_CRIS_UNSIGNED_5: howto manager. (line 1786) * BFD_RELOC_CRIS_UNSIGNED_6: howto manager. (line 1788) * BFD_RELOC_CRIS_UNSIGNED_8: howto manager. (line 1790) * BFD_RELOC_CRX_ABS16: howto manager. (line 1773) * BFD_RELOC_CRX_ABS32: howto manager. (line 1774) * BFD_RELOC_CRX_IMM16: howto manager. (line 1778) * BFD_RELOC_CRX_IMM32: howto manager. (line 1779) * BFD_RELOC_CRX_NUM16: howto manager. (line 1776) * BFD_RELOC_CRX_NUM32: howto manager. (line 1777) * BFD_RELOC_CRX_NUM8: howto manager. (line 1775) * BFD_RELOC_CRX_REGREL12: howto manager. (line 1769) * BFD_RELOC_CRX_REGREL22: howto manager. (line 1770) * BFD_RELOC_CRX_REGREL28: howto manager. (line 1771) * BFD_RELOC_CRX_REGREL32: howto manager. (line 1772) * BFD_RELOC_CRX_REL16: howto manager. (line 1766) * BFD_RELOC_CRX_REL24: howto manager. (line 1767) * BFD_RELOC_CRX_REL32: howto manager. (line 1768) * BFD_RELOC_CRX_REL4: howto manager. (line 1763) * BFD_RELOC_CRX_REL8: howto manager. (line 1764) * BFD_RELOC_CRX_REL8_CMP: howto manager. (line 1765) * BFD_RELOC_CRX_SWITCH16: howto manager. (line 1781) * BFD_RELOC_CRX_SWITCH32: howto manager. (line 1782) * BFD_RELOC_CRX_SWITCH8: howto manager. (line 1780) * BFD_RELOC_CTOR: howto manager. (line 626) * BFD_RELOC_D10V_10_PCREL_L: howto manager. (line 1000) * BFD_RELOC_D10V_10_PCREL_R: howto manager. (line 996) * BFD_RELOC_D10V_18: howto manager. (line 1005) * BFD_RELOC_D10V_18_PCREL: howto manager. (line 1008) * BFD_RELOC_D30V_15: howto manager. (line 1023) * BFD_RELOC_D30V_15_PCREL: howto manager. (line 1027) * BFD_RELOC_D30V_15_PCREL_R: howto manager. (line 1031) * BFD_RELOC_D30V_21: howto manager. (line 1036) * BFD_RELOC_D30V_21_PCREL: howto manager. (line 1040) * BFD_RELOC_D30V_21_PCREL_R: howto manager. (line 1044) * BFD_RELOC_D30V_32: howto manager. (line 1049) * BFD_RELOC_D30V_32_PCREL: howto manager. (line 1052) * BFD_RELOC_D30V_6: howto manager. (line 1011) * BFD_RELOC_D30V_9_PCREL: howto manager. (line 1014) * BFD_RELOC_D30V_9_PCREL_R: howto manager. (line 1018) * BFD_RELOC_DLX_HI16_S: howto manager. (line 1055) * BFD_RELOC_DLX_JMP26: howto manager. (line 1061) * BFD_RELOC_DLX_LO16: howto manager. (line 1058) * BFD_RELOC_FR30_10_IN_8: howto manager. (line 1240) * BFD_RELOC_FR30_12_PCREL: howto manager. (line 1248) * BFD_RELOC_FR30_20: howto manager. (line 1224) * BFD_RELOC_FR30_48: howto manager. (line 1221) * BFD_RELOC_FR30_6_IN_4: howto manager. (line 1228) * BFD_RELOC_FR30_8_IN_8: howto manager. (line 1232) * BFD_RELOC_FR30_9_IN_8: howto manager. (line 1236) * BFD_RELOC_FR30_9_PCREL: howto manager. (line 1244) * BFD_RELOC_FRV_FUNCDESC: howto manager. (line 391) * BFD_RELOC_FRV_FUNCDESC_GOT12: howto manager. (line 392) * BFD_RELOC_FRV_FUNCDESC_GOTHI: howto manager. (line 393) * BFD_RELOC_FRV_FUNCDESC_GOTLO: howto manager. (line 394) * BFD_RELOC_FRV_FUNCDESC_GOTOFF12: howto manager. (line 396) * BFD_RELOC_FRV_FUNCDESC_GOTOFFHI: howto manager. (line 397) * BFD_RELOC_FRV_FUNCDESC_GOTOFFLO: howto manager. (line 398) * BFD_RELOC_FRV_FUNCDESC_VALUE: howto manager. (line 395) * BFD_RELOC_FRV_GETTLSOFF: howto manager. (line 402) * BFD_RELOC_FRV_GETTLSOFF_RELAX: howto manager. (line 415) * BFD_RELOC_FRV_GOT12: howto manager. (line 388) * BFD_RELOC_FRV_GOTHI: howto manager. (line 389) * BFD_RELOC_FRV_GOTLO: howto manager. (line 390) * BFD_RELOC_FRV_GOTOFF12: howto manager. (line 399) * BFD_RELOC_FRV_GOTOFFHI: howto manager. (line 400) * BFD_RELOC_FRV_GOTOFFLO: howto manager. (line 401) * BFD_RELOC_FRV_GOTTLSDESC12: howto manager. (line 404) * BFD_RELOC_FRV_GOTTLSDESCHI: howto manager. (line 405) * BFD_RELOC_FRV_GOTTLSDESCLO: howto manager. (line 406) * BFD_RELOC_FRV_GOTTLSOFF12: howto manager. (line 410) * BFD_RELOC_FRV_GOTTLSOFFHI: howto manager. (line 411) * BFD_RELOC_FRV_GOTTLSOFFLO: howto manager. (line 412) * BFD_RELOC_FRV_GPREL12: howto manager. (line 383) * BFD_RELOC_FRV_GPREL32: howto manager. (line 385) * BFD_RELOC_FRV_GPRELHI: howto manager. (line 386) * BFD_RELOC_FRV_GPRELLO: howto manager. (line 387) * BFD_RELOC_FRV_GPRELU12: howto manager. (line 384) * BFD_RELOC_FRV_HI16: howto manager. (line 382) * BFD_RELOC_FRV_LABEL16: howto manager. (line 379) * BFD_RELOC_FRV_LABEL24: howto manager. (line 380) * BFD_RELOC_FRV_LO16: howto manager. (line 381) * BFD_RELOC_FRV_TLSDESC_RELAX: howto manager. (line 414) * BFD_RELOC_FRV_TLSDESC_VALUE: howto manager. (line 403) * BFD_RELOC_FRV_TLSMOFF: howto manager. (line 417) * BFD_RELOC_FRV_TLSMOFF12: howto manager. (line 407) * BFD_RELOC_FRV_TLSMOFFHI: howto manager. (line 408) * BFD_RELOC_FRV_TLSMOFFLO: howto manager. (line 409) * BFD_RELOC_FRV_TLSOFF: howto manager. (line 413) * BFD_RELOC_FRV_TLSOFF_RELAX: howto manager. (line 416) * BFD_RELOC_GPREL16: howto manager. (line 106) * BFD_RELOC_GPREL32: howto manager. (line 107) * BFD_RELOC_H8_DIR16A8: howto manager. (line 1864) * BFD_RELOC_H8_DIR16R8: howto manager. (line 1865) * BFD_RELOC_H8_DIR24A8: howto manager. (line 1866) * BFD_RELOC_H8_DIR24R8: howto manager. (line 1867) * BFD_RELOC_H8_DIR32A16: howto manager. (line 1868) * BFD_RELOC_HI16: howto manager. (line 303) * BFD_RELOC_HI16_BASEREL: howto manager. (line 82) * BFD_RELOC_HI16_GOTOFF: howto manager. (line 57) * BFD_RELOC_HI16_PCREL: howto manager. (line 315) * BFD_RELOC_HI16_PLTOFF: howto manager. (line 69) * BFD_RELOC_HI16_S: howto manager. (line 306) * BFD_RELOC_HI16_S_BASEREL: howto manager. (line 83) * BFD_RELOC_HI16_S_GOTOFF: howto manager. (line 58) * BFD_RELOC_HI16_S_PCREL: howto manager. (line 318) * BFD_RELOC_HI16_S_PLTOFF: howto manager. (line 70) * BFD_RELOC_HI22: howto manager. (line 101) * BFD_RELOC_I370_D12: howto manager. (line 623) * BFD_RELOC_I960_CALLJ: howto manager. (line 113) * BFD_RELOC_IA64_COPY: howto manager. (line 1657) * BFD_RELOC_IA64_DIR32LSB: howto manager. (line 1602) * BFD_RELOC_IA64_DIR32MSB: howto manager. (line 1601) * BFD_RELOC_IA64_DIR64LSB: howto manager. (line 1604) * BFD_RELOC_IA64_DIR64MSB: howto manager. (line 1603) * BFD_RELOC_IA64_DTPMOD64LSB: howto manager. (line 1667) * BFD_RELOC_IA64_DTPMOD64MSB: howto manager. (line 1666) * BFD_RELOC_IA64_DTPREL14: howto manager. (line 1669) * BFD_RELOC_IA64_DTPREL22: howto manager. (line 1670) * BFD_RELOC_IA64_DTPREL32LSB: howto manager. (line 1673) * BFD_RELOC_IA64_DTPREL32MSB: howto manager. (line 1672) * BFD_RELOC_IA64_DTPREL64I: howto manager. (line 1671) * BFD_RELOC_IA64_DTPREL64LSB: howto manager. (line 1675) * BFD_RELOC_IA64_DTPREL64MSB: howto manager. (line 1674) * BFD_RELOC_IA64_FPTR32LSB: howto manager. (line 1619) * BFD_RELOC_IA64_FPTR32MSB: howto manager. (line 1618) * BFD_RELOC_IA64_FPTR64I: howto manager. (line 1617) * BFD_RELOC_IA64_FPTR64LSB: howto manager. (line 1621) * BFD_RELOC_IA64_FPTR64MSB: howto manager. (line 1620) * BFD_RELOC_IA64_GPREL22: howto manager. (line 1605) * BFD_RELOC_IA64_GPREL32LSB: howto manager. (line 1608) * BFD_RELOC_IA64_GPREL32MSB: howto manager. (line 1607) * BFD_RELOC_IA64_GPREL64I: howto manager. (line 1606) * BFD_RELOC_IA64_GPREL64LSB: howto manager. (line 1610) * BFD_RELOC_IA64_GPREL64MSB: howto manager. (line 1609) * BFD_RELOC_IA64_IMM14: howto manager. (line 1598) * BFD_RELOC_IA64_IMM22: howto manager. (line 1599) * BFD_RELOC_IA64_IMM64: howto manager. (line 1600) * BFD_RELOC_IA64_IPLTLSB: howto manager. (line 1656) * BFD_RELOC_IA64_IPLTMSB: howto manager. (line 1655) * BFD_RELOC_IA64_LDXMOV: howto manager. (line 1659) * BFD_RELOC_IA64_LTOFF22: howto manager. (line 1611) * BFD_RELOC_IA64_LTOFF22X: howto manager. (line 1658) * BFD_RELOC_IA64_LTOFF64I: howto manager. (line 1612) * BFD_RELOC_IA64_LTOFF_DTPMOD22: howto manager. (line 1668) * BFD_RELOC_IA64_LTOFF_DTPREL22: howto manager. (line 1676) * BFD_RELOC_IA64_LTOFF_FPTR22: howto manager. (line 1633) * BFD_RELOC_IA64_LTOFF_FPTR32LSB: howto manager. (line 1636) * BFD_RELOC_IA64_LTOFF_FPTR32MSB: howto manager. (line 1635) * BFD_RELOC_IA64_LTOFF_FPTR64I: howto manager. (line 1634) * BFD_RELOC_IA64_LTOFF_FPTR64LSB: howto manager. (line 1638) * BFD_RELOC_IA64_LTOFF_FPTR64MSB: howto manager. (line 1637) * BFD_RELOC_IA64_LTOFF_TPREL22: howto manager. (line 1665) * BFD_RELOC_IA64_LTV32LSB: howto manager. (line 1652) * BFD_RELOC_IA64_LTV32MSB: howto manager. (line 1651) * BFD_RELOC_IA64_LTV64LSB: howto manager. (line 1654) * BFD_RELOC_IA64_LTV64MSB: howto manager. (line 1653) * BFD_RELOC_IA64_PCREL21B: howto manager. (line 1622) * BFD_RELOC_IA64_PCREL21BI: howto manager. (line 1623) * BFD_RELOC_IA64_PCREL21F: howto manager. (line 1625) * BFD_RELOC_IA64_PCREL21M: howto manager. (line 1624) * BFD_RELOC_IA64_PCREL22: howto manager. (line 1626) * BFD_RELOC_IA64_PCREL32LSB: howto manager. (line 1630) * BFD_RELOC_IA64_PCREL32MSB: howto manager. (line 1629) * BFD_RELOC_IA64_PCREL60B: howto manager. (line 1627) * BFD_RELOC_IA64_PCREL64I: howto manager. (line 1628) * BFD_RELOC_IA64_PCREL64LSB: howto manager. (line 1632) * BFD_RELOC_IA64_PCREL64MSB: howto manager. (line 1631) * BFD_RELOC_IA64_PLTOFF22: howto manager. (line 1613) * BFD_RELOC_IA64_PLTOFF64I: howto manager. (line 1614) * BFD_RELOC_IA64_PLTOFF64LSB: howto manager. (line 1616) * BFD_RELOC_IA64_PLTOFF64MSB: howto manager. (line 1615) * BFD_RELOC_IA64_REL32LSB: howto manager. (line 1648) * BFD_RELOC_IA64_REL32MSB: howto manager. (line 1647) * BFD_RELOC_IA64_REL64LSB: howto manager. (line 1650) * BFD_RELOC_IA64_REL64MSB: howto manager. (line 1649) * BFD_RELOC_IA64_SECREL32LSB: howto manager. (line 1644) * BFD_RELOC_IA64_SECREL32MSB: howto manager. (line 1643) * BFD_RELOC_IA64_SECREL64LSB: howto manager. (line 1646) * BFD_RELOC_IA64_SECREL64MSB: howto manager. (line 1645) * BFD_RELOC_IA64_SEGREL32LSB: howto manager. (line 1640) * BFD_RELOC_IA64_SEGREL32MSB: howto manager. (line 1639) * BFD_RELOC_IA64_SEGREL64LSB: howto manager. (line 1642) * BFD_RELOC_IA64_SEGREL64MSB: howto manager. (line 1641) * BFD_RELOC_IA64_TPREL14: howto manager. (line 1660) * BFD_RELOC_IA64_TPREL22: howto manager. (line 1661) * BFD_RELOC_IA64_TPREL64I: howto manager. (line 1662) * BFD_RELOC_IA64_TPREL64LSB: howto manager. (line 1664) * BFD_RELOC_IA64_TPREL64MSB: howto manager. (line 1663) * BFD_RELOC_IP2K_ADDR16CJP: howto manager. (line 1550) * BFD_RELOC_IP2K_BANK: howto manager. (line 1547) * BFD_RELOC_IP2K_EX8DATA: howto manager. (line 1558) * BFD_RELOC_IP2K_FR9: howto manager. (line 1544) * BFD_RELOC_IP2K_FR_OFFSET: howto manager. (line 1571) * BFD_RELOC_IP2K_HI8DATA: howto manager. (line 1557) * BFD_RELOC_IP2K_HI8INSN: howto manager. (line 1562) * BFD_RELOC_IP2K_LO8DATA: howto manager. (line 1556) * BFD_RELOC_IP2K_LO8INSN: howto manager. (line 1561) * BFD_RELOC_IP2K_PAGE3: howto manager. (line 1553) * BFD_RELOC_IP2K_PC_SKIP: howto manager. (line 1565) * BFD_RELOC_IP2K_TEXT: howto manager. (line 1568) * BFD_RELOC_IQ2000_OFFSET_16: howto manager. (line 1915) * BFD_RELOC_IQ2000_OFFSET_21: howto manager. (line 1916) * BFD_RELOC_IQ2000_UHI16: howto manager. (line 1917) * BFD_RELOC_LO10: howto manager. (line 102) * BFD_RELOC_LO16: howto manager. (line 312) * BFD_RELOC_LO16_BASEREL: howto manager. (line 81) * BFD_RELOC_LO16_GOTOFF: howto manager. (line 56) * BFD_RELOC_LO16_PCREL: howto manager. (line 321) * BFD_RELOC_LO16_PLTOFF: howto manager. (line 68) * BFD_RELOC_M32C_HI8: howto manager. (line 1064) * BFD_RELOC_M32C_RL_1ADDR: howto manager. (line 1066) * BFD_RELOC_M32C_RL_2ADDR: howto manager. (line 1067) * BFD_RELOC_M32C_RL_JUMP: howto manager. (line 1065) * BFD_RELOC_M32R_10_PCREL: howto manager. (line 1074) * BFD_RELOC_M32R_18_PCREL: howto manager. (line 1078) * BFD_RELOC_M32R_24: howto manager. (line 1070) * BFD_RELOC_M32R_26_PCREL: howto manager. (line 1081) * BFD_RELOC_M32R_26_PLTREL: howto manager. (line 1100) * BFD_RELOC_M32R_COPY: howto manager. (line 1101) * BFD_RELOC_M32R_GLOB_DAT: howto manager. (line 1102) * BFD_RELOC_M32R_GOT16_HI_SLO: howto manager. (line 1111) * BFD_RELOC_M32R_GOT16_HI_ULO: howto manager. (line 1110) * BFD_RELOC_M32R_GOT16_LO: howto manager. (line 1112) * BFD_RELOC_M32R_GOT24: howto manager. (line 1099) * BFD_RELOC_M32R_GOTOFF: howto manager. (line 1105) * BFD_RELOC_M32R_GOTOFF_HI_SLO: howto manager. (line 1107) * BFD_RELOC_M32R_GOTOFF_HI_ULO: howto manager. (line 1106) * BFD_RELOC_M32R_GOTOFF_LO: howto manager. (line 1108) * BFD_RELOC_M32R_GOTPC24: howto manager. (line 1109) * BFD_RELOC_M32R_GOTPC_HI_SLO: howto manager. (line 1114) * BFD_RELOC_M32R_GOTPC_HI_ULO: howto manager. (line 1113) * BFD_RELOC_M32R_GOTPC_LO: howto manager. (line 1115) * BFD_RELOC_M32R_HI16_SLO: howto manager. (line 1088) * BFD_RELOC_M32R_HI16_ULO: howto manager. (line 1084) * BFD_RELOC_M32R_JMP_SLOT: howto manager. (line 1103) * BFD_RELOC_M32R_LO16: howto manager. (line 1092) * BFD_RELOC_M32R_RELATIVE: howto manager. (line 1104) * BFD_RELOC_M32R_SDA16: howto manager. (line 1095) * BFD_RELOC_M68HC11_24: howto manager. (line 1712) * BFD_RELOC_M68HC11_3B: howto manager. (line 1687) * BFD_RELOC_M68HC11_HI8: howto manager. (line 1679) * BFD_RELOC_M68HC11_LO16: howto manager. (line 1701) * BFD_RELOC_M68HC11_LO8: howto manager. (line 1683) * BFD_RELOC_M68HC11_PAGE: howto manager. (line 1707) * BFD_RELOC_M68HC11_RL_GROUP: howto manager. (line 1696) * BFD_RELOC_M68HC11_RL_JUMP: howto manager. (line 1690) * BFD_RELOC_M68HC12_5B: howto manager. (line 1718) * BFD_RELOC_MCORE_PCREL_32: howto manager. (line 1255) * BFD_RELOC_MCORE_PCREL_IMM11BY2: howto manager. (line 1253) * BFD_RELOC_MCORE_PCREL_IMM4BY2: howto manager. (line 1254) * BFD_RELOC_MCORE_PCREL_IMM8BY4: howto manager. (line 1252) * BFD_RELOC_MCORE_PCREL_JSR_IMM11BY2: howto manager. (line 1256) * BFD_RELOC_MCORE_RVA: howto manager. (line 1257) * BFD_RELOC_MIPS16_GPREL: howto manager. (line 300) * BFD_RELOC_MIPS16_HI16: howto manager. (line 324) * BFD_RELOC_MIPS16_HI16_S: howto manager. (line 327) * BFD_RELOC_MIPS16_JMP: howto manager. (line 297) * BFD_RELOC_MIPS16_LO16: howto manager. (line 333) * BFD_RELOC_MIPS_CALL16: howto manager. (line 340) * BFD_RELOC_MIPS_CALL_HI16: howto manager. (line 343) * BFD_RELOC_MIPS_CALL_LO16: howto manager. (line 344) * BFD_RELOC_MIPS_COPY: howto manager. (line 375) * BFD_RELOC_MIPS_DELETE: howto manager. (line 353) * BFD_RELOC_MIPS_GOT16: howto manager. (line 339) * BFD_RELOC_MIPS_GOT_DISP: howto manager. (line 348) * BFD_RELOC_MIPS_GOT_HI16: howto manager. (line 341) * BFD_RELOC_MIPS_GOT_LO16: howto manager. (line 342) * BFD_RELOC_MIPS_GOT_OFST: howto manager. (line 347) * BFD_RELOC_MIPS_GOT_PAGE: howto manager. (line 346) * BFD_RELOC_MIPS_HIGHER: howto manager. (line 355) * BFD_RELOC_MIPS_HIGHEST: howto manager. (line 354) * BFD_RELOC_MIPS_INSERT_A: howto manager. (line 351) * BFD_RELOC_MIPS_INSERT_B: howto manager. (line 352) * BFD_RELOC_MIPS_JALR: howto manager. (line 359) * BFD_RELOC_MIPS_JMP: howto manager. (line 293) * BFD_RELOC_MIPS_JUMP_SLOT: howto manager. (line 376) * BFD_RELOC_MIPS_LITERAL: howto manager. (line 336) * BFD_RELOC_MIPS_REL16: howto manager. (line 357) * BFD_RELOC_MIPS_RELGOT: howto manager. (line 358) * BFD_RELOC_MIPS_SCN_DISP: howto manager. (line 356) * BFD_RELOC_MIPS_SHIFT5: howto manager. (line 349) * BFD_RELOC_MIPS_SHIFT6: howto manager. (line 350) * BFD_RELOC_MIPS_SUB: howto manager. (line 345) * BFD_RELOC_MIPS_TLS_DTPMOD32: howto manager. (line 360) * BFD_RELOC_MIPS_TLS_DTPMOD64: howto manager. (line 362) * BFD_RELOC_MIPS_TLS_DTPREL32: howto manager. (line 361) * BFD_RELOC_MIPS_TLS_DTPREL64: howto manager. (line 363) * BFD_RELOC_MIPS_TLS_DTPREL_HI16: howto manager. (line 366) * BFD_RELOC_MIPS_TLS_DTPREL_LO16: howto manager. (line 367) * BFD_RELOC_MIPS_TLS_GD: howto manager. (line 364) * BFD_RELOC_MIPS_TLS_GOTTPREL: howto manager. (line 368) * BFD_RELOC_MIPS_TLS_LDM: howto manager. (line 365) * BFD_RELOC_MIPS_TLS_TPREL32: howto manager. (line 369) * BFD_RELOC_MIPS_TLS_TPREL64: howto manager. (line 370) * BFD_RELOC_MIPS_TLS_TPREL_HI16: howto manager. (line 371) * BFD_RELOC_MIPS_TLS_TPREL_LO16: howto manager. (line 372) * BFD_RELOC_MMIX_ADDR19: howto manager. (line 1286) * BFD_RELOC_MMIX_ADDR27: howto manager. (line 1290) * BFD_RELOC_MMIX_BASE_PLUS_OFFSET: howto manager. (line 1302) * BFD_RELOC_MMIX_CBRANCH: howto manager. (line 1266) * BFD_RELOC_MMIX_CBRANCH_1: howto manager. (line 1268) * BFD_RELOC_MMIX_CBRANCH_2: howto manager. (line 1269) * BFD_RELOC_MMIX_CBRANCH_3: howto manager. (line 1270) * BFD_RELOC_MMIX_CBRANCH_J: howto manager. (line 1267) * BFD_RELOC_MMIX_GETA: howto manager. (line 1260) * BFD_RELOC_MMIX_GETA_1: howto manager. (line 1261) * BFD_RELOC_MMIX_GETA_2: howto manager. (line 1262) * BFD_RELOC_MMIX_GETA_3: howto manager. (line 1263) * BFD_RELOC_MMIX_JMP: howto manager. (line 1280) * BFD_RELOC_MMIX_JMP_1: howto manager. (line 1281) * BFD_RELOC_MMIX_JMP_2: howto manager. (line 1282) * BFD_RELOC_MMIX_JMP_3: howto manager. (line 1283) * BFD_RELOC_MMIX_LOCAL: howto manager. (line 1306) * BFD_RELOC_MMIX_PUSHJ: howto manager. (line 1273) * BFD_RELOC_MMIX_PUSHJ_1: howto manager. (line 1274) * BFD_RELOC_MMIX_PUSHJ_2: howto manager. (line 1275) * BFD_RELOC_MMIX_PUSHJ_3: howto manager. (line 1276) * BFD_RELOC_MMIX_PUSHJ_STUBBABLE: howto manager. (line 1277) * BFD_RELOC_MMIX_REG: howto manager. (line 1298) * BFD_RELOC_MMIX_REG_OR_BYTE: howto manager. (line 1294) * BFD_RELOC_MN10300_16_PCREL: howto manager. (line 1190) * BFD_RELOC_MN10300_32_PCREL: howto manager. (line 1186) * BFD_RELOC_MN10300_COPY: howto manager. (line 435) * BFD_RELOC_MN10300_GLOB_DAT: howto manager. (line 438) * BFD_RELOC_MN10300_GOT16: howto manager. (line 431) * BFD_RELOC_MN10300_GOT24: howto manager. (line 427) * BFD_RELOC_MN10300_GOT32: howto manager. (line 423) * BFD_RELOC_MN10300_GOTOFF24: howto manager. (line 420) * BFD_RELOC_MN10300_JMP_SLOT: howto manager. (line 441) * BFD_RELOC_MN10300_RELATIVE: howto manager. (line 444) * BFD_RELOC_MSP430_10_PCREL: howto manager. (line 1906) * BFD_RELOC_MSP430_16: howto manager. (line 1908) * BFD_RELOC_MSP430_16_BYTE: howto manager. (line 1910) * BFD_RELOC_MSP430_16_PCREL: howto manager. (line 1907) * BFD_RELOC_MSP430_16_PCREL_BYTE: howto manager. (line 1909) * BFD_RELOC_MSP430_2X_PCREL: howto manager. (line 1911) * BFD_RELOC_MSP430_RL_PCREL: howto manager. (line 1912) * BFD_RELOC_MT_GNU_VTENTRY: howto manager. (line 1900) * BFD_RELOC_MT_GNU_VTINHERIT: howto manager. (line 1897) * BFD_RELOC_MT_HI16: howto manager. (line 1891) * BFD_RELOC_MT_LO16: howto manager. (line 1894) * BFD_RELOC_MT_PC16: howto manager. (line 1888) * BFD_RELOC_MT_PCINSN8: howto manager. (line 1903) * BFD_RELOC_NONE: howto manager. (line 116) * BFD_RELOC_NS32K_DISP_16: howto manager. (line 507) * BFD_RELOC_NS32K_DISP_16_PCREL: howto manager. (line 510) * BFD_RELOC_NS32K_DISP_32: howto manager. (line 508) * BFD_RELOC_NS32K_DISP_32_PCREL: howto manager. (line 511) * BFD_RELOC_NS32K_DISP_8: howto manager. (line 506) * BFD_RELOC_NS32K_DISP_8_PCREL: howto manager. (line 509) * BFD_RELOC_NS32K_IMM_16: howto manager. (line 501) * BFD_RELOC_NS32K_IMM_16_PCREL: howto manager. (line 504) * BFD_RELOC_NS32K_IMM_32: howto manager. (line 502) * BFD_RELOC_NS32K_IMM_32_PCREL: howto manager. (line 505) * BFD_RELOC_NS32K_IMM_8: howto manager. (line 500) * BFD_RELOC_NS32K_IMM_8_PCREL: howto manager. (line 503) * BFD_RELOC_OPENRISC_ABS_26: howto manager. (line 1860) * BFD_RELOC_OPENRISC_REL_26: howto manager. (line 1861) * BFD_RELOC_PDP11_DISP_6_PCREL: howto manager. (line 515) * BFD_RELOC_PDP11_DISP_8_PCREL: howto manager. (line 514) * BFD_RELOC_PJ_CODE_DIR16: howto manager. (line 520) * BFD_RELOC_PJ_CODE_DIR32: howto manager. (line 521) * BFD_RELOC_PJ_CODE_HI16: howto manager. (line 518) * BFD_RELOC_PJ_CODE_LO16: howto manager. (line 519) * BFD_RELOC_PJ_CODE_REL16: howto manager. (line 522) * BFD_RELOC_PJ_CODE_REL32: howto manager. (line 523) * BFD_RELOC_PPC64_ADDR16_DS: howto manager. (line 568) * BFD_RELOC_PPC64_ADDR16_LO_DS: howto manager. (line 569) * BFD_RELOC_PPC64_DTPREL16_DS: howto manager. (line 615) * BFD_RELOC_PPC64_DTPREL16_HIGHER: howto manager. (line 617) * BFD_RELOC_PPC64_DTPREL16_HIGHERA: howto manager. (line 618) * BFD_RELOC_PPC64_DTPREL16_HIGHEST: howto manager. (line 619) * BFD_RELOC_PPC64_DTPREL16_HIGHESTA: howto manager. (line 620) * BFD_RELOC_PPC64_DTPREL16_LO_DS: howto manager. (line 616) * BFD_RELOC_PPC64_GOT16_DS: howto manager. (line 570) * BFD_RELOC_PPC64_GOT16_LO_DS: howto manager. (line 571) * BFD_RELOC_PPC64_HIGHER: howto manager. (line 556) * BFD_RELOC_PPC64_HIGHER_S: howto manager. (line 557) * BFD_RELOC_PPC64_HIGHEST: howto manager. (line 558) * BFD_RELOC_PPC64_HIGHEST_S: howto manager. (line 559) * BFD_RELOC_PPC64_PLT16_LO_DS: howto manager. (line 572) * BFD_RELOC_PPC64_PLTGOT16: howto manager. (line 564) * BFD_RELOC_PPC64_PLTGOT16_DS: howto manager. (line 577) * BFD_RELOC_PPC64_PLTGOT16_HA: howto manager. (line 567) * BFD_RELOC_PPC64_PLTGOT16_HI: howto manager. (line 566) * BFD_RELOC_PPC64_PLTGOT16_LO: howto manager. (line 565) * BFD_RELOC_PPC64_PLTGOT16_LO_DS: howto manager. (line 578) * BFD_RELOC_PPC64_SECTOFF_DS: howto manager. (line 573) * BFD_RELOC_PPC64_SECTOFF_LO_DS: howto manager. (line 574) * BFD_RELOC_PPC64_TOC: howto manager. (line 563) * BFD_RELOC_PPC64_TOC16_DS: howto manager. (line 575) * BFD_RELOC_PPC64_TOC16_HA: howto manager. (line 562) * BFD_RELOC_PPC64_TOC16_HI: howto manager. (line 561) * BFD_RELOC_PPC64_TOC16_LO: howto manager. (line 560) * BFD_RELOC_PPC64_TOC16_LO_DS: howto manager. (line 576) * BFD_RELOC_PPC64_TPREL16_DS: howto manager. (line 609) * BFD_RELOC_PPC64_TPREL16_HIGHER: howto manager. (line 611) * BFD_RELOC_PPC64_TPREL16_HIGHERA: howto manager. (line 612) * BFD_RELOC_PPC64_TPREL16_HIGHEST: howto manager. (line 613) * BFD_RELOC_PPC64_TPREL16_HIGHESTA: howto manager. (line 614) * BFD_RELOC_PPC64_TPREL16_LO_DS: howto manager. (line 610) * BFD_RELOC_PPC_B16: howto manager. (line 529) * BFD_RELOC_PPC_B16_BRNTAKEN: howto manager. (line 531) * BFD_RELOC_PPC_B16_BRTAKEN: howto manager. (line 530) * BFD_RELOC_PPC_B26: howto manager. (line 526) * BFD_RELOC_PPC_BA16: howto manager. (line 532) * BFD_RELOC_PPC_BA16_BRNTAKEN: howto manager. (line 534) * BFD_RELOC_PPC_BA16_BRTAKEN: howto manager. (line 533) * BFD_RELOC_PPC_BA26: howto manager. (line 527) * BFD_RELOC_PPC_COPY: howto manager. (line 535) * BFD_RELOC_PPC_DTPMOD: howto manager. (line 582) * BFD_RELOC_PPC_DTPREL: howto manager. (line 592) * BFD_RELOC_PPC_DTPREL16: howto manager. (line 588) * BFD_RELOC_PPC_DTPREL16_HA: howto manager. (line 591) * BFD_RELOC_PPC_DTPREL16_HI: howto manager. (line 590) * BFD_RELOC_PPC_DTPREL16_LO: howto manager. (line 589) * BFD_RELOC_PPC_EMB_BIT_FLD: howto manager. (line 554) * BFD_RELOC_PPC_EMB_MRKREF: howto manager. (line 549) * BFD_RELOC_PPC_EMB_NADDR16: howto manager. (line 541) * BFD_RELOC_PPC_EMB_NADDR16_HA: howto manager. (line 544) * BFD_RELOC_PPC_EMB_NADDR16_HI: howto manager. (line 543) * BFD_RELOC_PPC_EMB_NADDR16_LO: howto manager. (line 542) * BFD_RELOC_PPC_EMB_NADDR32: howto manager. (line 540) * BFD_RELOC_PPC_EMB_RELSDA: howto manager. (line 555) * BFD_RELOC_PPC_EMB_RELSEC16: howto manager. (line 550) * BFD_RELOC_PPC_EMB_RELST_HA: howto manager. (line 553) * BFD_RELOC_PPC_EMB_RELST_HI: howto manager. (line 552) * BFD_RELOC_PPC_EMB_RELST_LO: howto manager. (line 551) * BFD_RELOC_PPC_EMB_SDA21: howto manager. (line 548) * BFD_RELOC_PPC_EMB_SDA2I16: howto manager. (line 546) * BFD_RELOC_PPC_EMB_SDA2REL: howto manager. (line 547) * BFD_RELOC_PPC_EMB_SDAI16: howto manager. (line 545) * BFD_RELOC_PPC_GLOB_DAT: howto manager. (line 536) * BFD_RELOC_PPC_GOT_DTPREL16: howto manager. (line 605) * BFD_RELOC_PPC_GOT_DTPREL16_HA: howto manager. (line 608) * BFD_RELOC_PPC_GOT_DTPREL16_HI: howto manager. (line 607) * BFD_RELOC_PPC_GOT_DTPREL16_LO: howto manager. (line 606) * BFD_RELOC_PPC_GOT_TLSGD16: howto manager. (line 593) * BFD_RELOC_PPC_GOT_TLSGD16_HA: howto manager. (line 596) * BFD_RELOC_PPC_GOT_TLSGD16_HI: howto manager. (line 595) * BFD_RELOC_PPC_GOT_TLSGD16_LO: howto manager. (line 594) * BFD_RELOC_PPC_GOT_TLSLD16: howto manager. (line 597) * BFD_RELOC_PPC_GOT_TLSLD16_HA: howto manager. (line 600) * BFD_RELOC_PPC_GOT_TLSLD16_HI: howto manager. (line 599) * BFD_RELOC_PPC_GOT_TLSLD16_LO: howto manager. (line 598) * BFD_RELOC_PPC_GOT_TPREL16: howto manager. (line 601) * BFD_RELOC_PPC_GOT_TPREL16_HA: howto manager. (line 604) * BFD_RELOC_PPC_GOT_TPREL16_HI: howto manager. (line 603) * BFD_RELOC_PPC_GOT_TPREL16_LO: howto manager. (line 602) * BFD_RELOC_PPC_JMP_SLOT: howto manager. (line 537) * BFD_RELOC_PPC_LOCAL24PC: howto manager. (line 539) * BFD_RELOC_PPC_RELATIVE: howto manager. (line 538) * BFD_RELOC_PPC_TLS: howto manager. (line 581) * BFD_RELOC_PPC_TOC16: howto manager. (line 528) * BFD_RELOC_PPC_TPREL: howto manager. (line 587) * BFD_RELOC_PPC_TPREL16: howto manager. (line 583) * BFD_RELOC_PPC_TPREL16_HA: howto manager. (line 586) * BFD_RELOC_PPC_TPREL16_HI: howto manager. (line 585) * BFD_RELOC_PPC_TPREL16_LO: howto manager. (line 584) * BFD_RELOC_RVA: howto manager. (line 85) * BFD_RELOC_SCORE16_BRANCH: howto manager. (line 1535) * BFD_RELOC_SCORE16_JMP: howto manager. (line 1532) * BFD_RELOC_SCORE_BRANCH: howto manager. (line 1529) * BFD_RELOC_SCORE_CALL15: howto manager. (line 1540) * BFD_RELOC_SCORE_DUMMY1: howto manager. (line 1519) * BFD_RELOC_SCORE_DUMMY2: howto manager. (line 1525) * BFD_RELOC_SCORE_DUMMY_HI16: howto manager. (line 1541) * BFD_RELOC_SCORE_GOT15: howto manager. (line 1538) * BFD_RELOC_SCORE_GOT_LO16: howto manager. (line 1539) * BFD_RELOC_SCORE_GPREL15: howto manager. (line 1522) * BFD_RELOC_SCORE_JMP: howto manager. (line 1526) * BFD_RELOC_SH_ALIGN: howto manager. (line 800) * BFD_RELOC_SH_CODE: howto manager. (line 801) * BFD_RELOC_SH_COPY: howto manager. (line 806) * BFD_RELOC_SH_COPY64: howto manager. (line 831) * BFD_RELOC_SH_COUNT: howto manager. (line 799) * BFD_RELOC_SH_DATA: howto manager. (line 802) * BFD_RELOC_SH_DISP12: howto manager. (line 782) * BFD_RELOC_SH_DISP12BY2: howto manager. (line 783) * BFD_RELOC_SH_DISP12BY4: howto manager. (line 784) * BFD_RELOC_SH_DISP12BY8: howto manager. (line 785) * BFD_RELOC_SH_DISP20: howto manager. (line 786) * BFD_RELOC_SH_DISP20BY8: howto manager. (line 787) * BFD_RELOC_SH_GLOB_DAT: howto manager. (line 807) * BFD_RELOC_SH_GLOB_DAT64: howto manager. (line 832) * BFD_RELOC_SH_GOT10BY4: howto manager. (line 835) * BFD_RELOC_SH_GOT10BY8: howto manager. (line 836) * BFD_RELOC_SH_GOT_HI16: howto manager. (line 814) * BFD_RELOC_SH_GOT_LOW16: howto manager. (line 811) * BFD_RELOC_SH_GOT_MEDHI16: howto manager. (line 813) * BFD_RELOC_SH_GOT_MEDLOW16: howto manager. (line 812) * BFD_RELOC_SH_GOTOFF_HI16: howto manager. (line 826) * BFD_RELOC_SH_GOTOFF_LOW16: howto manager. (line 823) * BFD_RELOC_SH_GOTOFF_MEDHI16: howto manager. (line 825) * BFD_RELOC_SH_GOTOFF_MEDLOW16: howto manager. (line 824) * BFD_RELOC_SH_GOTPC: howto manager. (line 810) * BFD_RELOC_SH_GOTPC_HI16: howto manager. (line 830) * BFD_RELOC_SH_GOTPC_LOW16: howto manager. (line 827) * BFD_RELOC_SH_GOTPC_MEDHI16: howto manager. (line 829) * BFD_RELOC_SH_GOTPC_MEDLOW16: howto manager. (line 828) * BFD_RELOC_SH_GOTPLT10BY4: howto manager. (line 837) * BFD_RELOC_SH_GOTPLT10BY8: howto manager. (line 838) * BFD_RELOC_SH_GOTPLT32: howto manager. (line 839) * BFD_RELOC_SH_GOTPLT_HI16: howto manager. (line 818) * BFD_RELOC_SH_GOTPLT_LOW16: howto manager. (line 815) * BFD_RELOC_SH_GOTPLT_MEDHI16: howto manager. (line 817) * BFD_RELOC_SH_GOTPLT_MEDLOW16: howto manager. (line 816) * BFD_RELOC_SH_IMM3: howto manager. (line 780) * BFD_RELOC_SH_IMM3U: howto manager. (line 781) * BFD_RELOC_SH_IMM4: howto manager. (line 788) * BFD_RELOC_SH_IMM4BY2: howto manager. (line 789) * BFD_RELOC_SH_IMM4BY4: howto manager. (line 790) * BFD_RELOC_SH_IMM8: howto manager. (line 791) * BFD_RELOC_SH_IMM8BY2: howto manager. (line 792) * BFD_RELOC_SH_IMM8BY4: howto manager. (line 793) * BFD_RELOC_SH_IMM_HI16: howto manager. (line 857) * BFD_RELOC_SH_IMM_HI16_PCREL: howto manager. (line 858) * BFD_RELOC_SH_IMM_LOW16: howto manager. (line 851) * BFD_RELOC_SH_IMM_LOW16_PCREL: howto manager. (line 852) * BFD_RELOC_SH_IMM_MEDHI16: howto manager. (line 855) * BFD_RELOC_SH_IMM_MEDHI16_PCREL: howto manager. (line 856) * BFD_RELOC_SH_IMM_MEDLOW16: howto manager. (line 853) * BFD_RELOC_SH_IMM_MEDLOW16_PCREL: howto manager. (line 854) * BFD_RELOC_SH_IMMS10: howto manager. (line 845) * BFD_RELOC_SH_IMMS10BY2: howto manager. (line 846) * BFD_RELOC_SH_IMMS10BY4: howto manager. (line 847) * BFD_RELOC_SH_IMMS10BY8: howto manager. (line 848) * BFD_RELOC_SH_IMMS16: howto manager. (line 849) * BFD_RELOC_SH_IMMS6: howto manager. (line 842) * BFD_RELOC_SH_IMMS6BY32: howto manager. (line 843) * BFD_RELOC_SH_IMMU16: howto manager. (line 850) * BFD_RELOC_SH_IMMU5: howto manager. (line 841) * BFD_RELOC_SH_IMMU6: howto manager. (line 844) * BFD_RELOC_SH_JMP_SLOT: howto manager. (line 808) * BFD_RELOC_SH_JMP_SLOT64: howto manager. (line 833) * BFD_RELOC_SH_LABEL: howto manager. (line 803) * BFD_RELOC_SH_LOOP_END: howto manager. (line 805) * BFD_RELOC_SH_LOOP_START: howto manager. (line 804) * BFD_RELOC_SH_PCDISP12BY2: howto manager. (line 779) * BFD_RELOC_SH_PCDISP8BY2: howto manager. (line 778) * BFD_RELOC_SH_PCRELIMM8BY2: howto manager. (line 794) * BFD_RELOC_SH_PCRELIMM8BY4: howto manager. (line 795) * BFD_RELOC_SH_PLT_HI16: howto manager. (line 822) * BFD_RELOC_SH_PLT_LOW16: howto manager. (line 819) * BFD_RELOC_SH_PLT_MEDHI16: howto manager. (line 821) * BFD_RELOC_SH_PLT_MEDLOW16: howto manager. (line 820) * BFD_RELOC_SH_PT_16: howto manager. (line 859) * BFD_RELOC_SH_RELATIVE: howto manager. (line 809) * BFD_RELOC_SH_RELATIVE64: howto manager. (line 834) * BFD_RELOC_SH_SHMEDIA_CODE: howto manager. (line 840) * BFD_RELOC_SH_SWITCH16: howto manager. (line 796) * BFD_RELOC_SH_SWITCH32: howto manager. (line 797) * BFD_RELOC_SH_TLS_DTPMOD32: howto manager. (line 865) * BFD_RELOC_SH_TLS_DTPOFF32: howto manager. (line 866) * BFD_RELOC_SH_TLS_GD_32: howto manager. (line 860) * BFD_RELOC_SH_TLS_IE_32: howto manager. (line 863) * BFD_RELOC_SH_TLS_LD_32: howto manager. (line 861) * BFD_RELOC_SH_TLS_LDO_32: howto manager. (line 862) * BFD_RELOC_SH_TLS_LE_32: howto manager. (line 864) * BFD_RELOC_SH_TLS_TPOFF32: howto manager. (line 867) * BFD_RELOC_SH_USES: howto manager. (line 798) * BFD_RELOC_SPARC13: howto manager. (line 119) * BFD_RELOC_SPARC22: howto manager. (line 118) * BFD_RELOC_SPARC_10: howto manager. (line 141) * BFD_RELOC_SPARC_11: howto manager. (line 142) * BFD_RELOC_SPARC_5: howto manager. (line 154) * BFD_RELOC_SPARC_6: howto manager. (line 153) * BFD_RELOC_SPARC_64: howto manager. (line 140) * BFD_RELOC_SPARC_7: howto manager. (line 152) * BFD_RELOC_SPARC_BASE13: howto manager. (line 136) * BFD_RELOC_SPARC_BASE22: howto manager. (line 137) * BFD_RELOC_SPARC_COPY: howto manager. (line 126) * BFD_RELOC_SPARC_DISP64: howto manager. (line 155) * BFD_RELOC_SPARC_GLOB_DAT: howto manager. (line 127) * BFD_RELOC_SPARC_GOT10: howto manager. (line 120) * BFD_RELOC_SPARC_GOT13: howto manager. (line 121) * BFD_RELOC_SPARC_GOT22: howto manager. (line 122) * BFD_RELOC_SPARC_H44: howto manager. (line 160) * BFD_RELOC_SPARC_HH22: howto manager. (line 144) * BFD_RELOC_SPARC_HIX22: howto manager. (line 158) * BFD_RELOC_SPARC_HM10: howto manager. (line 145) * BFD_RELOC_SPARC_JMP_SLOT: howto manager. (line 128) * BFD_RELOC_SPARC_L44: howto manager. (line 162) * BFD_RELOC_SPARC_LM22: howto manager. (line 146) * BFD_RELOC_SPARC_LOX10: howto manager. (line 159) * BFD_RELOC_SPARC_M44: howto manager. (line 161) * BFD_RELOC_SPARC_OLO10: howto manager. (line 143) * BFD_RELOC_SPARC_PC10: howto manager. (line 123) * BFD_RELOC_SPARC_PC22: howto manager. (line 124) * BFD_RELOC_SPARC_PC_HH22: howto manager. (line 147) * BFD_RELOC_SPARC_PC_HM10: howto manager. (line 148) * BFD_RELOC_SPARC_PC_LM22: howto manager. (line 149) * BFD_RELOC_SPARC_PLT32: howto manager. (line 156) * BFD_RELOC_SPARC_PLT64: howto manager. (line 157) * BFD_RELOC_SPARC_REGISTER: howto manager. (line 163) * BFD_RELOC_SPARC_RELATIVE: howto manager. (line 129) * BFD_RELOC_SPARC_REV32: howto manager. (line 166) * BFD_RELOC_SPARC_TLS_DTPMOD32: howto manager. (line 187) * BFD_RELOC_SPARC_TLS_DTPMOD64: howto manager. (line 188) * BFD_RELOC_SPARC_TLS_DTPOFF32: howto manager. (line 189) * BFD_RELOC_SPARC_TLS_DTPOFF64: howto manager. (line 190) * BFD_RELOC_SPARC_TLS_GD_ADD: howto manager. (line 171) * BFD_RELOC_SPARC_TLS_GD_CALL: howto manager. (line 172) * BFD_RELOC_SPARC_TLS_GD_HI22: howto manager. (line 169) * BFD_RELOC_SPARC_TLS_GD_LO10: howto manager. (line 170) * BFD_RELOC_SPARC_TLS_IE_ADD: howto manager. (line 184) * BFD_RELOC_SPARC_TLS_IE_HI22: howto manager. (line 180) * BFD_RELOC_SPARC_TLS_IE_LD: howto manager. (line 182) * BFD_RELOC_SPARC_TLS_IE_LDX: howto manager. (line 183) * BFD_RELOC_SPARC_TLS_IE_LO10: howto manager. (line 181) * BFD_RELOC_SPARC_TLS_LDM_ADD: howto manager. (line 175) * BFD_RELOC_SPARC_TLS_LDM_CALL: howto manager. (line 176) * BFD_RELOC_SPARC_TLS_LDM_HI22: howto manager. (line 173) * BFD_RELOC_SPARC_TLS_LDM_LO10: howto manager. (line 174) * BFD_RELOC_SPARC_TLS_LDO_ADD: howto manager. (line 179) * BFD_RELOC_SPARC_TLS_LDO_HIX22: howto manager. (line 177) * BFD_RELOC_SPARC_TLS_LDO_LOX10: howto manager. (line 178) * BFD_RELOC_SPARC_TLS_LE_HIX22: howto manager. (line 185) * BFD_RELOC_SPARC_TLS_LE_LOX10: howto manager. (line 186) * BFD_RELOC_SPARC_TLS_TPOFF32: howto manager. (line 191) * BFD_RELOC_SPARC_TLS_TPOFF64: howto manager. (line 192) * BFD_RELOC_SPARC_UA16: howto manager. (line 130) * BFD_RELOC_SPARC_UA32: howto manager. (line 131) * BFD_RELOC_SPARC_UA64: howto manager. (line 132) * BFD_RELOC_SPARC_WDISP16: howto manager. (line 150) * BFD_RELOC_SPARC_WDISP19: howto manager. (line 151) * BFD_RELOC_SPARC_WDISP22: howto manager. (line 117) * BFD_RELOC_SPARC_WPLT30: howto manager. (line 125) * BFD_RELOC_SPU_HI16: howto manager. (line 206) * BFD_RELOC_SPU_IMM10: howto manager. (line 197) * BFD_RELOC_SPU_IMM10W: howto manager. (line 198) * BFD_RELOC_SPU_IMM16: howto manager. (line 199) * BFD_RELOC_SPU_IMM16W: howto manager. (line 200) * BFD_RELOC_SPU_IMM18: howto manager. (line 201) * BFD_RELOC_SPU_IMM7: howto manager. (line 195) * BFD_RELOC_SPU_IMM8: howto manager. (line 196) * BFD_RELOC_SPU_LO16: howto manager. (line 205) * BFD_RELOC_SPU_PCREL16: howto manager. (line 204) * BFD_RELOC_SPU_PCREL9a: howto manager. (line 202) * BFD_RELOC_SPU_PCREL9b: howto manager. (line 203) * BFD_RELOC_THUMB_PCREL_BLX: howto manager. (line 641) * BFD_RELOC_THUMB_PCREL_BRANCH12: howto manager. (line 655) * BFD_RELOC_THUMB_PCREL_BRANCH20: howto manager. (line 656) * BFD_RELOC_THUMB_PCREL_BRANCH23: howto manager. (line 657) * BFD_RELOC_THUMB_PCREL_BRANCH25: howto manager. (line 658) * BFD_RELOC_THUMB_PCREL_BRANCH7: howto manager. (line 653) * BFD_RELOC_THUMB_PCREL_BRANCH9: howto manager. (line 654) * BFD_RELOC_TIC30_LDP: howto manager. (line 1194) * BFD_RELOC_TIC54X_16_OF_23: howto manager. (line 1212) * BFD_RELOC_TIC54X_23: howto manager. (line 1209) * BFD_RELOC_TIC54X_MS7_OF_23: howto manager. (line 1217) * BFD_RELOC_TIC54X_PARTLS7: howto manager. (line 1199) * BFD_RELOC_TIC54X_PARTMS9: howto manager. (line 1204) * bfd_reloc_type_lookup: howto manager. (line 2012) * BFD_RELOC_V850_22_PCREL: howto manager. (line 1121) * BFD_RELOC_V850_9_PCREL: howto manager. (line 1118) * BFD_RELOC_V850_ALIGN: howto manager. (line 1179) * BFD_RELOC_V850_CALLT_16_16_OFFSET: howto manager. (line 1170) * BFD_RELOC_V850_CALLT_6_7_OFFSET: howto manager. (line 1167) * BFD_RELOC_V850_LO16_SPLIT_OFFSET: howto manager. (line 1182) * BFD_RELOC_V850_LONGCALL: howto manager. (line 1173) * BFD_RELOC_V850_LONGJUMP: howto manager. (line 1176) * BFD_RELOC_V850_SDA_15_16_OFFSET: howto manager. (line 1127) * BFD_RELOC_V850_SDA_16_16_OFFSET: howto manager. (line 1124) * BFD_RELOC_V850_SDA_16_16_SPLIT_OFFSET: howto manager. (line 1159) * BFD_RELOC_V850_TDA_16_16_OFFSET: howto manager. (line 1149) * BFD_RELOC_V850_TDA_4_4_OFFSET: howto manager. (line 1156) * BFD_RELOC_V850_TDA_4_5_OFFSET: howto manager. (line 1152) * BFD_RELOC_V850_TDA_6_8_OFFSET: howto manager. (line 1138) * BFD_RELOC_V850_TDA_7_7_OFFSET: howto manager. (line 1146) * BFD_RELOC_V850_TDA_7_8_OFFSET: howto manager. (line 1142) * BFD_RELOC_V850_ZDA_15_16_OFFSET: howto manager. (line 1134) * BFD_RELOC_V850_ZDA_16_16_OFFSET: howto manager. (line 1131) * BFD_RELOC_V850_ZDA_16_16_SPLIT_OFFSET: howto manager. (line 1163) * BFD_RELOC_VAX_GLOB_DAT: howto manager. (line 1883) * BFD_RELOC_VAX_JMP_SLOT: howto manager. (line 1884) * BFD_RELOC_VAX_RELATIVE: howto manager. (line 1885) * BFD_RELOC_VPE4KMATH_DATA: howto manager. (line 1574) * BFD_RELOC_VPE4KMATH_INSN: howto manager. (line 1575) * BFD_RELOC_VTABLE_ENTRY: howto manager. (line 1579) * BFD_RELOC_VTABLE_INHERIT: howto manager. (line 1578) * BFD_RELOC_X86_64_32S: howto manager. (line 479) * BFD_RELOC_X86_64_COPY: howto manager. (line 474) * BFD_RELOC_X86_64_DTPMOD64: howto manager. (line 480) * BFD_RELOC_X86_64_DTPOFF32: howto manager. (line 485) * BFD_RELOC_X86_64_DTPOFF64: howto manager. (line 481) * BFD_RELOC_X86_64_GLOB_DAT: howto manager. (line 475) * BFD_RELOC_X86_64_GOT32: howto manager. (line 472) * BFD_RELOC_X86_64_GOT64: howto manager. (line 490) * BFD_RELOC_X86_64_GOTOFF64: howto manager. (line 488) * BFD_RELOC_X86_64_GOTPC32: howto manager. (line 489) * BFD_RELOC_X86_64_GOTPC32_TLSDESC: howto manager. (line 495) * BFD_RELOC_X86_64_GOTPC64: howto manager. (line 492) * BFD_RELOC_X86_64_GOTPCREL: howto manager. (line 478) * BFD_RELOC_X86_64_GOTPCREL64: howto manager. (line 491) * BFD_RELOC_X86_64_GOTPLT64: howto manager. (line 493) * BFD_RELOC_X86_64_GOTTPOFF: howto manager. (line 486) * BFD_RELOC_X86_64_JUMP_SLOT: howto manager. (line 476) * BFD_RELOC_X86_64_PLT32: howto manager. (line 473) * BFD_RELOC_X86_64_PLTOFF64: howto manager. (line 494) * BFD_RELOC_X86_64_RELATIVE: howto manager. (line 477) * BFD_RELOC_X86_64_TLSDESC: howto manager. (line 497) * BFD_RELOC_X86_64_TLSDESC_CALL: howto manager. (line 496) * BFD_RELOC_X86_64_TLSGD: howto manager. (line 483) * BFD_RELOC_X86_64_TLSLD: howto manager. (line 484) * BFD_RELOC_X86_64_TPOFF32: howto manager. (line 487) * BFD_RELOC_X86_64_TPOFF64: howto manager. (line 482) * BFD_RELOC_XC16X_PAG: howto manager. (line 1877) * BFD_RELOC_XC16X_POF: howto manager. (line 1878) * BFD_RELOC_XC16X_SEG: howto manager. (line 1879) * BFD_RELOC_XC16X_SOF: howto manager. (line 1880) * BFD_RELOC_XSTORMY16_12: howto manager. (line 1872) * BFD_RELOC_XSTORMY16_24: howto manager. (line 1873) * BFD_RELOC_XSTORMY16_FPTR16: howto manager. (line 1874) * BFD_RELOC_XSTORMY16_REL_12: howto manager. (line 1871) * BFD_RELOC_XTENSA_ASM_EXPAND: howto manager. (line 1989) * BFD_RELOC_XTENSA_ASM_SIMPLIFY: howto manager. (line 1994) * BFD_RELOC_XTENSA_DIFF16: howto manager. (line 1936) * BFD_RELOC_XTENSA_DIFF32: howto manager. (line 1937) * BFD_RELOC_XTENSA_DIFF8: howto manager. (line 1935) * BFD_RELOC_XTENSA_GLOB_DAT: howto manager. (line 1925) * BFD_RELOC_XTENSA_JMP_SLOT: howto manager. (line 1926) * BFD_RELOC_XTENSA_OP0: howto manager. (line 1983) * BFD_RELOC_XTENSA_OP1: howto manager. (line 1984) * BFD_RELOC_XTENSA_OP2: howto manager. (line 1985) * BFD_RELOC_XTENSA_PLT: howto manager. (line 1930) * BFD_RELOC_XTENSA_RELATIVE: howto manager. (line 1927) * BFD_RELOC_XTENSA_RTLD: howto manager. (line 1920) * BFD_RELOC_XTENSA_SLOT0_ALT: howto manager. (line 1965) * BFD_RELOC_XTENSA_SLOT0_OP: howto manager. (line 1945) * BFD_RELOC_XTENSA_SLOT10_ALT: howto manager. (line 1975) * BFD_RELOC_XTENSA_SLOT10_OP: howto manager. (line 1955) * BFD_RELOC_XTENSA_SLOT11_ALT: howto manager. (line 1976) * BFD_RELOC_XTENSA_SLOT11_OP: howto manager. (line 1956) * BFD_RELOC_XTENSA_SLOT12_ALT: howto manager. (line 1977) * BFD_RELOC_XTENSA_SLOT12_OP: howto manager. (line 1957) * BFD_RELOC_XTENSA_SLOT13_ALT: howto manager. (line 1978) * BFD_RELOC_XTENSA_SLOT13_OP: howto manager. (line 1958) * BFD_RELOC_XTENSA_SLOT14_ALT: howto manager. (line 1979) * BFD_RELOC_XTENSA_SLOT14_OP: howto manager. (line 1959) * BFD_RELOC_XTENSA_SLOT1_ALT: howto manager. (line 1966) * BFD_RELOC_XTENSA_SLOT1_OP: howto manager. (line 1946) * BFD_RELOC_XTENSA_SLOT2_ALT: howto manager. (line 1967) * BFD_RELOC_XTENSA_SLOT2_OP: howto manager. (line 1947) * BFD_RELOC_XTENSA_SLOT3_ALT: howto manager. (line 1968) * BFD_RELOC_XTENSA_SLOT3_OP: howto manager. (line 1948) * BFD_RELOC_XTENSA_SLOT4_ALT: howto manager. (line 1969) * BFD_RELOC_XTENSA_SLOT4_OP: howto manager. (line 1949) * BFD_RELOC_XTENSA_SLOT5_ALT: howto manager. (line 1970) * BFD_RELOC_XTENSA_SLOT5_OP: howto manager. (line 1950) * BFD_RELOC_XTENSA_SLOT6_ALT: howto manager. (line 1971) * BFD_RELOC_XTENSA_SLOT6_OP: howto manager. (line 1951) * BFD_RELOC_XTENSA_SLOT7_ALT: howto manager. (line 1972) * BFD_RELOC_XTENSA_SLOT7_OP: howto manager. (line 1952) * BFD_RELOC_XTENSA_SLOT8_ALT: howto manager. (line 1973) * BFD_RELOC_XTENSA_SLOT8_OP: howto manager. (line 1953) * BFD_RELOC_XTENSA_SLOT9_ALT: howto manager. (line 1974) * BFD_RELOC_XTENSA_SLOT9_OP: howto manager. (line 1954) * BFD_RELOC_Z80_DISP8: howto manager. (line 1999) * BFD_RELOC_Z8K_CALLR: howto manager. (line 2005) * BFD_RELOC_Z8K_DISP7: howto manager. (line 2002) * BFD_RELOC_Z8K_IMM4L: howto manager. (line 2008) * bfd_scan_arch: Architectures. (line 397) * bfd_scan_vma: BFD front end. (line 426) * bfd_seach_for_target: bfd_target. (line 460) * bfd_section_already_linked: Writing the symbol table. (line 55) * bfd_section_list_clear: section prototypes. (line 8) * bfd_sections_find_if: section prototypes. (line 176) * bfd_set_arch_info: Architectures. (line 438) * bfd_set_archive_head: Archives. (line 69) * bfd_set_default_target: bfd_target. (line 425) * bfd_set_error: BFD front end. (line 236) * bfd_set_error_handler: BFD front end. (line 278) * bfd_set_error_program_name: BFD front end. (line 287) * bfd_set_file_flags: BFD front end. (line 346) * bfd_set_format: Formats. (line 68) * bfd_set_gp_size: BFD front end. (line 416) * bfd_set_private_flags: BFD front end. (line 493) * bfd_set_reloc: BFD front end. (line 336) * bfd_set_section_contents: section prototypes. (line 207) * bfd_set_section_flags: section prototypes. (line 140) * bfd_set_section_size: section prototypes. (line 193) * bfd_set_start_address: BFD front end. (line 395) * bfd_set_symtab: symbol handling functions. (line 60) * bfd_symbol_info: symbol handling functions. (line 130) * bfd_target_list: bfd_target. (line 451) * bfd_write_bigendian_4byte_int: Internal. (line 13) * bfd_zalloc: Opening and Closing. (line 221) * bfd_zalloc2: Opening and Closing. (line 230) * coff_symbol_type: coff. (line 186) * core_file_matches_executable_p: Core Files. (line 30) * find_separate_debug_file: Opening and Closing. (line 272) * generic_core_file_matches_executable_p: Core Files. (line 40) * get_debug_link_info: Opening and Closing. (line 253) * Hash tables: Hash Tables. (line 6) * internal object-file format: Canonical format. (line 11) * Linker: Linker Functions. (line 6) * Other functions: BFD front end. (line 508) * separate_debug_file_exists: Opening and Closing. (line 263) * struct bfd_iovec: BFD front end. (line 700) * target vector (_bfd_final_link): Performing the Final Link. (line 6) * target vector (_bfd_link_add_symbols): Adding Symbols to the Hash Table. (line 6) * target vector (_bfd_link_hash_table_create): Creating a Linker Hash Table. (line 6) * The HOWTO Macro: typedef arelent. (line 291) * what is it?: Overview. (line 6) Tag Table: Node: Top758 Node: Overview1097 Node: History2148 Node: How It Works3094 Node: What BFD Version 2 Can Do4637 Node: BFD information loss5952 Node: Canonical format8484 Node: BFD front end12856 Node: Memory Usage39776 Node: Initialization41004 Node: Sections41463 Node: Section Input41946 Node: Section Output43311 Node: typedef asection45797 Node: section prototypes70398 Node: Symbols80078 Node: Reading Symbols81673 Node: Writing Symbols82780 Node: Mini Symbols84489 Node: typedef asymbol85463 Node: symbol handling functions90381 Node: Archives95723 Node: Formats99449 Node: Relocations102397 Node: typedef arelent103124 Node: howto manager118935 Node: Core Files184030 Node: Targets185847 Node: bfd_target187817 Node: Architectures207993 Node: Opening and Closing229634 Node: Internal240636 Node: File Caching246969 Node: Linker Functions248883 Node: Creating a Linker Hash Table250556 Node: Adding Symbols to the Hash Table252294 Node: Differing file formats253194 Node: Adding symbols from an object file254942 Node: Adding symbols from an archive257093 Node: Performing the Final Link259507 Node: Information provided by the linker260749 Node: Relocating the section contents261903 Node: Writing the symbol table263654 Node: Hash Tables266696 Node: Creating and Freeing a Hash Table267894 Node: Looking Up or Entering a String269144 Node: Traversing a Hash Table270397 Node: Deriving a New Hash Table Type271186 Node: Define the Derived Structures272252 Node: Write the Derived Creation Routine273333 Node: Write Other Derived Routines275957 Node: BFD back ends277272 Node: What to Put Where277542 Node: aout277722 Node: coff284040 Node: elf308517 Node: mmo309380 Node: File layout310308 Node: Symbol-table315955 Node: mmo section mapping319724 Node: GNU Free Documentation License323376 Node: BFD Index343105 End Tag Table