/* * ARM helper routines * * Copyright (c) 2005-2007 CodeSourcery, LLC * * This library is free software; you can redistribute it and/or * modify it under the terms of the GNU Lesser General Public * License as published by the Free Software Foundation; either * version 2 of the License, or (at your option) any later version. * * This library is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * Lesser General Public License for more details. * * You should have received a copy of the GNU Lesser General Public * License along with this library; if not, write to the Free Software * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA */ #include "exec.h" #include "helpers.h" #define SIGNBIT (uint32_t)0x80000000 #define SIGNBIT64 ((uint64_t)1 << 63) void raise_exception(int tt) { env->exception_index = tt; cpu_loop_exit(); } /* thread support */ spinlock_t global_cpu_lock = SPIN_LOCK_UNLOCKED; void cpu_lock(void) { spin_lock(&global_cpu_lock); } void cpu_unlock(void) { spin_unlock(&global_cpu_lock); } uint32_t HELPER(neon_tbl)(uint32_t ireg, uint32_t def, uint32_t rn, uint32_t maxindex) { uint32_t val; uint32_t tmp; int index; int shift; uint64_t *table; table = (uint64_t *)&env->vfp.regs[rn]; val = 0; for (shift = 0; shift < 32; shift += 8) { index = (ireg >> shift) & 0xff; if (index < maxindex) { tmp = (table[index >> 3] >> (index & 7)) & 0xff; val |= tmp << shift; } else { val |= def & (0xff << shift); } } return val; } #if !defined(CONFIG_USER_ONLY) static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr); #define MMUSUFFIX _mmu #define ALIGNED_ONLY 1 #define SHIFT 0 #include "softmmu_template.h" #define SHIFT 1 #include "softmmu_template.h" #define SHIFT 2 #include "softmmu_template.h" #define SHIFT 3 #include "softmmu_template.h" static void do_unaligned_access (target_ulong addr, int is_write, int mmu_idx, void *retaddr) { //printf("::UNALIGNED:: addr=%lx is_write=%d is_user=%d retaddr=%p\n", addr, is_write, is_user, retaddr); if (mmu_idx) { env = cpu_single_env; env->cp15.c5_data = 0x00000001; /* corresponds to an alignment fault */ env->cp15.c6_data = addr; env->exception_index = EXCP_DATA_ABORT; cpu_loop_exit(); } } /* try to fill the TLB and return an exception if error. If retaddr is NULL, it means that the function was called in C code (i.e. not from generated code or from helper.c) */ /* XXX: fix it to restore all registers */ void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr) { TranslationBlock *tb; CPUState *saved_env; unsigned long pc; int ret; /* XXX: hack to restore env in all cases, even if not called from generated code */ saved_env = env; env = cpu_single_env; ret = cpu_arm_handle_mmu_fault(env, addr, is_write, mmu_idx, 1); if (unlikely(ret)) { if (retaddr) { /* now we have a real cpu fault */ pc = (unsigned long)retaddr; tb = tb_find_pc(pc); if (tb) { /* the PC is inside the translated code. It means that we have a virtual CPU fault */ cpu_restore_state(tb, env, pc, NULL); } } raise_exception(env->exception_index); } env = saved_env; } #if 1 #include <string.h> /* * The following functions are address translation helper functions * for fast memory access in QEMU. */ static target_phys_addr_t v2p_mmu(target_ulong addr, int mmu_idx) { int index; target_ulong tlb_addr; target_phys_addr_t physaddr; void *retaddr; index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); redo: tlb_addr = env->tlb_table[mmu_idx][index].addr_read; if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) { physaddr = addr + env->tlb_table[mmu_idx][index].addend; } else { /* the page is not in the TLB : fill it */ retaddr = GETPC(); tlb_fill(addr, 0, mmu_idx, retaddr); goto redo; } return physaddr; } /* * translation from virtual address of simulated OS * to the address of simulation host (not the physical * address of simulated OS. */ target_phys_addr_t v2p(target_ulong ptr, int mmu_idx) { CPUState *saved_env; int index; target_ulong addr; target_phys_addr_t physaddr; saved_env = env; env = cpu_single_env; addr = ptr; index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1); if (__builtin_expect(env->tlb_table[mmu_idx][index].addr_read != (addr & TARGET_PAGE_MASK), 0)) { physaddr = v2p_mmu(addr, mmu_idx); } else { physaddr = (target_phys_addr_t)addr + env->tlb_table[mmu_idx][index].addend; } env = saved_env; return physaddr; } #define MINSIZE(x,y) ((x) < (y) ? (x) : (y)) /* copy memory from the simulated virtual space to a buffer in QEMU */ void vmemcpy(target_ulong ptr, char *buf, int size) { if (buf == NULL) return; while (size) { int page_remain = TARGET_PAGE_SIZE - (ptr & ~TARGET_PAGE_MASK); int to_copy = MINSIZE(size, page_remain); char *phys = (char *)v2p(ptr, 0); if (phys == NULL) return; memcpy(buf, phys, to_copy); ptr += to_copy; buf += to_copy; size -= to_copy; } } /* copy memory from the QEMU buffer to simulated virtual space */ void pmemcpy(target_ulong ptr, const char *buf, int size) { if (buf == NULL) return; while (size) { int page_remain = TARGET_PAGE_SIZE - (ptr & ~TARGET_PAGE_MASK); int to_copy = MINSIZE(size, page_remain); char *phys = (char *)v2p(ptr, 0); if (phys == NULL) return; memcpy(phys, buf, to_copy); ptr += to_copy; buf += to_copy; size -= to_copy; } } /* copy a string from the simulated virtual space to a buffer in QEMU */ void vstrcpy(target_ulong ptr, char *buf, int max) { char *phys = 0; unsigned long page = 0; if (buf == NULL) return; while (max) { if ((ptr & TARGET_PAGE_MASK) != page) { phys = (char *)v2p(ptr, 0); page = ptr & TARGET_PAGE_MASK; } *buf = *phys; if (*phys == '\0') return; ptr ++; buf ++; phys ++; max --; } } #endif #endif /* FIXME: Pass an axplicit pointer to QF to CPUState, and move saturating instructions into helper.c */ uint32_t HELPER(add_setq)(uint32_t a, uint32_t b) { uint32_t res = a + b; if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) env->QF = 1; return res; } uint32_t HELPER(add_saturate)(uint32_t a, uint32_t b) { uint32_t res = a + b; if (((res ^ a) & SIGNBIT) && !((a ^ b) & SIGNBIT)) { env->QF = 1; res = ~(((int32_t)a >> 31) ^ SIGNBIT); } return res; } uint32_t HELPER(sub_saturate)(uint32_t a, uint32_t b) { uint32_t res = a - b; if (((res ^ a) & SIGNBIT) && ((a ^ b) & SIGNBIT)) { env->QF = 1; res = ~(((int32_t)a >> 31) ^ SIGNBIT); } return res; } uint32_t HELPER(double_saturate)(int32_t val) { uint32_t res; if (val >= 0x40000000) { res = ~SIGNBIT; env->QF = 1; } else if (val <= (int32_t)0xc0000000) { res = SIGNBIT; env->QF = 1; } else { res = val << 1; } return res; } uint32_t HELPER(add_usaturate)(uint32_t a, uint32_t b) { uint32_t res = a + b; if (res < a) { env->QF = 1; res = ~0; } return res; } uint32_t HELPER(sub_usaturate)(uint32_t a, uint32_t b) { uint32_t res = a - b; if (res > a) { env->QF = 1; res = 0; } return res; } /* Signed saturation. */ static inline uint32_t do_ssat(int32_t val, int shift) { int32_t top; uint32_t mask; top = val >> shift; mask = (1u << shift) - 1; if (top > 0) { env->QF = 1; return mask; } else if (top < -1) { env->QF = 1; return ~mask; } return val; } /* Unsigned saturation. */ static inline uint32_t do_usat(int32_t val, int shift) { uint32_t max; max = (1u << shift) - 1; if (val < 0) { env->QF = 1; return 0; } else if (val > max) { env->QF = 1; return max; } return val; } /* Signed saturate. */ uint32_t HELPER(ssat)(uint32_t x, uint32_t shift) { return do_ssat(x, shift); } /* Dual halfword signed saturate. */ uint32_t HELPER(ssat16)(uint32_t x, uint32_t shift) { uint32_t res; res = (uint16_t)do_ssat((int16_t)x, shift); res |= do_ssat(((int32_t)x) >> 16, shift) << 16; return res; } /* Unsigned saturate. */ uint32_t HELPER(usat)(uint32_t x, uint32_t shift) { return do_usat(x, shift); } /* Dual halfword unsigned saturate. */ uint32_t HELPER(usat16)(uint32_t x, uint32_t shift) { uint32_t res; res = (uint16_t)do_usat((int16_t)x, shift); res |= do_usat(((int32_t)x) >> 16, shift) << 16; return res; } void HELPER(wfi)(void) { env->exception_index = EXCP_HLT; env->halted = 1; cpu_loop_exit(); } void HELPER(exception)(uint32_t excp) { env->exception_index = excp; cpu_loop_exit(); } uint32_t HELPER(cpsr_read)(void) { return cpsr_read(env) & ~CPSR_EXEC; } void HELPER(cpsr_write)(uint32_t val, uint32_t mask) { cpsr_write(env, val, mask); } /* Access to user mode registers from privileged modes. */ uint32_t HELPER(get_user_reg)(uint32_t regno) { uint32_t val; if (regno == 13) { val = env->banked_r13[0]; } else if (regno == 14) { val = env->banked_r14[0]; } else if (regno >= 8 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { val = env->usr_regs[regno - 8]; } else { val = env->regs[regno]; } return val; } void HELPER(set_user_reg)(uint32_t regno, uint32_t val) { if (regno == 13) { env->banked_r13[0] = val; } else if (regno == 14) { env->banked_r14[0] = val; } else if (regno >= 8 && (env->uncached_cpsr & 0x1f) == ARM_CPU_MODE_FIQ) { env->usr_regs[regno - 8] = val; } else { env->regs[regno] = val; } } /* ??? Flag setting arithmetic is awkward because we need to do comparisons. The only way to do that in TCG is a conditional branch, which clobbers all our temporaries. For now implement these as helper functions. */ uint32_t HELPER (add_cc)(uint32_t a, uint32_t b) { uint32_t result; result = T0 + T1; env->NF = env->ZF = result; env->CF = result < a; env->VF = (a ^ b ^ -1) & (a ^ result); return result; } uint32_t HELPER(adc_cc)(uint32_t a, uint32_t b) { uint32_t result; if (!env->CF) { result = a + b; env->CF = result < a; } else { result = a + b + 1; env->CF = result <= a; } env->VF = (a ^ b ^ -1) & (a ^ result); env->NF = env->ZF = result; return result; } uint32_t HELPER(sub_cc)(uint32_t a, uint32_t b) { uint32_t result; result = a - b; env->NF = env->ZF = result; env->CF = a >= b; env->VF = (a ^ b) & (a ^ result); return result; } uint32_t HELPER(sbc_cc)(uint32_t a, uint32_t b) { uint32_t result; if (!env->CF) { result = a - b - 1; env->CF = a > b; } else { result = a - b; env->CF = a >= b; } env->VF = (a ^ b) & (a ^ result); env->NF = env->ZF = result; return result; } /* Similarly for variable shift instructions. */ uint32_t HELPER(shl)(uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift >= 32) return 0; return x << shift; } uint32_t HELPER(shr)(uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift >= 32) return 0; return (uint32_t)x >> shift; } uint32_t HELPER(sar)(uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift >= 32) shift = 31; return (int32_t)x >> shift; } uint32_t HELPER(ror)(uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift == 0) return x; return (x >> shift) | (x << (32 - shift)); } uint32_t HELPER(shl_cc)(uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift >= 32) { if (shift == 32) env->CF = x & 1; else env->CF = 0; return 0; } else if (shift != 0) { env->CF = (x >> (32 - shift)) & 1; return x << shift; } return x; } uint32_t HELPER(shr_cc)(uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift >= 32) { if (shift == 32) env->CF = (x >> 31) & 1; else env->CF = 0; return 0; } else if (shift != 0) { env->CF = (x >> (shift - 1)) & 1; return x >> shift; } return x; } uint32_t HELPER(sar_cc)(uint32_t x, uint32_t i) { int shift = i & 0xff; if (shift >= 32) { env->CF = (x >> 31) & 1; return (int32_t)x >> 31; } else if (shift != 0) { env->CF = (x >> (shift - 1)) & 1; return (int32_t)x >> shift; } return x; } uint32_t HELPER(ror_cc)(uint32_t x, uint32_t i) { int shift1, shift; shift1 = i & 0xff; shift = shift1 & 0x1f; if (shift == 0) { if (shift1 != 0) env->CF = (x >> 31) & 1; return x; } else { env->CF = (x >> (shift - 1)) & 1; return ((uint32_t)x >> shift) | (x << (32 - shift)); } } uint64_t HELPER(neon_add_saturate_s64)(uint64_t src1, uint64_t src2) { uint64_t res; res = src1 + src2; if (((res ^ src1) & SIGNBIT64) && !((src1 ^ src2) & SIGNBIT64)) { env->QF = 1; res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64; } return res; } uint64_t HELPER(neon_add_saturate_u64)(uint64_t src1, uint64_t src2) { uint64_t res; res = src1 + src2; if (res < src1) { env->QF = 1; res = ~(uint64_t)0; } return res; } uint64_t HELPER(neon_sub_saturate_s64)(uint64_t src1, uint64_t src2) { uint64_t res; res = src1 - src2; if (((res ^ src1) & SIGNBIT64) && ((src1 ^ src2) & SIGNBIT64)) { env->QF = 1; res = ((int64_t)src1 >> 63) ^ ~SIGNBIT64; } return res; } uint64_t HELPER(neon_sub_saturate_u64)(uint64_t src1, uint64_t src2) { uint64_t res; if (src1 < src2) { env->QF = 1; res = 0; } else { res = src1 - src2; } return res; } /* These need to return a pair of value, so still use T0/T1. */ /* Transpose. Argument order is rather strange to avoid special casing the tranlation code. On input T0 = rm, T1 = rd. On output T0 = rd, T1 = rm */ void HELPER(neon_trn_u8)(void) { uint32_t rd; uint32_t rm; rd = ((T0 & 0x00ff00ff) << 8) | (T1 & 0x00ff00ff); rm = ((T1 & 0xff00ff00) >> 8) | (T0 & 0xff00ff00); T0 = rd; T1 = rm; FORCE_RET(); } void HELPER(neon_trn_u16)(void) { uint32_t rd; uint32_t rm; rd = (T0 << 16) | (T1 & 0xffff); rm = (T1 >> 16) | (T0 & 0xffff0000); T0 = rd; T1 = rm; FORCE_RET(); } /* Worker routines for zip and unzip. */ void HELPER(neon_unzip_u8)(void) { uint32_t rd; uint32_t rm; rd = (T0 & 0xff) | ((T0 >> 8) & 0xff00) | ((T1 << 16) & 0xff0000) | ((T1 << 8) & 0xff000000); rm = ((T0 >> 8) & 0xff) | ((T0 >> 16) & 0xff00) | ((T1 << 8) & 0xff0000) | (T1 & 0xff000000); T0 = rd; T1 = rm; FORCE_RET(); } void HELPER(neon_zip_u8)(void) { uint32_t rd; uint32_t rm; rd = (T0 & 0xff) | ((T1 << 8) & 0xff00) | ((T0 << 16) & 0xff0000) | ((T1 << 24) & 0xff000000); rm = ((T0 >> 16) & 0xff) | ((T1 >> 8) & 0xff00) | ((T0 >> 8) & 0xff0000) | (T1 & 0xff000000); T0 = rd; T1 = rm; FORCE_RET(); } void HELPER(neon_zip_u16)(void) { uint32_t tmp; tmp = (T0 & 0xffff) | (T1 << 16); T1 = (T1 & 0xffff0000) | (T0 >> 16); T0 = tmp; FORCE_RET(); }