/******************************************************************** * COPYRIGHT: * Copyright (c) 1997-2007, International Business Machines Corporation and * others. All Rights Reserved. ********************************************************************/ /******************************************************************************* * * File CCONVTST.C * * Modification History: * Name Description * Steven R. Loomis 7/8/1999 Adding input buffer test ******************************************************************************** */ #include <stdio.h> #include "cstring.h" #include "unicode/uloc.h" #include "unicode/ucnv.h" #include "unicode/ucnv_err.h" #include "cintltst.h" #include "unicode/utypes.h" #include "unicode/ustring.h" #include "unicode/ucol.h" #include "cmemory.h" static void TestNextUChar(UConverter* cnv, const char* source, const char* limit, const int32_t results[], const char* message); static void TestNextUCharError(UConverter* cnv, const char* source, const char* limit, UErrorCode expected, const char* message); #if !UCONFIG_NO_COLLATION static void TestJitterbug981(void); #endif static void TestJitterbug1293(void); static void TestNewConvertWithBufferSizes(int32_t osize, int32_t isize) ; static void TestConverterTypesAndStarters(void); static void TestAmbiguous(void); static void TestSignatureDetection(void); static void TestUTF7(void); static void TestIMAP(void); static void TestUTF8(void); static void TestCESU8(void); static void TestUTF16(void); static void TestUTF16BE(void); static void TestUTF16LE(void); static void TestUTF32(void); static void TestUTF32BE(void); static void TestUTF32LE(void); static void TestLATIN1(void); #if !UCONFIG_NO_LEGACY_CONVERSION static void TestSBCS(void); static void TestDBCS(void); static void TestMBCS(void); #ifdef U_ENABLE_GENERIC_ISO_2022 static void TestISO_2022(void); #endif static void TestISO_2022_JP(void); static void TestISO_2022_JP_1(void); static void TestISO_2022_JP_2(void); static void TestISO_2022_KR(void); static void TestISO_2022_KR_1(void); static void TestISO_2022_CN(void); static void TestISO_2022_CN_EXT(void); static void TestJIS(void); static void TestHZ(void); #endif static void TestSCSU(void); #if !UCONFIG_NO_LEGACY_CONVERSION static void TestEBCDIC_STATEFUL(void); static void TestGB18030(void); static void TestLMBCS(void); static void TestJitterbug255(void); static void TestEBCDICUS4XML(void); static void TestJitterbug915(void); static void TestISCII(void); static void TestCoverageMBCS(void); static void TestJitterbug2346(void); static void TestJitterbug2411(void); static void TestJB5275(void); static void TestJB5275_1(void); #endif static void TestRoundTrippingAllUTF(void); static void TestConv(const uint16_t in[], int len, const char* conv, const char* lang, char byteArr[], int byteArrLen); void addTestNewConvert(TestNode** root); /* open a converter, using test data if it begins with '@' */ static UConverter *my_ucnv_open(const char *cnv, UErrorCode *err); #define NEW_MAX_BUFFER 999 static int32_t gInBufferSize = NEW_MAX_BUFFER; static int32_t gOutBufferSize = NEW_MAX_BUFFER; static char gNuConvTestName[1024]; #define nct_min(x,y) ((x<y) ? x : y) static UConverter *my_ucnv_open(const char *cnv, UErrorCode *err) { if(cnv && cnv[0] == '@') { return ucnv_openPackage(loadTestData(err), cnv+1, err); } else { return ucnv_open(cnv, err); } } static void printSeq(const unsigned char* a, int len) { int i=0; log_verbose("{"); while (i<len) log_verbose("0x%02x ", a[i++]); log_verbose("}\n"); } static void printUSeq(const UChar* a, int len) { int i=0; log_verbose("{U+"); while (i<len) log_verbose("0x%04x ", a[i++]); log_verbose("}\n"); } static void printSeqErr(const unsigned char* a, int len) { int i=0; fprintf(stderr, "{"); while (i<len) fprintf(stderr, "0x%02x ", a[i++]); fprintf(stderr, "}\n"); } static void printUSeqErr(const UChar* a, int len) { int i=0; fprintf(stderr, "{U+"); while (i<len) fprintf(stderr, "0x%04x ", a[i++]); fprintf(stderr,"}\n"); } static void TestNextUChar(UConverter* cnv, const char* source, const char* limit, const int32_t results[], const char* message) { const char* s0; const char* s=(char*)source; const int32_t *r=results; UErrorCode errorCode=U_ZERO_ERROR; UChar32 c; while(s<limit) { s0=s; c=ucnv_getNextUChar(cnv, &s, limit, &errorCode); if(errorCode==U_INDEX_OUTOFBOUNDS_ERROR) { break; /* no more significant input */ } else if(U_FAILURE(errorCode)) { log_err("%s ucnv_getNextUChar() failed: %s\n", message, u_errorName(errorCode)); break; } else if( /* test the expected number of input bytes only if >=0 */ (*r>=0 && (int32_t)(s-s0)!=*r) || c!=*(r+1) ) { log_err("%s ucnv_getNextUChar() result %lx from %d bytes, should have been %lx from %d bytes.\n", message, c, (s-s0), *(r+1), *r); break; } r+=2; } } static void TestNextUCharError(UConverter* cnv, const char* source, const char* limit, UErrorCode expected, const char* message) { const char* s=(char*)source; UErrorCode errorCode=U_ZERO_ERROR; uint32_t c; c=ucnv_getNextUChar(cnv, &s, limit, &errorCode); if(errorCode != expected){ log_err("FAIL: Expected:%s when %s-----Got:%s\n", myErrorName(expected), message, myErrorName(errorCode)); } if(c != 0xFFFD && c != 0xffff){ log_err("FAIL: Expected return value of 0xfffd or 0xffff when %s-----Got 0x%lx\n", message, c); } } static void TestInBufSizes(void) { TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,1); #if 1 TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,2); TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,3); TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,4); TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,5); TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,6); TestNewConvertWithBufferSizes(1,1); TestNewConvertWithBufferSizes(2,3); TestNewConvertWithBufferSizes(3,2); #endif } static void TestOutBufSizes(void) { #if 1 TestNewConvertWithBufferSizes(NEW_MAX_BUFFER,NEW_MAX_BUFFER); TestNewConvertWithBufferSizes(1,NEW_MAX_BUFFER); TestNewConvertWithBufferSizes(2,NEW_MAX_BUFFER); TestNewConvertWithBufferSizes(3,NEW_MAX_BUFFER); TestNewConvertWithBufferSizes(4,NEW_MAX_BUFFER); TestNewConvertWithBufferSizes(5,NEW_MAX_BUFFER); #endif } void addTestNewConvert(TestNode** root) { addTest(root, &TestInBufSizes, "tsconv/nucnvtst/TestInBufSizes"); addTest(root, &TestOutBufSizes, "tsconv/nucnvtst/TestOutBufSizes"); addTest(root, &TestConverterTypesAndStarters, "tsconv/nucnvtst/TestConverterTypesAndStarters"); addTest(root, &TestAmbiguous, "tsconv/nucnvtst/TestAmbiguous"); addTest(root, &TestSignatureDetection, "tsconv/nucnvtst/TestSignatureDetection"); addTest(root, &TestUTF7, "tsconv/nucnvtst/TestUTF7"); addTest(root, &TestIMAP, "tsconv/nucnvtst/TestIMAP"); addTest(root, &TestUTF8, "tsconv/nucnvtst/TestUTF8"); /* test ucnv_getNextUChar() for charsets that encode single surrogates with complete byte sequences */ addTest(root, &TestCESU8, "tsconv/nucnvtst/TestCESU8"); addTest(root, &TestUTF16, "tsconv/nucnvtst/TestUTF16"); addTest(root, &TestUTF16BE, "tsconv/nucnvtst/TestUTF16BE"); addTest(root, &TestUTF16LE, "tsconv/nucnvtst/TestUTF16LE"); addTest(root, &TestUTF32, "tsconv/nucnvtst/TestUTF32"); addTest(root, &TestUTF32BE, "tsconv/nucnvtst/TestUTF32BE"); addTest(root, &TestUTF32LE, "tsconv/nucnvtst/TestUTF32LE"); #if !UCONFIG_NO_LEGACY_CONVERSION addTest(root, &TestLMBCS, "tsconv/nucnvtst/TestLMBCS"); #endif addTest(root, &TestLATIN1, "tsconv/nucnvtst/TestLATIN1"); #if !UCONFIG_NO_LEGACY_CONVERSION addTest(root, &TestSBCS, "tsconv/nucnvtst/TestSBCS"); addTest(root, &TestDBCS, "tsconv/nucnvtst/TestDBCS"); addTest(root, &TestMBCS, "tsconv/nucnvtst/TestMBCS"); #ifdef U_ENABLE_GENERIC_ISO_2022 addTest(root, &TestISO_2022, "tsconv/nucnvtst/TestISO_2022"); #endif addTest(root, &TestISO_2022_JP, "tsconv/nucnvtst/TestISO_2022_JP"); addTest(root, &TestJIS, "tsconv/nucnvtst/TestJIS"); addTest(root, &TestISO_2022_JP_1, "tsconv/nucnvtst/TestISO_2022_JP_1"); addTest(root, &TestISO_2022_JP_2, "tsconv/nucnvtst/TestISO_2022_JP_2"); addTest(root, &TestISO_2022_KR, "tsconv/nucnvtst/TestISO_2022_KR"); addTest(root, &TestISO_2022_KR_1, "tsconv/nucnvtst/TestISO_2022_KR_1"); addTest(root, &TestISO_2022_CN, "tsconv/nucnvtst/TestISO_2022_CN"); addTest(root, &TestISO_2022_CN_EXT, "tsconv/nucnvtst/TestISO_2022_CN_EXT"); addTest(root, &TestJitterbug915, "tsconv/nucnvtst/TestJitterbug915"); addTest(root, &TestHZ, "tsconv/nucnvtst/TestHZ"); #endif addTest(root, &TestSCSU, "tsconv/nucnvtst/TestSCSU"); #if !UCONFIG_NO_LEGACY_CONVERSION addTest(root, &TestEBCDIC_STATEFUL, "tsconv/nucnvtst/TestEBCDIC_STATEFUL"); addTest(root, &TestGB18030, "tsconv/nucnvtst/TestGB18030"); addTest(root, &TestJitterbug255, "tsconv/nucnvtst/TestJitterbug255"); addTest(root, &TestEBCDICUS4XML, "tsconv/nucnvtst/TestEBCDICUS4XML"); addTest(root, &TestISCII, "tsconv/nucnvtst/TestISCII"); addTest(root, &TestJB5275, "tsconv/nucnvtst/TestJB5275"); addTest(root, &TestJB5275_1, "tsconv/nucnvtst/TestJB5275_1"); #if !UCONFIG_NO_COLLATION addTest(root, &TestJitterbug981, "tsconv/nucnvtst/TestJitterbug981"); #endif addTest(root, &TestJitterbug1293, "tsconv/nucnvtst/TestJitterbug1293"); #endif #if !UCONFIG_NO_LEGACY_CONVERSION addTest(root, &TestCoverageMBCS, "tsconv/nucnvtst/TestCoverageMBCS"); #endif addTest(root, &TestRoundTrippingAllUTF, "tsconv/nucnvtst/TestRoundTrippingAllUTF"); #if !UCONFIG_NO_LEGACY_CONVERSION addTest(root, &TestJitterbug2346, "tsconv/nucnvtst/TestJitterbug2346"); addTest(root, &TestJitterbug2411, "tsconv/nucnvtst/TestJitterbug2411"); #endif } /* Note that this test already makes use of statics, so it's not really multithread safe. This convenience function lets us make the error messages actually useful. */ static void setNuConvTestName(const char *codepage, const char *direction) { sprintf(gNuConvTestName, "[Testing %s %s Unicode, InputBufSiz=%d, OutputBufSiz=%d]", codepage, direction, (int)gInBufferSize, (int)gOutBufferSize); } typedef enum { TC_OK = 0, /* test was OK */ TC_MISMATCH = 1, /* Match failed - err was printed */ TC_FAIL = 2 /* Test failed, don't print an err because it was already printed. */ } ETestConvertResult; /* Note: This function uses global variables and it will not do offset checking without gOutBufferSize and gInBufferSize set to NEW_MAX_BUFFER */ static ETestConvertResult testConvertFromU( const UChar *source, int sourceLen, const uint8_t *expect, int expectLen, const char *codepage, const int32_t *expectOffsets , UBool useFallback) { UErrorCode status = U_ZERO_ERROR; UConverter *conv = 0; char junkout[NEW_MAX_BUFFER]; /* FIX */ int32_t junokout[NEW_MAX_BUFFER]; /* FIX */ char *p; const UChar *src; char *end; char *targ; int32_t *offs; int i; int32_t realBufferSize; char *realBufferEnd; const UChar *realSourceEnd; const UChar *sourceLimit; UBool checkOffsets = TRUE; UBool doFlush; for(i=0;i<NEW_MAX_BUFFER;i++) junkout[i] = (char)0xF0; for(i=0;i<NEW_MAX_BUFFER;i++) junokout[i] = 0xFF; setNuConvTestName(codepage, "FROM"); log_verbose("\n========= %s\n", gNuConvTestName); conv = my_ucnv_open(codepage, &status); if(U_FAILURE(status)) { log_data_err("Couldn't open converter %s\n",codepage); return TC_FAIL; } if(useFallback){ ucnv_setFallback(conv,useFallback); } log_verbose("Converter opened..\n"); src = source; targ = junkout; offs = junokout; realBufferSize = (sizeof(junkout)/sizeof(junkout[0])); realBufferEnd = junkout + realBufferSize; realSourceEnd = source + sourceLen; if ( gOutBufferSize != realBufferSize || gInBufferSize != NEW_MAX_BUFFER ) checkOffsets = FALSE; do { end = nct_min(targ + gOutBufferSize, realBufferEnd); sourceLimit = nct_min(src + gInBufferSize, realSourceEnd); doFlush = (UBool)(sourceLimit == realSourceEnd); if(targ == realBufferEnd) { log_err("Error, overflowed the real buffer while about to call fromUnicode! targ=%08lx %s", targ, gNuConvTestName); return TC_FAIL; } log_verbose("calling fromUnicode @ SOURCE:%08lx to %08lx TARGET: %08lx to %08lx, flush=%s\n", src,sourceLimit, targ,end, doFlush?"TRUE":"FALSE"); status = U_ZERO_ERROR; ucnv_fromUnicode (conv, &targ, end, &src, sourceLimit, checkOffsets ? offs : NULL, doFlush, /* flush if we're at the end of the input data */ &status); } while ( (status == U_BUFFER_OVERFLOW_ERROR) || (U_SUCCESS(status) && sourceLimit < realSourceEnd) ); if(U_FAILURE(status)) { log_err("Problem doing fromUnicode to %s, errcode %s %s\n", codepage, myErrorName(status), gNuConvTestName); return TC_FAIL; } log_verbose("\nConversion done [%d uchars in -> %d chars out]. \nResult :", sourceLen, targ-junkout); if(VERBOSITY) { char junk[9999]; char offset_str[9999]; char *ptr; junk[0] = 0; offset_str[0] = 0; for(ptr = junkout;ptr<targ;ptr++) { sprintf(junk + strlen(junk), "0x%02x, ", (int)(0xFF & *ptr)); sprintf(offset_str + strlen(offset_str), "0x%02x, ", (int)(0xFF & junokout[ptr-junkout])); } log_verbose(junk); printSeq((const uint8_t *)expect, expectLen); if ( checkOffsets ) { log_verbose("\nOffsets:"); log_verbose(offset_str); } log_verbose("\n"); } ucnv_close(conv); if(expectLen != targ-junkout) { log_err("Expected %d chars out, got %d %s\n", expectLen, targ-junkout, gNuConvTestName); log_verbose("Expected %d chars out, got %d %s\n", expectLen, targ-junkout, gNuConvTestName); printf("\nGot:"); printSeqErr((const unsigned char*)junkout, (int32_t)(targ-junkout)); printf("\nExpected:"); printSeqErr((const unsigned char*)expect, expectLen); return TC_MISMATCH; } if (checkOffsets && (expectOffsets != 0) ) { log_verbose("comparing %d offsets..\n", targ-junkout); if(memcmp(junokout,expectOffsets,(targ-junkout) * sizeof(int32_t) )){ log_err("did not get the expected offsets. %s\n", gNuConvTestName); printSeqErr((const unsigned char*)junkout, (int32_t)(targ-junkout)); log_err("\n"); log_err("Got : "); for(p=junkout;p<targ;p++) { log_err("%d,", junokout[p-junkout]); } log_err("\n"); log_err("Expected: "); for(i=0; i<(targ-junkout); i++) { log_err("%d,", expectOffsets[i]); } log_err("\n"); } } log_verbose("comparing..\n"); if(!memcmp(junkout, expect, expectLen)) { log_verbose("Matches!\n"); return TC_OK; } else { log_err("String does not match u->%s\n", gNuConvTestName); printUSeqErr(source, sourceLen); printf("\nGot:"); printSeqErr((const unsigned char *)junkout, expectLen); printf("\nExpected:"); printSeqErr((const unsigned char *)expect, expectLen); return TC_MISMATCH; } } /* Note: This function uses global variables and it will not do offset checking without gOutBufferSize and gInBufferSize set to NEW_MAX_BUFFER */ static ETestConvertResult testConvertToU( const uint8_t *source, int sourcelen, const UChar *expect, int expectlen, const char *codepage, const int32_t *expectOffsets, UBool useFallback) { UErrorCode status = U_ZERO_ERROR; UConverter *conv = 0; UChar junkout[NEW_MAX_BUFFER]; /* FIX */ int32_t junokout[NEW_MAX_BUFFER]; /* FIX */ const char *src; const char *realSourceEnd; const char *srcLimit; UChar *p; UChar *targ; UChar *end; int32_t *offs; int i; UBool checkOffsets = TRUE; int32_t realBufferSize; UChar *realBufferEnd; for(i=0;i<NEW_MAX_BUFFER;i++) junkout[i] = 0xFFFE; for(i=0;i<NEW_MAX_BUFFER;i++) junokout[i] = -1; setNuConvTestName(codepage, "TO"); log_verbose("\n========= %s\n", gNuConvTestName); conv = my_ucnv_open(codepage, &status); if(U_FAILURE(status)) { log_data_err("Couldn't open converter %s\n",gNuConvTestName); return TC_FAIL; } if(useFallback){ ucnv_setFallback(conv,useFallback); } log_verbose("Converter opened..\n"); src = (const char *)source; targ = junkout; offs = junokout; realBufferSize = (sizeof(junkout)/sizeof(junkout[0])); realBufferEnd = junkout + realBufferSize; realSourceEnd = src + sourcelen; if ( gOutBufferSize != realBufferSize || gInBufferSize != NEW_MAX_BUFFER ) checkOffsets = FALSE; do { end = nct_min( targ + gOutBufferSize, realBufferEnd); srcLimit = nct_min(realSourceEnd, src + gInBufferSize); if(targ == realBufferEnd) { log_err("Error, the end would overflow the real output buffer while about to call toUnicode! tarjet=%08lx %s",targ,gNuConvTestName); return TC_FAIL; } log_verbose("calling toUnicode @ %08lx to %08lx\n", targ,end); /* oldTarg = targ; */ status = U_ZERO_ERROR; ucnv_toUnicode (conv, &targ, end, &src, srcLimit, checkOffsets ? offs : NULL, (UBool)(srcLimit == realSourceEnd), /* flush if we're at the end of hte source data */ &status); /* offs += (targ-oldTarg); */ } while ( (status == U_BUFFER_OVERFLOW_ERROR) || (U_SUCCESS(status) && (srcLimit < realSourceEnd)) ); /* while we just need another buffer */ if(U_FAILURE(status)) { log_err("Problem doing %s toUnicode, errcode %s %s\n", codepage, myErrorName(status), gNuConvTestName); return TC_FAIL; } log_verbose("\nConversion done. %d bytes -> %d chars.\nResult :", sourcelen, targ-junkout); if(VERBOSITY) { char junk[9999]; char offset_str[9999]; UChar *ptr; junk[0] = 0; offset_str[0] = 0; for(ptr = junkout;ptr<targ;ptr++) { sprintf(junk + strlen(junk), "0x%04x, ", (0xFFFF) & (unsigned int)*ptr); sprintf(offset_str + strlen(offset_str), "0x%04x, ", (0xFFFF) & (unsigned int)junokout[ptr-junkout]); } log_verbose(junk); printUSeq(expect, expectlen); if ( checkOffsets ) { log_verbose("\nOffsets:"); log_verbose(offset_str); } log_verbose("\n"); } ucnv_close(conv); log_verbose("comparing %d uchars (%d bytes)..\n",expectlen,expectlen*2); if (checkOffsets && (expectOffsets != 0)) { if(memcmp(junokout,expectOffsets,(targ-junkout) * sizeof(int32_t))){ log_err("did not get the expected offsets. %s\n",gNuConvTestName); log_err("Got: "); for(p=junkout;p<targ;p++) { log_err("%d,", junokout[p-junkout]); } log_err("\n"); log_err("Expected: "); for(i=0; i<(targ-junkout); i++) { log_err("%d,", expectOffsets[i]); } log_err("\n"); log_err("output: "); for(i=0; i<(targ-junkout); i++) { log_err("%X,", junkout[i]); } log_err("\n"); log_err("input: "); for(i=0; i<(src-(const char *)source); i++) { log_err("%X,", (unsigned char)source[i]); } log_err("\n"); } } if(!memcmp(junkout, expect, expectlen*2)) { log_verbose("Matches!\n"); return TC_OK; } else { log_err("String does not match. %s\n", gNuConvTestName); log_verbose("String does not match. %s\n", gNuConvTestName); printf("\nGot:"); printUSeqErr(junkout, expectlen); printf("\nExpected:"); printUSeqErr(expect, expectlen); return TC_MISMATCH; } } static void TestNewConvertWithBufferSizes(int32_t outsize, int32_t insize ) { /** test chars #1 */ /* 1 2 3 1Han 2Han 3Han . */ static const UChar sampleText[] = { 0x0031, 0x0032, 0x0033, 0x0000, 0x4e00, 0x4e8c, 0x4e09, 0x002E }; static const uint8_t expectedUTF8[] = { 0x31, 0x32, 0x33, 0x00, 0xe4, 0xb8, 0x80, 0xe4, 0xba, 0x8c, 0xe4, 0xb8, 0x89, 0x2E }; static const int32_t toUTF8Offs[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x07}; static const int32_t fmUTF8Offs[] = { 0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0007, 0x000a, 0x000d }; #ifdef U_ENABLE_GENERIC_ISO_2022 /* Same as UTF8, but with ^[%B preceeding */ static const const uint8_t expectedISO2022[] = { 0x1b, 0x25, 0x42, 0x31, 0x32, 0x33, 0x00, 0xe4, 0xb8, 0x80, 0xe4, 0xba, 0x8c, 0xe4, 0xb8, 0x89, 0x2E }; static const int32_t toISO2022Offs[] = { -1, -1, -1, 0x00, 0x01, 0x02, 0x03, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x07 }; /* right? */ static const int32_t fmISO2022Offs[] = { 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x000a, 0x000d, 0x0010 }; /* is this right? */ #endif /* 1 2 3 0, <SO> h1 h2 h3 <SI> . EBCDIC_STATEFUL */ static const uint8_t expectedIBM930[] = { 0xF1, 0xF2, 0xF3, 0x00, 0x0E, 0x45, 0x41, 0x45, 0x42, 0x45, 0x43, 0x0F, 0x4B }; static const int32_t toIBM930Offs[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07, 0x07, }; static const int32_t fmIBM930Offs[] = { 0x0000, 0x0001, 0x0002, 0x0003, 0x0005, 0x0007, 0x0009, 0x000c}; /* 1 2 3 0 h1 h2 h3 . MBCS*/ static const uint8_t expectedIBM943[] = { 0x31, 0x32, 0x33, 0x00, 0x88, 0xea, 0x93, 0xf1, 0x8e, 0x4f, 0x2e }; static const int32_t toIBM943Offs [] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07 }; static const int32_t fmIBM943Offs[] = { 0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0006, 0x0008, 0x000a}; /* 1 2 3 0 h1 h2 h3 . DBCS*/ static const uint8_t expectedIBM9027[] = { 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0xfe, 0x4c, 0x41, 0x4c, 0x48, 0x4c, 0x55, 0xfe, 0xfe}; static const int32_t toIBM9027Offs [] = { 0x00, 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07, 0x07}; /* 1 2 3 0 <?> <?> <?> . SBCS*/ static const uint8_t expectedIBM920[] = { 0x31, 0x32, 0x33, 0x00, 0x1a, 0x1a, 0x1a, 0x2e }; static const int32_t toIBM920Offs [] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07 }; /* 1 2 3 0 <?> <?> <?> . SBCS*/ static const uint8_t expectedISO88593[] = { 0x31, 0x32, 0x33, 0x00, 0x1a, 0x1a, 0x1a, 0x2E }; static const int32_t toISO88593Offs[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}; /* 1 2 3 0 <?> <?> <?> . <?> LATIN_1*/ static const uint8_t expectedLATIN1[] = { 0x31, 0x32, 0x33, 0x00, 0x1a, 0x1a, 0x1a, 0x2E }; static const int32_t toLATIN1Offs[] = { 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07}; /* etc */ static const uint8_t expectedUTF16BE[] = { 0x00, 0x31, 0x00, 0x32, 0x00, 0x33, 0x00, 0x00, 0x4e, 0x00, 0x4e, 0x8c, 0x4e, 0x09, 0x00, 0x2e }; static const int32_t toUTF16BEOffs[]= { 0x00, 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07, 0x07}; static const int32_t fmUTF16BEOffs[] = { 0x0000, 0x0002, 0x0004, 0x0006, 0x0008, 0x000a, 0x000c, 0x000e }; static const uint8_t expectedUTF16LE[] = { 0x31, 0x00, 0x32, 0x00, 0x33, 0x00, 0x00, 0x00, 0x00, 0x4e, 0x8c, 0x4e, 0x09, 0x4e, 0x2e, 0x00 }; static const int32_t toUTF16LEOffs[]= { 0x00, 0x00, 0x01, 0x01, 0x02, 0x02, 0x03, 0x03, 0x04, 0x04, 0x05, 0x05, 0x06, 0x06, 0x07, 0x07}; static const int32_t fmUTF16LEOffs[] = { 0x0000, 0x0002, 0x0004, 0x0006, 0x0008, 0x000a, 0x000c, 0x000e }; static const uint8_t expectedUTF32BE[] = { 0x00, 0x00, 0x00, 0x31, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x4e, 0x00, 0x00, 0x00, 0x4e, 0x8c, 0x00, 0x00, 0x4e, 0x09, 0x00, 0x00, 0x00, 0x2e }; static const int32_t toUTF32BEOffs[]= { 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x06, 0x07, 0x07, 0x07, 0x07, 0x08, 0x08, 0x08, 0x08 }; static const int32_t fmUTF32BEOffs[] = { 0x0000, 0x0004, 0x0008, 0x000c, 0x0010, 0x0014, 0x0018, 0x001c }; static const uint8_t expectedUTF32LE[] = { 0x31, 0x00, 0x00, 0x00, 0x32, 0x00, 0x00, 0x00, 0x33, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x4e, 0x00, 0x00, 0x8c, 0x4e, 0x00, 0x00, 0x09, 0x4e, 0x00, 0x00, 0x2e, 0x00, 0x00, 0x00 }; static const int32_t toUTF32LEOffs[]= { 0x00, 0x00, 0x00, 0x00, 0x01, 0x01, 0x01, 0x01, 0x02, 0x02, 0x02, 0x02, 0x03, 0x03, 0x03, 0x03, 0x04, 0x04, 0x04, 0x04, 0x05, 0x05, 0x05, 0x05, 0x06, 0x06, 0x06, 0x06, 0x07, 0x07, 0x07, 0x07, 0x08, 0x08, 0x08, 0x08 }; static const int32_t fmUTF32LEOffs[] = { 0x0000, 0x0004, 0x0008, 0x000c, 0x0010, 0x0014, 0x0018, 0x001c }; /** Test chars #2 **/ /* Sahha [health], slashed h's */ static const UChar malteseUChars[] = { 0x0053, 0x0061, 0x0127, 0x0127, 0x0061 }; static const uint8_t expectedMaltese913[] = { 0x53, 0x61, 0xB1, 0xB1, 0x61 }; /* LMBCS */ static const UChar LMBCSUChars[] = { 0x0027, 0x010A, 0x0000, 0x0127, 0x2666, 0x0220 }; static const uint8_t expectedLMBCS[] = { 0x27, 0x06, 0x04, 0x00, 0x01, 0x73, 0x01, 0x04, 0x14, 0x02, 0x20 }; static const int32_t toLMBCSOffs[] = { 0x00, 0x01, 0x01, 0x02, 0x03, 0x03, 0x04, 0x04 , 0x05, 0x05, 0x05 }; static const int32_t fmLMBCSOffs[] = { 0x0000, 0x0001, 0x0003, 0x0004, 0x0006, 0x0008}; /*********************************** START OF CODE finally *************/ gInBufferSize = insize; gOutBufferSize = outsize; log_verbose("\n\n\nTesting conversions with InputBufferSize = %d, OutputBufferSize = %d\n", gInBufferSize, gOutBufferSize); /*UTF-8*/ testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedUTF8, sizeof(expectedUTF8), "UTF8", toUTF8Offs,FALSE ); log_verbose("Test surrogate behaviour for UTF8\n"); { static const UChar testinput[]={ 0x20ac, 0xd801, 0xdc01, 0xdc01 }; static const uint8_t expectedUTF8test2[]= { 0xe2, 0x82, 0xac, 0xf0, 0x90, 0x90, 0x81, 0xef, 0xbf, 0xbd }; static const int32_t offsets[]={ 0, 0, 0, 1, 1, 1, 1, 3, 3, 3 }; testConvertFromU(testinput, sizeof(testinput)/sizeof(testinput[0]), expectedUTF8test2, sizeof(expectedUTF8test2), "UTF8", offsets,FALSE ); } #if !UCONFIG_NO_LEGACY_CONVERSION && defined(U_ENABLE_GENERIC_ISO_2022) /*ISO-2022*/ testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedISO2022, sizeof(expectedISO2022), "ISO_2022", toISO2022Offs,FALSE ); #endif /*UTF16 LE*/ testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedUTF16LE, sizeof(expectedUTF16LE), "utf-16le", toUTF16LEOffs,FALSE ); /*UTF16 BE*/ testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedUTF16BE, sizeof(expectedUTF16BE), "utf-16be", toUTF16BEOffs,FALSE ); /*UTF32 LE*/ testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedUTF32LE, sizeof(expectedUTF32LE), "utf-32le", toUTF32LEOffs,FALSE ); /*UTF32 BE*/ testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedUTF32BE, sizeof(expectedUTF32BE), "utf-32be", toUTF32BEOffs,FALSE ); /*LATIN_1*/ testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedLATIN1, sizeof(expectedLATIN1), "LATIN_1", toLATIN1Offs,FALSE ); #if !UCONFIG_NO_LEGACY_CONVERSION /*EBCDIC_STATEFUL*/ testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedIBM930, sizeof(expectedIBM930), "ibm-930", toIBM930Offs,FALSE ); testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedISO88593, sizeof(expectedISO88593), "iso-8859-3", toISO88593Offs,FALSE ); /*MBCS*/ testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedIBM943, sizeof(expectedIBM943), "ibm-943", toIBM943Offs,FALSE ); /*DBCS*/ testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedIBM9027, sizeof(expectedIBM9027), "@ibm9027", toIBM9027Offs,FALSE ); /*SBCS*/ testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedIBM920, sizeof(expectedIBM920), "ibm-920", toIBM920Offs,FALSE ); /*SBCS*/ testConvertFromU(sampleText, sizeof(sampleText)/sizeof(sampleText[0]), expectedISO88593, sizeof(expectedISO88593), "iso-8859-3", toISO88593Offs,FALSE ); #endif /****/ /*UTF-8*/ testConvertToU(expectedUTF8, sizeof(expectedUTF8), sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "utf8", fmUTF8Offs,FALSE); #if !UCONFIG_NO_LEGACY_CONVERSION && defined(U_ENABLE_GENERIC_ISO_2022) /*ISO-2022*/ testConvertToU(expectedISO2022, sizeof(expectedISO2022), sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "ISO_2022", fmISO2022Offs,FALSE); #endif /*UTF16 LE*/ testConvertToU(expectedUTF16LE, sizeof(expectedUTF16LE), sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "utf-16le", fmUTF16LEOffs,FALSE); /*UTF16 BE*/ testConvertToU(expectedUTF16BE, sizeof(expectedUTF16BE), sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "utf-16be", fmUTF16BEOffs,FALSE); /*UTF32 LE*/ testConvertToU(expectedUTF32LE, sizeof(expectedUTF32LE), sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "utf-32le", fmUTF32LEOffs,FALSE); /*UTF32 BE*/ testConvertToU(expectedUTF32BE, sizeof(expectedUTF32BE), sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "utf-32be", fmUTF32BEOffs,FALSE); #if !UCONFIG_NO_LEGACY_CONVERSION /*EBCDIC_STATEFUL*/ testConvertToU(expectedIBM930, sizeof(expectedIBM930), sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "ibm-930", fmIBM930Offs,FALSE); /*MBCS*/ testConvertToU(expectedIBM943, sizeof(expectedIBM943), sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "ibm-943", fmIBM943Offs,FALSE); #endif /* Try it again to make sure it still works */ testConvertToU(expectedUTF16LE, sizeof(expectedUTF16LE), sampleText, sizeof(sampleText)/sizeof(sampleText[0]), "utf-16le", fmUTF16LEOffs,FALSE); #if !UCONFIG_NO_LEGACY_CONVERSION testConvertToU(expectedMaltese913, sizeof(expectedMaltese913), malteseUChars, sizeof(malteseUChars)/sizeof(malteseUChars[0]), "latin3", NULL,FALSE); testConvertFromU(malteseUChars, sizeof(malteseUChars)/sizeof(malteseUChars[0]), expectedMaltese913, sizeof(expectedMaltese913), "iso-8859-3", NULL,FALSE ); /*LMBCS*/ testConvertFromU(LMBCSUChars, sizeof(LMBCSUChars)/sizeof(LMBCSUChars[0]), expectedLMBCS, sizeof(expectedLMBCS), "LMBCS-1", toLMBCSOffs,FALSE ); testConvertToU(expectedLMBCS, sizeof(expectedLMBCS), LMBCSUChars, sizeof(LMBCSUChars)/sizeof(LMBCSUChars[0]), "LMBCS-1", fmLMBCSOffs,FALSE); #endif /* UTF-7 examples are mostly from http://www.imc.org/rfc2152 */ { /* encode directly set D and set O */ static const uint8_t utf7[] = { /* Hi Mom -+Jjo--! A+ImIDkQ. +- +ZeVnLIqe */ 0x48, 0x69, 0x20, 0x4d, 0x6f, 0x6d, 0x20, 0x2d, 0x2b, 0x4a, 0x6a, 0x6f, 0x2d, 0x2d, 0x21, 0x41, 0x2b, 0x49, 0x6d, 0x49, 0x44, 0x6b, 0x51, 0x2e, 0x2b, 0x2d, 0x2b, 0x5a, 0x65, 0x56, 0x6e, 0x4c, 0x49, 0x71, 0x65 }; static const UChar unicode[] = { /* Hi Mom -<WHITE SMILING FACE>-! A<NOT IDENTICAL TO><ALPHA>. + [Japanese word "nihongo"] */ 0x48, 0x69, 0x20, 0x4d, 0x6f, 0x6d, 0x20, 0x2d, 0x263a, 0x2d, 0x21, 0x41, 0x2262, 0x0391, 0x2e, 0x2b, 0x65e5, 0x672c, 0x8a9e }; static const int32_t toUnicodeOffsets[] = { 0, 1, 2, 3, 4, 5, 6, 7, 9, 13, 14, 15, 17, 19, 23, 24, 27, 29, 32 }; static const int32_t fromUnicodeOffsets[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 9, 10, 11, 12, 12, 12, 13, 13, 13, 13, 14, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18 }; /* same but escaping set O (the exclamation mark) */ static const uint8_t utf7Restricted[] = { /* Hi Mom -+Jjo--+ACE- A+ImIDkQ. +- +ZeVnLIqe */ 0x48, 0x69, 0x20, 0x4d, 0x6f, 0x6d, 0x20, 0x2d, 0x2b, 0x4a, 0x6a, 0x6f, 0x2d, 0x2d, 0x2b, 0x41, 0x43, 0x45, 0x2d, 0x41, 0x2b, 0x49, 0x6d, 0x49, 0x44, 0x6b, 0x51, 0x2e, 0x2b, 0x2d, 0x2b, 0x5a, 0x65, 0x56, 0x6e, 0x4c, 0x49, 0x71, 0x65 }; static const int32_t toUnicodeOffsetsR[] = { 0, 1, 2, 3, 4, 5, 6, 7, 9, 13, 15, 19, 21, 23, 27, 28, 31, 33, 36 }; static const int32_t fromUnicodeOffsetsR[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 9, 10, 10, 10, 10, 10, 11, 12, 12, 12, 13, 13, 13, 13, 14, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18 }; testConvertFromU(unicode, sizeof(unicode)/U_SIZEOF_UCHAR, utf7, sizeof(utf7), "UTF-7", fromUnicodeOffsets,FALSE); testConvertToU(utf7, sizeof(utf7), unicode, sizeof(unicode)/U_SIZEOF_UCHAR, "UTF-7", toUnicodeOffsets,FALSE); testConvertFromU(unicode, sizeof(unicode)/U_SIZEOF_UCHAR, utf7Restricted, sizeof(utf7Restricted), "UTF-7,version=1", fromUnicodeOffsetsR,FALSE); testConvertToU(utf7Restricted, sizeof(utf7Restricted), unicode, sizeof(unicode)/U_SIZEOF_UCHAR, "UTF-7,version=1", toUnicodeOffsetsR,FALSE); } /* * IMAP-mailbox-name examples are mostly from http://www.imc.org/rfc2152, * modified according to RFC 2060, * and supplemented with the one example in RFC 2060 itself. */ { static const uint8_t imap[] = { /* Hi Mom -&Jjo--! A&ImIDkQ-. &- &ZeVnLIqe- \ ~peter /mail /&ZeVnLIqe- /&U,BTFw- */ 0x48, 0x69, 0x20, 0x4d, 0x6f, 0x6d, 0x20, 0x2d, 0x26, 0x4a, 0x6a, 0x6f, 0x2d, 0x2d, 0x21, 0x41, 0x26, 0x49, 0x6d, 0x49, 0x44, 0x6b, 0x51, 0x2d, 0x2e, 0x26, 0x2d, 0x26, 0x5a, 0x65, 0x56, 0x6e, 0x4c, 0x49, 0x71, 0x65, 0x2d, 0x5c, 0x7e, 0x70, 0x65, 0x74, 0x65, 0x72, 0x2f, 0x6d, 0x61, 0x69, 0x6c, 0x2f, 0x26, 0x5a, 0x65, 0x56, 0x6e, 0x4c, 0x49, 0x71, 0x65, 0x2d, 0x2f, 0x26, 0x55, 0x2c, 0x42, 0x54, 0x46, 0x77, 0x2d }; static const UChar unicode[] = { /* Hi Mom -<WHITE SMILING FACE>-! A<NOT IDENTICAL TO><ALPHA>. & [Japanese word "nihongo"] \ ~peter /mail /<65e5, 672c, 8a9e> /<53f0, 5317> */ 0x48, 0x69, 0x20, 0x4d, 0x6f, 0x6d, 0x20, 0x2d, 0x263a, 0x2d, 0x21, 0x41, 0x2262, 0x0391, 0x2e, 0x26, 0x65e5, 0x672c, 0x8a9e, 0x5c, 0x7e, 0x70, 0x65, 0x74, 0x65, 0x72, 0x2f, 0x6d, 0x61, 0x69, 0x6c, 0x2f, 0x65e5, 0x672c, 0x8a9e, 0x2f, 0x53f0, 0x5317 }; static const int32_t toUnicodeOffsets[] = { 0, 1, 2, 3, 4, 5, 6, 7, 9, 13, 14, 15, 17, 19, 24, 25, 28, 30, 33, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 51, 53, 56, 60, 62, 64 }; static const int32_t fromUnicodeOffsets[] = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 8, 8, 8, 8, 9, 10, 11, 12, 12, 12, 13, 13, 13, 13, 13, 14, 15, 15, 16, 16, 16, 17, 17, 17, 18, 18, 18, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 32, 32, 33, 33, 33, 34, 34, 34, 34, 35, 36, 36, 36, 37, 37, 37, 37, 37 }; testConvertFromU(unicode, sizeof(unicode)/U_SIZEOF_UCHAR, imap, sizeof(imap), "IMAP-mailbox-name", fromUnicodeOffsets,FALSE); testConvertToU(imap, sizeof(imap), unicode, sizeof(unicode)/U_SIZEOF_UCHAR, "IMAP-mailbox-name", toUnicodeOffsets,FALSE); } /* Test UTF-8 bad data handling*/ { static const uint8_t utf8[]={ 0x61, 0xf7, 0xbf, 0xbf, 0xbf, /* > 10FFFF */ 0x00, 0x62, 0xfb, 0xbf, 0xbf, 0xbf, 0xbf, /* > 10FFFF */ 0xfb, 0xbf, 0xbf, 0xbf, 0xbf, /* > 10FFFF */ 0xf4, 0x8f, 0xbf, 0xbf, /* 10FFFF */ 0xdf, 0xbf, /* 7ff */ 0xbf, /* truncated tail */ 0xf4, 0x90, 0x80, 0x80, /* 11FFFF */ 0x02 }; static const uint16_t utf8Expected[]={ 0x0061, 0xfffd, 0x0000, 0x0062, 0xfffd, 0xfffd, 0xdbff, 0xdfff, 0x07ff, 0xfffd, 0xfffd, 0x0002 }; static const int32_t utf8Offsets[]={ 0, 1, 5, 6, 7, 12, 17, 17, 21, 23, 24, 28 }; testConvertToU(utf8, sizeof(utf8), utf8Expected, sizeof(utf8Expected)/sizeof(utf8Expected[0]), "utf-8", utf8Offsets ,FALSE); } /* Test UTF-32BE bad data handling*/ { static const uint8_t utf32[]={ 0x00, 0x00, 0x00, 0x61, 0x00, 0x11, 0x00, 0x00, /* 0x110000 out of range */ 0x00, 0x10, 0xff, 0xff, /* 0x10FFFF in range */ 0x00, 0x00, 0x00, 0x62, 0xff, 0xff, 0xff, 0xff, /* 0xffffffff out of range */ 0x7f, 0xff, 0xff, 0xff, /* 0x7fffffff out of range */ 0x00, 0x00, 0x01, 0x62, 0x00, 0x00, 0x02, 0x62 }; static const uint16_t utf32Expected[]={ 0x0061, 0xfffd, /* 0x110000 out of range */ 0xDBFF, /* 0x10FFFF in range */ 0xDFFF, 0x0062, 0xfffd, /* 0xffffffff out of range */ 0xfffd, /* 0x7fffffff out of range */ 0x0162, 0x0262 }; static const int32_t utf32Offsets[]={ 0, 4, 8, 8, 12, 16, 20, 24, 28 }; static const uint8_t utf32ExpectedBack[]={ 0x00, 0x00, 0x00, 0x61, 0x00, 0x00, 0xff, 0xfd, /* 0x110000 out of range */ 0x00, 0x10, 0xff, 0xff, /* 0x10FFFF in range */ 0x00, 0x00, 0x00, 0x62, 0x00, 0x00, 0xff, 0xfd, /* 0xffffffff out of range */ 0x00, 0x00, 0xff, 0xfd, /* 0x7fffffff out of range */ 0x00, 0x00, 0x01, 0x62, 0x00, 0x00, 0x02, 0x62 }; static const int32_t utf32OffsetsBack[]={ 0,0,0,0, 1,1,1,1, 2,2,2,2, 4,4,4,4, 5,5,5,5, 6,6,6,6, 7,7,7,7, 8,8,8,8 }; testConvertToU(utf32, sizeof(utf32), utf32Expected, sizeof(utf32Expected)/sizeof(utf32Expected[0]), "utf-32be", utf32Offsets ,FALSE); testConvertFromU(utf32Expected, sizeof(utf32Expected)/sizeof(utf32Expected[0]), utf32ExpectedBack, sizeof(utf32ExpectedBack), "utf-32be", utf32OffsetsBack, FALSE); } /* Test UTF-32LE bad data handling*/ { static const uint8_t utf32[]={ 0x61, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x00, /* 0x110000 out of range */ 0xff, 0xff, 0x10, 0x00, /* 0x10FFFF in range */ 0x62, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, /* 0xffffffff out of range */ 0xff, 0xff, 0xff, 0x7f, /* 0x7fffffff out of range */ 0x62, 0x01, 0x00, 0x00, 0x62, 0x02, 0x00, 0x00, }; static const uint16_t utf32Expected[]={ 0x0061, 0xfffd, /* 0x110000 out of range */ 0xDBFF, /* 0x10FFFF in range */ 0xDFFF, 0x0062, 0xfffd, /* 0xffffffff out of range */ 0xfffd, /* 0x7fffffff out of range */ 0x0162, 0x0262 }; static const int32_t utf32Offsets[]={ 0, 4, 8, 8, 12, 16, 20, 24, 28 }; static const uint8_t utf32ExpectedBack[]={ 0x61, 0x00, 0x00, 0x00, 0xfd, 0xff, 0x00, 0x00, /* 0x110000 out of range */ 0xff, 0xff, 0x10, 0x00, /* 0x10FFFF in range */ 0x62, 0x00, 0x00, 0x00, 0xfd, 0xff, 0x00, 0x00, /* 0xffffffff out of range */ 0xfd, 0xff, 0x00, 0x00, /* 0x7fffffff out of range */ 0x62, 0x01, 0x00, 0x00, 0x62, 0x02, 0x00, 0x00 }; static const int32_t utf32OffsetsBack[]={ 0,0,0,0, 1,1,1,1, 2,2,2,2, 4,4,4,4, 5,5,5,5, 6,6,6,6, 7,7,7,7, 8,8,8,8 }; testConvertToU(utf32, sizeof(utf32), utf32Expected, sizeof(utf32Expected)/sizeof(utf32Expected[0]), "utf-32le", utf32Offsets,FALSE ); testConvertFromU(utf32Expected, sizeof(utf32Expected)/sizeof(utf32Expected[0]), utf32ExpectedBack, sizeof(utf32ExpectedBack), "utf-32le", utf32OffsetsBack, FALSE); } } static void TestCoverageMBCS(){ #if 0 UErrorCode status = U_ZERO_ERROR; const char *directory = loadTestData(&status); char* tdpath = NULL; char* saveDirectory = (char*)malloc(sizeof(char) *(strlen(u_getDataDirectory())+1)); int len = strlen(directory); char* index=NULL; tdpath = (char*) malloc(sizeof(char) * (len * 2)); uprv_strcpy(saveDirectory,u_getDataDirectory()); log_verbose("Retrieved data directory %s \n",saveDirectory); uprv_strcpy(tdpath,directory); index=strrchr(tdpath,(char)U_FILE_SEP_CHAR); if((unsigned int)(index-tdpath) != (strlen(tdpath)-1)){ *(index+1)=0; } u_setDataDirectory(tdpath); log_verbose("ICU data directory is set to: %s \n" ,tdpath); #endif /*some more test to increase the code coverage in MBCS. Create an test converter from test1.ucm which is test file for MBCS conversion with single-byte codepage data.*/ { /* MBCS with single byte codepage data test1.ucm*/ const UChar unicodeInput[] = { 0x20ac, 0x0005, 0x0006, 0xdbc4, 0xde34, 0x0003}; const uint8_t expectedtest1[] = { 0x00, 0x05, 0xff, 0x07, 0xff,}; int32_t totest1Offs[] = { 0, 1, 2, 3, 5, }; /*from Unicode*/ testConvertFromU(unicodeInput, sizeof(unicodeInput)/sizeof(unicodeInput[0]), expectedtest1, sizeof(expectedtest1), "@test1", totest1Offs,FALSE ); } /*some more test to increase the code coverage in MBCS. Create an test converter from test3.ucm which is test file for MBCS conversion with three-byte codepage data.*/ { /* MBCS with three byte codepage data test3.ucm*/ const UChar unicodeInput[] = { 0x20ac, 0x0005, 0x0006, 0x000b, 0xdbc4, 0xde34, 0xd84d, 0xdc56, 0x000e}; const uint8_t expectedtest3[] = { 0x00, 0x05, 0xff, 0x01, 0x02, 0x0b, 0x07, 0x01, 0x02, 0x0a, 0xff,}; int32_t totest3Offs[] = { 0, 1, 2, 3, 3, 3, 4, 6, 6, 6, 8}; const uint8_t test3input[] = { 0x00, 0x05, 0x06, 0x01, 0x02, 0x0b, 0x07, 0x01, 0x02, 0x0a, 0x01, 0x02, 0x0c,}; const UChar expectedUnicode[] = { 0x20ac, 0x0005, 0x0006, 0x000b, 0xdbc4, 0xde34, 0xd84d, 0xdc56, 0xfffd}; int32_t fromtest3Offs[] = { 0, 1, 2, 3, 6, 6, 7, 7, 10 }; /*from Unicode*/ testConvertFromU(unicodeInput, sizeof(unicodeInput)/sizeof(unicodeInput[0]), expectedtest3, sizeof(expectedtest3), "@test3", totest3Offs,FALSE ); /*to Unicode*/ testConvertToU(test3input, sizeof(test3input), expectedUnicode, sizeof(expectedUnicode)/sizeof(expectedUnicode[0]), "@test3", fromtest3Offs ,FALSE); } /*some more test to increase the code coverage in MBCS. Create an test converter from test4.ucm which is test file for MBCS conversion with four-byte codepage data.*/ { /* MBCS with three byte codepage data test4.ucm*/ static const UChar unicodeInput[] = { 0x20ac, 0x0005, 0x0006, 0x000b, 0xdbc4, 0xde34, 0xd84d, 0xdc56, 0x000e}; static const uint8_t expectedtest4[] = { 0x00, 0x05, 0xff, 0x01, 0x02, 0x03, 0x0b, 0x07, 0x01, 0x02, 0x03, 0x0a, 0xff,}; static const int32_t totest4Offs[] = { 0, 1, 2, 3, 3, 3, 3, 4, 6, 6, 6, 6, 8,}; static const uint8_t test4input[] = { 0x00, 0x05, 0x06, 0x01, 0x02, 0x03, 0x0b, 0x07, 0x01, 0x02, 0x03, 0x0a, 0x01, 0x02, 0x03, 0x0c,}; static const UChar expectedUnicode[] = { 0x20ac, 0x0005, 0x0006, 0x000b, 0xdbc4, 0xde34, 0xd84d, 0xdc56, 0xfffd}; static const int32_t fromtest4Offs[] = { 0, 1, 2, 3, 7, 7, 8, 8, 12,}; /*from Unicode*/ testConvertFromU(unicodeInput, sizeof(unicodeInput)/sizeof(unicodeInput[0]), expectedtest4, sizeof(expectedtest4), "@test4", totest4Offs,FALSE ); /*to Unicode*/ testConvertToU(test4input, sizeof(test4input), expectedUnicode, sizeof(expectedUnicode)/sizeof(expectedUnicode[0]), "@test4", fromtest4Offs,FALSE ); } #if 0 free(tdpath); /* restore the original data directory */ log_verbose("Setting the data directory to %s \n", saveDirectory); u_setDataDirectory(saveDirectory); free(saveDirectory); #endif } static void TestConverterType(const char *convName, UConverterType convType) { UConverter* myConverter; UErrorCode err = U_ZERO_ERROR; myConverter = my_ucnv_open(convName, &err); if (U_FAILURE(err)) { log_data_err("Failed to create an %s converter\n", convName); return; } else { if (ucnv_getType(myConverter)!=convType) { log_err("ucnv_getType Failed for %s. Got enum value 0x%X\n", convName, convType); } else { log_verbose("ucnv_getType %s ok\n", convName); } } ucnv_close(myConverter); } static void TestConverterTypesAndStarters() { #if !UCONFIG_NO_LEGACY_CONVERSION UConverter* myConverter; UErrorCode err = U_ZERO_ERROR; UBool mystarters[256]; /* const UBool expectedKSCstarters[256] = { FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE};*/ log_verbose("Testing KSC, ibm-930, ibm-878 for starters and their conversion types."); myConverter = ucnv_open("ksc", &err); if (U_FAILURE(err)) { log_data_err("Failed to create an ibm-ksc converter\n"); return; } else { if (ucnv_getType(myConverter)!=UCNV_MBCS) log_err("ucnv_getType Failed for ibm-949\n"); else log_verbose("ucnv_getType ibm-949 ok\n"); if(myConverter!=NULL) ucnv_getStarters(myConverter, mystarters, &err); /*if (memcmp(expectedKSCstarters, mystarters, sizeof(expectedKSCstarters))) log_err("Failed ucnv_getStarters for ksc\n"); else log_verbose("ucnv_getStarters ok\n");*/ } ucnv_close(myConverter); TestConverterType("ibm-930", UCNV_EBCDIC_STATEFUL); TestConverterType("ibm-878", UCNV_SBCS); #endif TestConverterType("iso-8859-1", UCNV_LATIN_1); TestConverterType("ibm-1208", UCNV_UTF8); TestConverterType("utf-8", UCNV_UTF8); TestConverterType("UTF-16BE", UCNV_UTF16_BigEndian); TestConverterType("UTF-16LE", UCNV_UTF16_LittleEndian); TestConverterType("UTF-32BE", UCNV_UTF32_BigEndian); TestConverterType("UTF-32LE", UCNV_UTF32_LittleEndian); #if !UCONFIG_NO_LEGACY_CONVERSION #if defined(U_ENABLE_GENERIC_ISO_2022) TestConverterType("iso-2022", UCNV_ISO_2022); #endif TestConverterType("hz", UCNV_HZ); #endif TestConverterType("scsu", UCNV_SCSU); #if !UCONFIG_NO_LEGACY_CONVERSION TestConverterType("x-iscii-de", UCNV_ISCII); #endif TestConverterType("ascii", UCNV_US_ASCII); TestConverterType("utf-7", UCNV_UTF7); TestConverterType("IMAP-mailbox-name", UCNV_IMAP_MAILBOX); TestConverterType("bocu-1", UCNV_BOCU1); } static void TestAmbiguousConverter(UConverter *cnv) { static const char inBytes[3]={ 0x61, 0x5B, 0x5c }; UChar outUnicode[20]={ 0, 0, 0, 0 }; const char *s; UChar *u; UErrorCode errorCode; UBool isAmbiguous; /* try to convert an 'a', a square bracket and a US-ASCII backslash */ errorCode=U_ZERO_ERROR; s=inBytes; u=outUnicode; ucnv_toUnicode(cnv, &u, u+20, &s, s+3, NULL, TRUE, &errorCode); if(U_FAILURE(errorCode)) { /* we do not care about general failures in this test; the input may just not be mappable */ return; } if(outUnicode[0]!=0x61 || outUnicode[1]!=0x5B || outUnicode[2]==0xfffd) { /* not a close ASCII-family encoding, or 0x5c is unassigned/illegal: this test is not applicable */ /* There are some encodings that are partially ASCII based, like the ISO-7 and GSM series of codepages, which we ignore. */ return; } isAmbiguous=ucnv_isAmbiguous(cnv); /* check that outUnicode[1]!=0x5c is exactly the same as ucnv_isAmbiguous() */ if((outUnicode[2]!=0x5c)!=isAmbiguous) { log_err("error: converter \"%s\" needs a backslash fix: %d but ucnv_isAmbiguous()==%d\n", ucnv_getName(cnv, &errorCode), outUnicode[2]!=0x5c, isAmbiguous); return; } if(outUnicode[2]!=0x5c) { /* needs fixup, fix it */ ucnv_fixFileSeparator(cnv, outUnicode, (int32_t)(u-outUnicode)); if(outUnicode[2]!=0x5c) { /* the fix failed */ log_err("error: ucnv_fixFileSeparator(%s) failed\n", ucnv_getName(cnv, &errorCode)); return; } } } static void TestAmbiguous() { UErrorCode status = U_ZERO_ERROR; UConverter *ascii_cnv = 0, *sjis_cnv = 0, *cnv; static const char target[] = { /* "\\usr\\local\\share\\data\\icutest.txt" */ 0x5c, 0x75, 0x73, 0x72, 0x5c, 0x6c, 0x6f, 0x63, 0x61, 0x6c, 0x5c, 0x73, 0x68, 0x61, 0x72, 0x65, 0x5c, 0x64, 0x61, 0x74, 0x61, 0x5c, 0x69, 0x63, 0x75, 0x74, 0x65, 0x73, 0x74, 0x2e, 0x74, 0x78, 0x74, 0 }; UChar asciiResult[200], sjisResult[200]; int32_t asciiLength = 0, sjisLength = 0, i; const char *name; /* enumerate all converters */ status=U_ZERO_ERROR; for(i=0; (name=ucnv_getAvailableName(i))!=NULL; ++i) { cnv=ucnv_open(name, &status); if(U_SUCCESS(status)) { TestAmbiguousConverter(cnv); ucnv_close(cnv); } else { log_err("error: unable to open available converter \"%s\"\n", name); status=U_ZERO_ERROR; } } #if !UCONFIG_NO_LEGACY_CONVERSION sjis_cnv = ucnv_open("ibm-943", &status); if (U_FAILURE(status)) { log_data_err("Failed to create a SJIS converter\n"); return; } ascii_cnv = ucnv_open("LATIN-1", &status); if (U_FAILURE(status)) { log_data_err("Failed to create a LATIN-1 converter\n"); ucnv_close(sjis_cnv); return; } /* convert target from SJIS to Unicode */ sjisLength = ucnv_toUChars(sjis_cnv, sjisResult, sizeof(sjisResult)/U_SIZEOF_UCHAR, target, (int32_t)strlen(target), &status); if (U_FAILURE(status)) { log_err("Failed to convert the SJIS string.\n"); ucnv_close(sjis_cnv); ucnv_close(ascii_cnv); return; } /* convert target from Latin-1 to Unicode */ asciiLength = ucnv_toUChars(ascii_cnv, asciiResult, sizeof(asciiResult)/U_SIZEOF_UCHAR, target, (int32_t)strlen(target), &status); if (U_FAILURE(status)) { log_err("Failed to convert the Latin-1 string.\n"); ucnv_close(sjis_cnv); ucnv_close(ascii_cnv); return; } if (!ucnv_isAmbiguous(sjis_cnv)) { log_err("SJIS converter should contain ambiguous character mappings.\n"); ucnv_close(sjis_cnv); ucnv_close(ascii_cnv); return; } if (u_strcmp(sjisResult, asciiResult) == 0) { log_err("File separators for SJIS don't need to be fixed.\n"); } ucnv_fixFileSeparator(sjis_cnv, sjisResult, sjisLength); if (u_strcmp(sjisResult, asciiResult) != 0) { log_err("Fixing file separator for SJIS failed.\n"); } ucnv_close(sjis_cnv); ucnv_close(ascii_cnv); #endif } static void TestSignatureDetection(){ /* with null terminated strings */ { static const char* data[] = { "\xFE\xFF\x00\x00", /* UTF-16BE */ "\xFF\xFE\x00\x00", /* UTF-16LE */ "\xEF\xBB\xBF\x00", /* UTF-8 */ "\x0E\xFE\xFF\x00", /* SCSU */ "\xFE\xFF", /* UTF-16BE */ "\xFF\xFE", /* UTF-16LE */ "\xEF\xBB\xBF", /* UTF-8 */ "\x0E\xFE\xFF", /* SCSU */ "\xFE\xFF\x41\x42", /* UTF-16BE */ "\xFF\xFE\x41\x41", /* UTF-16LE */ "\xEF\xBB\xBF\x41", /* UTF-8 */ "\x0E\xFE\xFF\x41", /* SCSU */ "\x2B\x2F\x76\x38\x2D", /* UTF-7 */ "\x2B\x2F\x76\x38\x41", /* UTF-7 */ "\x2B\x2F\x76\x39\x41", /* UTF-7 */ "\x2B\x2F\x76\x2B\x41", /* UTF-7 */ "\x2B\x2F\x76\x2F\x41", /* UTF-7 */ "\xDD\x73\x66\x73" /* UTF-EBCDIC */ }; static const char* expected[] = { "UTF-16BE", "UTF-16LE", "UTF-8", "SCSU", "UTF-16BE", "UTF-16LE", "UTF-8", "SCSU", "UTF-16BE", "UTF-16LE", "UTF-8", "SCSU", "UTF-7", "UTF-7", "UTF-7", "UTF-7", "UTF-7", "UTF-EBCDIC" }; static const int32_t expectedLength[] ={ 2, 2, 3, 3, 2, 2, 3, 3, 2, 2, 3, 3, 5, 4, 4, 4, 4, 4 }; int i=0; UErrorCode err; int32_t signatureLength = -1; const char* source = NULL; const char* enc = NULL; for( ; i<sizeof(data)/sizeof(char*); i++){ err = U_ZERO_ERROR; source = data[i]; enc = ucnv_detectUnicodeSignature(source, -1 , &signatureLength, &err); if(U_FAILURE(err)){ log_err("ucnv_detectUnicodeSignature failed for source : %s at index :%i. Error: %s\n", source,i,u_errorName(err)); continue; } if(enc == NULL || strcmp(enc,expected[i]) !=0){ log_err("ucnv_detectUnicodeSignature failed for source : %s at index :%i. Expected: %s. Got: %s\n",source,i,expected[i],enc); continue; } if(signatureLength != expectedLength[i]){ log_err("ucnv_detectUnicodeSignature failed for source : %s at index :%i.Expected Length: %i. Got length: %i\n",source,i,signatureLength,expectedLength[i]); } } } { static const char* data[] = { "\xFE\xFF\x00", /* UTF-16BE */ "\xFF\xFE\x00", /* UTF-16LE */ "\xEF\xBB\xBF\x00", /* UTF-8 */ "\x0E\xFE\xFF\x00", /* SCSU */ "\x00\x00\xFE\xFF", /* UTF-32BE */ "\xFF\xFE\x00\x00", /* UTF-32LE */ "\xFE\xFF", /* UTF-16BE */ "\xFF\xFE", /* UTF-16LE */ "\xEF\xBB\xBF", /* UTF-8 */ "\x0E\xFE\xFF", /* SCSU */ "\x00\x00\xFE\xFF", /* UTF-32BE */ "\xFF\xFE\x00\x00", /* UTF-32LE */ "\xFE\xFF\x41\x42", /* UTF-16BE */ "\xFF\xFE\x41\x41", /* UTF-16LE */ "\xEF\xBB\xBF\x41", /* UTF-8 */ "\x0E\xFE\xFF\x41", /* SCSU */ "\x00\x00\xFE\xFF\x41", /* UTF-32BE */ "\xFF\xFE\x00\x00\x42", /* UTF-32LE */ "\xFB\xEE\x28", /* BOCU-1 */ "\xFF\x41\x42" /* NULL */ }; static const int len[] = { 3, 3, 4, 4, 4, 4, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 3, 3 }; static const char* expected[] = { "UTF-16BE", "UTF-16LE", "UTF-8", "SCSU", "UTF-32BE", "UTF-32LE", "UTF-16BE", "UTF-16LE", "UTF-8", "SCSU", "UTF-32BE", "UTF-32LE", "UTF-16BE", "UTF-16LE", "UTF-8", "SCSU", "UTF-32BE", "UTF-32LE", "BOCU-1", NULL }; static const int32_t expectedLength[] ={ 2, 2, 3, 3, 4, 4, 2, 2, 3, 3, 4, 4, 2, 2, 3, 3, 4, 4, 3, 0 }; int i=0; UErrorCode err; int32_t signatureLength = -1; int32_t sourceLength=-1; const char* source = NULL; const char* enc = NULL; for( ; i<sizeof(data)/sizeof(char*); i++){ err = U_ZERO_ERROR; source = data[i]; sourceLength = len[i]; enc = ucnv_detectUnicodeSignature(source, sourceLength , &signatureLength, &err); if(U_FAILURE(err)){ log_err("ucnv_detectUnicodeSignature test2 failed for source : %s at index :%i. Error: %s\n", source,i,u_errorName(err)); continue; } if(enc == NULL || strcmp(enc,expected[i]) !=0){ if(expected[i] !=NULL){ log_err("ucnv_detectUnicodeSignature test2 failed for source : %s at index :%i. Expected: %s. Got: %s\n",source,i,expected[i],enc); continue; } } if(signatureLength != expectedLength[i]){ log_err("ucnv_detectUnicodeSignature test2 failed for source : %s at index :%i.Expected Length: %i. Got length: %i\n",source,i,signatureLength,expectedLength[i]); } } } } void static TestUTF7() { /* test input */ static const uint8_t in[]={ /* H - +Jjo- - ! +- +2AHcAQ */ 0x48, 0x2d, 0x2b, 0x4a, 0x6a, 0x6f, 0x2d, 0x2d, 0x21, 0x2b, 0x2d, 0x2b, 0x32, 0x41, 0x48, 0x63, 0x41, 0x51 }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 1, 0x48, 1, 0x2d, 4, 0x263a, /* <WHITE SMILING FACE> */ 2, 0x2d, 1, 0x21, 2, 0x2b, 7, 0x10401 }; const char *cnvName; const char *source=(const char *)in, *limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("UTF-7", &errorCode); if(U_FAILURE(errorCode)) { log_err("Unable to open a UTF-7 converter: %s\n", u_errorName(errorCode)); /* sholdn't be a data err */ return; } TestNextUChar(cnv, source, limit, results, "UTF-7"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); cnvName = ucnv_getName(cnv, &errorCode); if (U_FAILURE(errorCode) || uprv_strcmp(cnvName, "UTF-7") != 0) { log_err("UTF-7 converter is called %s: %s\n", cnvName, u_errorName(errorCode)); } ucnv_close(cnv); } void static TestIMAP() { /* test input */ static const uint8_t in[]={ /* H - &Jjo- - ! &- &2AHcAQ- \ */ 0x48, 0x2d, 0x26, 0x4a, 0x6a, 0x6f, 0x2d, 0x2d, 0x21, 0x26, 0x2d, 0x26, 0x32, 0x41, 0x48, 0x63, 0x41, 0x51, 0x2d }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 1, 0x48, 1, 0x2d, 4, 0x263a, /* <WHITE SMILING FACE> */ 2, 0x2d, 1, 0x21, 2, 0x26, 7, 0x10401 }; const char *cnvName; const char *source=(const char *)in, *limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("IMAP-mailbox-name", &errorCode); if(U_FAILURE(errorCode)) { log_err("Unable to open a IMAP-mailbox-name converter: %s\n", u_errorName(errorCode)); /* sholdn't be a data err */ return; } TestNextUChar(cnv, source, limit, results, "IMAP-mailbox-name"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); cnvName = ucnv_getName(cnv, &errorCode); if (U_FAILURE(errorCode) || uprv_strcmp(cnvName, "IMAP-mailbox-name") != 0) { log_err("IMAP-mailbox-name converter is called %s: %s\n", cnvName, u_errorName(errorCode)); } ucnv_close(cnv); } void static TestUTF8() { /* test input */ static const uint8_t in[]={ 0x61, 0xc2, 0x80, 0xe0, 0xa0, 0x80, 0xf0, 0x90, 0x80, 0x80, 0xf4, 0x84, 0x8c, 0xa1, 0xf0, 0x90, 0x90, 0x81 }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 1, 0x61, 2, 0x80, 3, 0x800, 4, 0x10000, 4, 0x104321, 4, 0x10401 }; /* error test input */ static const uint8_t in2[]={ 0x61, 0xc0, 0x80, /* illegal non-shortest form */ 0xe0, 0x80, 0x80, /* illegal non-shortest form */ 0xf0, 0x80, 0x80, 0x80, /* illegal non-shortest form */ 0xc0, 0xc0, /* illegal trail byte */ 0xf4, 0x90, 0x80, 0x80, /* 0x110000 out of range */ 0xf8, 0x80, 0x80, 0x80, 0x80, /* too long */ 0xfe, /* illegal byte altogether */ 0x62 }; /* expected error test results */ static const int32_t results2[]={ /* number of bytes read, code point */ 1, 0x61, 22, 0x62 }; UConverterToUCallback cb; const void *p; const char *source=(const char *)in,*limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("UTF-8", &errorCode); if(U_FAILURE(errorCode)) { log_err("Unable to open a UTF-8 converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, source, limit, results, "UTF-8"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); /* test error behavior with a skip callback */ ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_SKIP, NULL, &cb, &p, &errorCode); source=(const char *)in2; limit=(const char *)(in2+sizeof(in2)); TestNextUChar(cnv, source, limit, results2, "UTF-8"); ucnv_close(cnv); } void static TestCESU8() { /* test input */ static const uint8_t in[]={ 0x61, 0xc2, 0x80, 0xe0, 0xa0, 0x80, 0xed, 0xa0, 0x80, 0xed, 0xb0, 0x80, 0xed, 0xb0, 0x81, 0xed, 0xa0, 0x82, 0xed, 0xaf, 0xbf, 0xed, 0xbf, 0xbf, 0xef, 0xbf, 0xbc }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 1, 0x61, 2, 0x80, 3, 0x800, 6, 0x10000, 3, 0xdc01, -1,0xd802, /* may read 3 or 6 bytes */ -1,0x10ffff,/* may read 0 or 3 bytes */ 3, 0xfffc }; /* error test input */ static const uint8_t in2[]={ 0x61, 0xc0, 0x80, /* illegal non-shortest form */ 0xe0, 0x80, 0x80, /* illegal non-shortest form */ 0xf0, 0x80, 0x80, 0x80, /* illegal non-shortest form */ 0xc0, 0xc0, /* illegal trail byte */ 0xf0, 0x90, 0x80, 0x80, /* illegal 4-byte supplementary code point */ 0xf4, 0x84, 0x8c, 0xa1, /* illegal 4-byte supplementary code point */ 0xf0, 0x90, 0x90, 0x81, /* illegal 4-byte supplementary code point */ 0xf4, 0x90, 0x80, 0x80, /* 0x110000 out of range */ 0xf8, 0x80, 0x80, 0x80, 0x80, /* too long */ 0xfe, /* illegal byte altogether */ 0x62 }; /* expected error test results */ static const int32_t results2[]={ /* number of bytes read, code point */ 1, 0x61, 34, 0x62 }; UConverterToUCallback cb; const void *p; const char *source=(const char *)in,*limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("CESU-8", &errorCode); if(U_FAILURE(errorCode)) { log_err("Unable to open a CESU-8 converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, source, limit, results, "CESU-8"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); /* test error behavior with a skip callback */ ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_SKIP, NULL, &cb, &p, &errorCode); source=(const char *)in2; limit=(const char *)(in2+sizeof(in2)); TestNextUChar(cnv, source, limit, results2, "CESU-8"); ucnv_close(cnv); } void static TestUTF16() { /* test input */ static const uint8_t in1[]={ 0xfe, 0xff, 0x4e, 0x00, 0xfe, 0xff }; static const uint8_t in2[]={ 0xff, 0xfe, 0x4e, 0x00, 0xfe, 0xff }; static const uint8_t in3[]={ 0xfe, 0xfe, 0x4e, 0x00, 0xfe, 0xff, 0xd8, 0x40, 0xdc, 0x01 }; /* expected test results */ static const int32_t results1[]={ /* number of bytes read, code point */ 4, 0x4e00, 2, 0xfeff }; static const int32_t results2[]={ /* number of bytes read, code point */ 4, 0x004e, 2, 0xfffe }; static const int32_t results3[]={ /* number of bytes read, code point */ 2, 0xfefe, 2, 0x4e00, 2, 0xfeff, 4, 0x20001 }; const char *source, *limit; UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("UTF-16", &errorCode); if(U_FAILURE(errorCode)) { log_err("Unable to open a UTF-16 converter: %s\n", u_errorName(errorCode)); return; } source=(const char *)in1, limit=(const char *)in1+sizeof(in1); TestNextUChar(cnv, source, limit, results1, "UTF-16"); source=(const char *)in2, limit=(const char *)in2+sizeof(in2); ucnv_resetToUnicode(cnv); TestNextUChar(cnv, source, limit, results2, "UTF-16"); source=(const char *)in3, limit=(const char *)in3+sizeof(in3); ucnv_resetToUnicode(cnv); TestNextUChar(cnv, source, limit, results3, "UTF-16"); /* Test the condition when source >= sourceLimit */ ucnv_resetToUnicode(cnv); TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); ucnv_close(cnv); } void static TestUTF16BE() { /* test input */ static const uint8_t in[]={ 0x00, 0x61, 0x00, 0xc0, 0x00, 0x31, 0x00, 0xf4, 0xce, 0xfe, 0xd8, 0x01, 0xdc, 0x01 }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 2, 0x61, 2, 0xc0, 2, 0x31, 2, 0xf4, 2, 0xcefe, 4, 0x10401 }; const char *source=(const char *)in, *limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("utf-16be", &errorCode); if(U_FAILURE(errorCode)) { log_err("Unable to open a UTF16-BE converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, source, limit, results, "UTF-16BE"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); /*Test for the condition where there is an invalid character*/ { static const uint8_t source2[]={0x61}; ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode); TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_TRUNCATED_CHAR_FOUND, "an invalid character"); } #if 0 /* * Test disabled because currently the UTF-16BE/LE converters are supposed * to not set errors for unpaired surrogates. * This may change with * Jitterbug 1838 - forbid converting surrogate code points in UTF-16/32 */ /*Test for the condition where there is a surrogate pair*/ { const uint8_t source2[]={0xd8, 0x01}; TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_TRUNCATED_CHAR_FOUND, "an truncated surrogate character"); } #endif ucnv_close(cnv); } static void TestUTF16LE() { /* test input */ static const uint8_t in[]={ 0x61, 0x00, 0x31, 0x00, 0x4e, 0x2e, 0x4e, 0x00, 0x01, 0xd8, 0x01, 0xdc }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 2, 0x61, 2, 0x31, 2, 0x2e4e, 2, 0x4e, 4, 0x10401 }; const char *source=(const char *)in, *limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("utf-16le", &errorCode); if(U_FAILURE(errorCode)) { log_err("Unable to open a UTF16-LE converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, source, limit, results, "UTF-16LE"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); /*Test for the condition where there is an invalid character*/ { static const uint8_t source2[]={0x61}; ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode); TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_TRUNCATED_CHAR_FOUND, "an invalid character"); } #if 0 /* * Test disabled because currently the UTF-16BE/LE converters are supposed * to not set errors for unpaired surrogates. * This may change with * Jitterbug 1838 - forbid converting surrogate code points in UTF-16/32 */ /*Test for the condition where there is a surrogate character*/ { static const uint8_t source2[]={0x01, 0xd8}; TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_TRUNCATED_CHAR_FOUND, "an truncated surrogate character"); } #endif ucnv_close(cnv); } void static TestUTF32() { /* test input */ static const uint8_t in1[]={ 0x00, 0x00, 0xfe, 0xff, 0x00, 0x10, 0x0f, 0x00, 0x00, 0x00, 0xfe, 0xff }; static const uint8_t in2[]={ 0xff, 0xfe, 0x00, 0x00, 0x00, 0x10, 0x0f, 0x00, 0xfe, 0xff, 0x00, 0x00 }; static const uint8_t in3[]={ 0x00, 0x00, 0xfe, 0xfe, 0x00, 0x10, 0x0f, 0x00, 0x00, 0x00, 0xd8, 0x40, 0x00, 0x00, 0xdc, 0x01 }; /* expected test results */ static const int32_t results1[]={ /* number of bytes read, code point */ 8, 0x100f00, 4, 0xfeff }; static const int32_t results2[]={ /* number of bytes read, code point */ 8, 0x0f1000, 4, 0xfffe }; static const int32_t results3[]={ /* number of bytes read, code point */ 4, 0xfefe, 4, 0x100f00, 4, 0xfffd, /* unmatched surrogate */ 4, 0xfffd /* unmatched surrogate */ }; const char *source, *limit; UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("UTF-32", &errorCode); if(U_FAILURE(errorCode)) { log_err("Unable to open a UTF-32 converter: %s\n", u_errorName(errorCode)); return; } source=(const char *)in1, limit=(const char *)in1+sizeof(in1); TestNextUChar(cnv, source, limit, results1, "UTF-32"); source=(const char *)in2, limit=(const char *)in2+sizeof(in2); ucnv_resetToUnicode(cnv); TestNextUChar(cnv, source, limit, results2, "UTF-32"); source=(const char *)in3, limit=(const char *)in3+sizeof(in3); ucnv_resetToUnicode(cnv); TestNextUChar(cnv, source, limit, results3, "UTF-32"); /* Test the condition when source >= sourceLimit */ ucnv_resetToUnicode(cnv); TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); ucnv_close(cnv); } static void TestUTF32BE() { /* test input */ static const uint8_t in[]={ 0x00, 0x00, 0x00, 0x61, 0x00, 0x00, 0x30, 0x61, 0x00, 0x00, 0xdc, 0x00, 0x00, 0x00, 0xd8, 0x00, 0x00, 0x00, 0xdf, 0xff, 0x00, 0x00, 0xff, 0xfe, 0x00, 0x10, 0xab, 0xcd, 0x00, 0x10, 0xff, 0xff }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 4, 0x61, 4, 0x3061, 4, 0xfffd, 4, 0xfffd, 4, 0xfffd, 4, 0xfffe, 4, 0x10abcd, 4, 0x10ffff }; /* error test input */ static const uint8_t in2[]={ 0x00, 0x00, 0x00, 0x61, 0x00, 0x11, 0x00, 0x00, /* 0x110000 out of range */ 0x00, 0x00, 0x00, 0x62, 0xff, 0xff, 0xff, 0xff, /* 0xffffffff out of range */ 0x7f, 0xff, 0xff, 0xff, /* 0x7fffffff out of range */ 0x00, 0x00, 0x01, 0x62, 0x00, 0x00, 0x02, 0x62 }; /* expected error test results */ static const int32_t results2[]={ /* number of bytes read, code point */ 4, 0x61, 8, 0x62, 12, 0x162, 4, 0x262 }; UConverterToUCallback cb; const void *p; const char *source=(const char *)in, *limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("UTF-32BE", &errorCode); if(U_FAILURE(errorCode)) { log_err("Unable to open a UTF-32BE converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, source, limit, results, "UTF-32BE"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); /* test error behavior with a skip callback */ ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_SKIP, NULL, &cb, &p, &errorCode); source=(const char *)in2; limit=(const char *)(in2+sizeof(in2)); TestNextUChar(cnv, source, limit, results2, "UTF-32BE"); ucnv_close(cnv); } static void TestUTF32LE() { /* test input */ static const uint8_t in[]={ 0x61, 0x00, 0x00, 0x00, 0x61, 0x30, 0x00, 0x00, 0x00, 0xdc, 0x00, 0x00, 0x00, 0xd8, 0x00, 0x00, 0xff, 0xdf, 0x00, 0x00, 0xfe, 0xff, 0x00, 0x00, 0xcd, 0xab, 0x10, 0x00, 0xff, 0xff, 0x10, 0x00 }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 4, 0x61, 4, 0x3061, 4, 0xfffd, 4, 0xfffd, 4, 0xfffd, 4, 0xfffe, 4, 0x10abcd, 4, 0x10ffff }; /* error test input */ static const uint8_t in2[]={ 0x61, 0x00, 0x00, 0x00, 0x00, 0x00, 0x11, 0x00, /* 0x110000 out of range */ 0x62, 0x00, 0x00, 0x00, 0xff, 0xff, 0xff, 0xff, /* 0xffffffff out of range */ 0xff, 0xff, 0xff, 0x7f, /* 0x7fffffff out of range */ 0x62, 0x01, 0x00, 0x00, 0x62, 0x02, 0x00, 0x00, }; /* expected error test results */ static const int32_t results2[]={ /* number of bytes read, code point */ 4, 0x61, 8, 0x62, 12, 0x162, 4, 0x262, }; UConverterToUCallback cb; const void *p; const char *source=(const char *)in, *limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("UTF-32LE", &errorCode); if(U_FAILURE(errorCode)) { log_err("Unable to open a UTF-32LE converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, source, limit, results, "UTF-32LE"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); /* test error behavior with a skip callback */ ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_SKIP, NULL, &cb, &p, &errorCode); source=(const char *)in2; limit=(const char *)(in2+sizeof(in2)); TestNextUChar(cnv, source, limit, results2, "UTF-32LE"); ucnv_close(cnv); } static void TestLATIN1() { /* test input */ static const uint8_t in[]={ 0x61, 0x31, 0x32, 0xc0, 0xf0, 0xf4, }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 1, 0x61, 1, 0x31, 1, 0x32, 1, 0xc0, 1, 0xf0, 1, 0xf4, }; static const uint16_t in1[] = { 0x08, 0x00, 0x1b, 0x4c, 0xea, 0x16, 0xca, 0xd3, 0x94, 0x0f, 0x53, 0xef, 0x61, 0x1b, 0xe5, 0x84, 0xc4, 0x0f, 0x53, 0xef, 0x61, 0x1b, 0xe5, 0x84, 0xc4, 0x16, 0xca, 0xd3, 0x94, 0x08, 0x02, 0x0f, 0x53, 0x4a, 0x4e, 0x16, 0x7d, 0x00, 0x30, 0x82, 0x52, 0x4d, 0x30, 0x6b, 0x6d, 0x41, 0x88, 0x4c, 0xe5, 0x97, 0x9f, 0x08, 0x0c, 0x16, 0xca, 0xd3, 0x94, 0x15, 0xae, 0x0e, 0x6b, 0x4c, 0x08, 0x0d, 0x8c, 0xb4, 0xa3, 0x9f, 0xca, 0x99, 0xcb, 0x8b, 0xc2, 0x97, 0xcc, 0xaa, 0x84, 0x08, 0x02, 0x0e, 0x7c, 0x73, 0xe2, 0x16, 0xa3, 0xb7, 0xcb, 0x93, 0xd3, 0xb4, 0xc5, 0xdc, 0x9f, 0x0e, 0x79, 0x3e, 0x06, 0xae, 0xb1, 0x9d, 0x93, 0xd3, 0x08, 0x0c, 0xbe, 0xa3, 0x8f, 0x08, 0x88, 0xbe, 0xa3, 0x8d, 0xd3, 0xa8, 0xa3, 0x97, 0xc5, 0x17, 0x89, 0x08, 0x0d, 0x15, 0xd2, 0x08, 0x01, 0x93, 0xc8, 0xaa, 0x8f, 0x0e, 0x61, 0x1b, 0x99, 0xcb, 0x0e, 0x4e, 0xba, 0x9f, 0xa1, 0xae, 0x93, 0xa8, 0xa0, 0x08, 0x02, 0x08, 0x0c, 0xe2, 0x16, 0xa3, 0xb7, 0xcb, 0x0f, 0x4f, 0xe1, 0x80, 0x05, 0xec, 0x60, 0x8d, 0xea, 0x06, 0xd3, 0xe6, 0x0f, 0x8a, 0x00, 0x30, 0x44, 0x65, 0xb9, 0xe4, 0xfe, 0xe7, 0xc2, 0x06, 0xcb, 0x82 }; static const uint8_t out1[] = { 0x08, 0x00, 0x1b, 0x4c, 0xea, 0x16, 0xca, 0xd3, 0x94, 0x0f, 0x53, 0xef, 0x61, 0x1b, 0xe5, 0x84, 0xc4, 0x0f, 0x53, 0xef, 0x61, 0x1b, 0xe5, 0x84, 0xc4, 0x16, 0xca, 0xd3, 0x94, 0x08, 0x02, 0x0f, 0x53, 0x4a, 0x4e, 0x16, 0x7d, 0x00, 0x30, 0x82, 0x52, 0x4d, 0x30, 0x6b, 0x6d, 0x41, 0x88, 0x4c, 0xe5, 0x97, 0x9f, 0x08, 0x0c, 0x16, 0xca, 0xd3, 0x94, 0x15, 0xae, 0x0e, 0x6b, 0x4c, 0x08, 0x0d, 0x8c, 0xb4, 0xa3, 0x9f, 0xca, 0x99, 0xcb, 0x8b, 0xc2, 0x97, 0xcc, 0xaa, 0x84, 0x08, 0x02, 0x0e, 0x7c, 0x73, 0xe2, 0x16, 0xa3, 0xb7, 0xcb, 0x93, 0xd3, 0xb4, 0xc5, 0xdc, 0x9f, 0x0e, 0x79, 0x3e, 0x06, 0xae, 0xb1, 0x9d, 0x93, 0xd3, 0x08, 0x0c, 0xbe, 0xa3, 0x8f, 0x08, 0x88, 0xbe, 0xa3, 0x8d, 0xd3, 0xa8, 0xa3, 0x97, 0xc5, 0x17, 0x89, 0x08, 0x0d, 0x15, 0xd2, 0x08, 0x01, 0x93, 0xc8, 0xaa, 0x8f, 0x0e, 0x61, 0x1b, 0x99, 0xcb, 0x0e, 0x4e, 0xba, 0x9f, 0xa1, 0xae, 0x93, 0xa8, 0xa0, 0x08, 0x02, 0x08, 0x0c, 0xe2, 0x16, 0xa3, 0xb7, 0xcb, 0x0f, 0x4f, 0xe1, 0x80, 0x05, 0xec, 0x60, 0x8d, 0xea, 0x06, 0xd3, 0xe6, 0x0f, 0x8a, 0x00, 0x30, 0x44, 0x65, 0xb9, 0xe4, 0xfe, 0xe7, 0xc2, 0x06, 0xcb, 0x82 }; static const uint16_t in2[]={ 0x1B, 0x24, 0x29, 0x47, 0x0E, 0x23, 0x21, 0x23, 0x22, 0x23, 0x23, 0x23, 0x24, 0x23, 0x25, 0x23, 0x26, 0x23, 0x27, 0x23, 0x28, 0x23, 0x29, 0x23, 0x2A, 0x23, 0x2B, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x31, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2A, 0x48, 0x1B, 0x4E, 0x22, 0x21, 0x1B, 0x4E, 0x22, 0x22, 0x1B, 0x4E, 0x22, 0x23, 0x1B, 0x4E, 0x22, 0x24, 0x1B, 0x4E, 0x22, 0x25, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x32, 0x2A, 0x2F, 0x20, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x49, 0x1B, 0x4F, 0x22, 0x44, 0x1B, 0x4F, 0x22, 0x45, 0x1B, 0x4F, 0x22, 0x46, 0x1B, 0x4F, 0x22, 0x47, 0x1B, 0x4F, 0x22, 0x48, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x33, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x4A, 0x1B, 0x4F, 0x21, 0x44, 0x1B, 0x4F, 0x21, 0x45, 0x1B, 0x4F, 0x22, 0x6A, 0x1B, 0x4F, 0x22, 0x6B, 0x1B, 0x4F, 0x22, 0x6C, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x34, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x4B, 0x1B, 0x4F, 0x21, 0x74, 0x1B, 0x4F, 0x22, 0x50, 0x1B, 0x4F, 0x22, 0x51, 0x1B, 0x4F, 0x23, 0x37, 0x1B, 0x4F, 0x22, 0x5C, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x35, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x4C, 0x1B, 0x4F, 0x21, 0x23, 0x1B, 0x4F, 0x22, 0x2C, 0x1B, 0x4F, 0x23, 0x4E, 0x1B, 0x4F, 0x21, 0x6E, 0x1B, 0x4F, 0x23, 0x71, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x36, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x4D, 0x1B, 0x4F, 0x22, 0x71, 0x1B, 0x4F, 0x21, 0x4E, 0x1B, 0x4F, 0x21, 0x6A, 0x1B, 0x4F, 0x23, 0x3A, 0x1B, 0x4F, 0x23, 0x6F, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x37, 0x20, 0x2A, 0x2F, }; static const unsigned char out2[]={ 0x1B, 0x24, 0x29, 0x47, 0x0E, 0x23, 0x21, 0x23, 0x22, 0x23, 0x23, 0x23, 0x24, 0x23, 0x25, 0x23, 0x26, 0x23, 0x27, 0x23, 0x28, 0x23, 0x29, 0x23, 0x2A, 0x23, 0x2B, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x31, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2A, 0x48, 0x1B, 0x4E, 0x22, 0x21, 0x1B, 0x4E, 0x22, 0x22, 0x1B, 0x4E, 0x22, 0x23, 0x1B, 0x4E, 0x22, 0x24, 0x1B, 0x4E, 0x22, 0x25, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x32, 0x2A, 0x2F, 0x20, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x49, 0x1B, 0x4F, 0x22, 0x44, 0x1B, 0x4F, 0x22, 0x45, 0x1B, 0x4F, 0x22, 0x46, 0x1B, 0x4F, 0x22, 0x47, 0x1B, 0x4F, 0x22, 0x48, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x33, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x4A, 0x1B, 0x4F, 0x21, 0x44, 0x1B, 0x4F, 0x21, 0x45, 0x1B, 0x4F, 0x22, 0x6A, 0x1B, 0x4F, 0x22, 0x6B, 0x1B, 0x4F, 0x22, 0x6C, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x34, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x4B, 0x1B, 0x4F, 0x21, 0x74, 0x1B, 0x4F, 0x22, 0x50, 0x1B, 0x4F, 0x22, 0x51, 0x1B, 0x4F, 0x23, 0x37, 0x1B, 0x4F, 0x22, 0x5C, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x35, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x4C, 0x1B, 0x4F, 0x21, 0x23, 0x1B, 0x4F, 0x22, 0x2C, 0x1B, 0x4F, 0x23, 0x4E, 0x1B, 0x4F, 0x21, 0x6E, 0x1B, 0x4F, 0x23, 0x71, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x36, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x4D, 0x1B, 0x4F, 0x22, 0x71, 0x1B, 0x4F, 0x21, 0x4E, 0x1B, 0x4F, 0x21, 0x6A, 0x1B, 0x4F, 0x23, 0x3A, 0x1B, 0x4F, 0x23, 0x6F, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x37, 0x20, 0x2A, 0x2F, }; const char *source=(const char *)in; const char *limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("LATIN_1", &errorCode); if(U_FAILURE(errorCode)) { log_err("Unable to open a LATIN_1 converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, source, limit, results, "LATIN_1"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); TestConv((uint16_t*)in1,sizeof(in1)/2,"LATIN_1","LATIN-1",(char*)out1,sizeof(out1)); TestConv((uint16_t*)in2,sizeof(in2)/2,"ASCII","ASCII",(char*)out2,sizeof(out2)); ucnv_close(cnv); } static void TestSBCS() { /* test input */ static const uint8_t in[]={ 0x61, 0xc0, 0x80, 0xe0, 0xf0, 0xf4}; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 1, 0x61, 1, 0xbf, 1, 0xc4, 1, 0x2021, 1, 0xf8ff, 1, 0x00d9 }; const char *source=(const char *)in, *limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("x-mac-turkish", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a SBCS(x-mac-turkish) converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, source, limit, results, "SBCS(x-mac-turkish)"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); /*Test for Illegal character */ /* { static const uint8_t input1[]={ 0xA1 }; const char* illegalsource=(const char*)input1; TestNextUCharError(cnv, illegalsource, illegalsource+sizeof(illegalsource), U_INVALID_CHAR_FOUND, "source has a illegal characte"); } */ ucnv_close(cnv); } static void TestDBCS() { /* test input */ static const uint8_t in[]={ 0x44, 0x6a, 0xc4, 0x9c, 0x7a, 0x74, 0x46, 0xab, 0x42, 0x5b, }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 2, 0x00a7, 2, 0xe1d2, 2, 0x6962, 2, 0xf842, 2, 0xffe5, }; const char *source=(const char *)in, *limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=my_ucnv_open("@ibm9027", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a DBCS(@ibm9027) converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, source, limit, results, "DBCS(@ibm9027)"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); /*Test for the condition where there is an invalid character*/ { static const uint8_t source2[]={0x1a, 0x1b}; TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character"); } /*Test for the condition where we have a truncated char*/ { static const uint8_t source1[]={0xc4}; ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode); TestNextUCharError(cnv, (const char*)source1, (const char*)source1+sizeof(source1), U_TRUNCATED_CHAR_FOUND, "a character is truncated"); } ucnv_close(cnv); } static void TestMBCS() { /* test input */ static const uint8_t in[]={ 0x01, 0xa6, 0xa3, 0x00, 0xa6, 0xa1, 0x08, 0xc2, 0x76, 0xc2, 0x78, }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 1, 0x0001, 2, 0x250c, 1, 0x0000, 2, 0x2500, 1, 0x0008, 2, 0xd60c, 2, 0xd60e, }; const char *source=(const char *)in, *limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("ibm-1363", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a MBCS(ibm-1363) converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, source, limit, results, "MBCS(ibm-1363)"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); /*Test for the condition where there is an invalid character*/ { static const uint8_t source2[]={0xa1, 0x01}; TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character"); } /*Test for the condition where we have a truncated char*/ { static const uint8_t source1[]={0xc4}; ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode); TestNextUCharError(cnv, (const char*)source1, (const char*)source1+sizeof(source1), U_TRUNCATED_CHAR_FOUND, "a character is truncated"); } ucnv_close(cnv); } #ifdef U_ENABLE_GENERIC_ISO_2022 static void TestISO_2022() { /* test input */ static const uint8_t in[]={ 0x1b, 0x25, 0x42, 0x31, 0x32, 0x61, 0xc2, 0x80, 0xe0, 0xa0, 0x80, 0xf0, 0x90, 0x80, 0x80 }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 4, 0x0031, /* 4 bytes including the escape sequence */ 1, 0x0032, 1, 0x61, 2, 0x80, 3, 0x800, 4, 0x10000 }; const char *source=(const char *)in, *limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv; cnv=ucnv_open("ISO_2022", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, source, limit, results, "ISO_2022"); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source-1, U_ILLEGAL_ARGUMENT_ERROR, "sourceLimit < source"); TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); /*Test for the condition where we have a truncated char*/ { static const uint8_t source1[]={0xc4}; ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode); TestNextUCharError(cnv, (const char*)source1, (const char*)source1+sizeof(source1), U_TRUNCATED_CHAR_FOUND, "a character is truncated"); } /*Test for the condition where there is an invalid character*/ { static const uint8_t source2[]={0xa1, 0x01}; TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ILLEGAL_CHAR_FOUND, "an invalid character"); } ucnv_close(cnv); } #endif static void TestSmallTargetBuffer(const uint16_t* source, const UChar* sourceLimit,UConverter* cnv){ const UChar* uSource; const UChar* uSourceLimit; const char* cSource; const char* cSourceLimit; UChar *uTargetLimit =NULL; UChar *uTarget; char *cTarget; const char *cTargetLimit; char *cBuf; UChar *uBuf,*test; int32_t uBufSize = 120; int len=0; int i=2; UErrorCode errorCode=U_ZERO_ERROR; uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5); cBuf =(char*)malloc(uBufSize * sizeof(char) * 10); ucnv_reset(cnv); for(;--i>0; ){ uSource = (UChar*) source; uSourceLimit=(const UChar*)sourceLimit; cTarget = cBuf; uTarget = uBuf; cSource = cBuf; cTargetLimit = cBuf; uTargetLimit = uBuf; do{ cTargetLimit = cTargetLimit+ i; ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,NULL,FALSE, &errorCode); if(errorCode==U_BUFFER_OVERFLOW_ERROR){ errorCode=U_ZERO_ERROR; continue; } if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } }while (uSource<uSourceLimit); cSourceLimit =cTarget; do{ uTargetLimit=uTargetLimit+i; ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,NULL,FALSE,&errorCode); if(errorCode==U_BUFFER_OVERFLOW_ERROR){ errorCode=U_ZERO_ERROR; continue; } if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } }while(cSource<cSourceLimit); uSource = source; test =uBuf; for(len=0;len<(int)(source - sourceLimit);len++){ if(uBuf[len]!=uSource[len]){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",uSource[len],(int)uBuf[len]) ; } } } free(uBuf); free(cBuf); } /* Test for Jitterbug 778 */ static void TestToAndFromUChars(const uint16_t* source, const UChar* sourceLimit,UConverter* cnv){ const UChar* uSource; const UChar* uSourceLimit; const char* cSource; UChar *uTargetLimit =NULL; UChar *uTarget; char *cTarget; const char *cTargetLimit; char *cBuf; UChar *uBuf,*test; int32_t uBufSize = 120; int numCharsInTarget=0; UErrorCode errorCode=U_ZERO_ERROR; uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5); cBuf =(char*)malloc(uBufSize * sizeof(char) * 5); uSource = source; uSourceLimit=sourceLimit; cTarget = cBuf; cTargetLimit = cBuf +uBufSize*5; uTarget = uBuf; uTargetLimit = uBuf+ uBufSize*5; ucnv_reset(cnv); numCharsInTarget=ucnv_fromUChars(cnv, cTarget, (int32_t)(cTargetLimit-cTarget), uSource, (int32_t)(uSourceLimit-uSource), &errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } cSource = cBuf; test =uBuf; ucnv_toUChars(cnv,uTarget,(int32_t)(uTargetLimit-uTarget),cSource,numCharsInTarget,&errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_toUChars conversion failed, reason %s\n", u_errorName(errorCode)); return; } uSource = source; while(uSource<uSourceLimit){ if(*test!=*uSource){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ; } uSource++; test++; } free(uBuf); free(cBuf); } static void TestSmallSourceBuffer(const uint16_t* source, const UChar* sourceLimit,UConverter* cnv){ const UChar* uSource; const UChar* uSourceLimit; const char* cSource; const char* cSourceLimit; UChar *uTargetLimit =NULL; UChar *uTarget; char *cTarget; const char *cTargetLimit; char *cBuf; UChar *uBuf,*test; int32_t uBufSize = 120; int len=0; int i=2; const UChar *temp = sourceLimit; UErrorCode errorCode=U_ZERO_ERROR; uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5); cBuf =(char*)malloc(uBufSize * sizeof(char) * 10); ucnv_reset(cnv); for(;--i>0;){ uSource = (UChar*) source; cTarget = cBuf; uTarget = uBuf; cSource = cBuf; cTargetLimit = cBuf; uTargetLimit = uBuf+uBufSize*5; cTargetLimit = cTargetLimit+uBufSize*10; uSourceLimit=uSource; do{ if (uSourceLimit < sourceLimit) { uSourceLimit = uSourceLimit+1; } ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,NULL,FALSE, &errorCode); if(errorCode==U_BUFFER_OVERFLOW_ERROR){ errorCode=U_ZERO_ERROR; continue; } if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } }while (uSource<temp); cSourceLimit =cBuf; do{ if (cSourceLimit < cBuf + (cTarget - cBuf)) { cSourceLimit = cSourceLimit+1; } ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,NULL,FALSE,&errorCode); if(errorCode==U_BUFFER_OVERFLOW_ERROR){ errorCode=U_ZERO_ERROR; continue; } if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } }while(cSource<cTarget); uSource = source; test =uBuf; for(;len<(int)(source - sourceLimit);len++){ if(uBuf[len]!=uSource[len]){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",uSource[len],(int)uBuf[len]) ; } } } free(uBuf); free(cBuf); } static void TestGetNextUChar2022(UConverter* cnv, const char* source, const char* limit, const uint16_t results[], const char* message){ const char* s0; const char* s=(char*)source; const uint16_t *r=results; UErrorCode errorCode=U_ZERO_ERROR; uint32_t c,exC; ucnv_reset(cnv); while(s<limit) { s0=s; c=ucnv_getNextUChar(cnv, &s, limit, &errorCode); if(errorCode==U_INDEX_OUTOFBOUNDS_ERROR) { break; /* no more significant input */ } else if(U_FAILURE(errorCode)) { log_err("%s ucnv_getNextUChar() failed: %s\n", message, u_errorName(errorCode)); break; } else { if(UTF_IS_FIRST_SURROGATE(*r)){ int i =0, len = 2; UTF_NEXT_CHAR_SAFE(r, i, len, exC, FALSE); r++; }else{ exC = *r; } if(c!=(uint32_t)(exC)) log_err("%s ucnv_getNextUChar() Expected: \\u%04X Got: \\u%04X \n",message,(uint32_t) (*r),c); } r++; } } static int TestJitterbug930(const char* enc){ UErrorCode err = U_ZERO_ERROR; UConverter*converter; char out[80]; char*target = out; UChar in[4]; const UChar*source = in; int32_t off[80]; int32_t* offsets = off; int numOffWritten=0; UBool flush = 0; converter = my_ucnv_open(enc, &err); in[0] = 0x41; /* 0x4E00;*/ in[1] = 0x4E01; in[2] = 0x4E02; in[3] = 0x4E03; memset(off, '*', sizeof(off)); ucnv_fromUnicode (converter, &target, target+2, &source, source+3, offsets, flush, &err); /* writes three bytes into the output buffer: 41 1B 24 * but offsets contains 0 1 1 */ while(*offsets< off[10]){ numOffWritten++; offsets++; } log_verbose("Testing Jitterbug 930 for encoding %s",enc); if(numOffWritten!= (int)(target-out)){ log_err("Jitterbug 930 test for enc: %s failed. Expected: %i Got: %i",enc, (int)(target-out),numOffWritten); } err = U_ZERO_ERROR; memset(off,'*' , sizeof(off)); flush = 1; offsets=off; ucnv_fromUnicode (converter, &target, target+4, &source, source, offsets, flush, &err); numOffWritten=0; while(*offsets< off[10]){ numOffWritten++; if(*offsets!= -1){ log_err("Jitterbug 930 test for enc: %s failed. Expected: %i Got: %i",enc,-1,*offsets) ; } offsets++; } /* writes 42 43 7A into output buffer, * offsets contains -1 -1 -1 */ ucnv_close(converter); return 0; } static void TestHZ() { /* test input */ static const uint16_t in[]={ 0x3000, 0x3001, 0x3002, 0x00B7, 0x02C9, 0x02C7, 0x00A8, 0x3003, 0x3005, 0x2014, 0xFF5E, 0x2016, 0x2026, 0x007E, 0x997C, 0x70B3, 0x75C5, 0x5E76, 0x73BB, 0x83E0, 0x64AD, 0x62E8, 0x94B5, 0x000A, 0x6CE2, 0x535A, 0x52C3, 0x640F, 0x94C2, 0x7B94, 0x4F2F, 0x5E1B, 0x8236, 0x000A, 0x8116, 0x818A, 0x6E24, 0x6CCA, 0x9A73, 0x6355, 0x535C, 0x54FA, 0x8865, 0x000A, 0x57E0, 0x4E0D, 0x5E03, 0x6B65, 0x7C3F, 0x90E8, 0x6016, 0x248F, 0x2490, 0x000A, 0x2491, 0x2492, 0x2493, 0x2494, 0x2495, 0x2496, 0x2497, 0x2498, 0x2499, 0x000A, 0x249A, 0x249B, 0x2474, 0x2475, 0x2476, 0x2477, 0x2478, 0x2479, 0x247A, 0x000A, 0x247B, 0x247C, 0x247D, 0x247E, 0x247F, 0x2480, 0x2481, 0x2482, 0x2483, 0x000A, 0x0041, 0x0043, 0x0044, 0x0045, 0x0046, 0x007E, 0x0048, 0x0049, 0x004A, 0x000A, 0x004B, 0x004C, 0x004D, 0x004E, 0x004F, 0x0050, 0x0051, 0x0052, 0x0053, 0x000A, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x005B, 0x005C, 0x000A }; const UChar* uSource; const UChar* uSourceLimit; const char* cSource; const char* cSourceLimit; UChar *uTargetLimit =NULL; UChar *uTarget; char *cTarget; const char *cTargetLimit; char *cBuf; UChar *uBuf,*test; int32_t uBufSize = 120; UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv; int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5); int32_t* myOff= offsets; cnv=ucnv_open("HZ", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open HZ converter: %s\n", u_errorName(errorCode)); return; } uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5); cBuf =(char*)malloc(uBufSize * sizeof(char) * 5); uSource = (const UChar*)in; uSourceLimit=(const UChar*)in + (sizeof(in)/sizeof(in[0])); cTarget = cBuf; cTargetLimit = cBuf +uBufSize*5; uTarget = uBuf; uTargetLimit = uBuf+ uBufSize*5; ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } cSource = cBuf; cSourceLimit =cTarget; test =uBuf; myOff=offsets; ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } uSource = (const UChar*)in; while(uSource<uSourceLimit){ if(*test!=*uSource){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ; } uSource++; test++; } TestGetNextUChar2022(cnv, cBuf, cTarget, in, "HZ encoding"); TestSmallTargetBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestSmallSourceBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestToAndFromUChars(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestJitterbug930("csISO2022JP"); ucnv_close(cnv); free(offsets); free(uBuf); free(cBuf); } static void TestISCII(){ /* test input */ static const uint16_t in[]={ /* test full range of Devanagari */ 0x0901,0x0902,0x0903,0x0905,0x0906,0x0907,0x0908,0x0909,0x090A, 0x090B,0x090E,0x090F,0x0910,0x090D,0x0912,0x0913,0x0914,0x0911, 0x0915,0x0916,0x0917,0x0918,0x0919,0x091A,0x091B,0x091C,0x091D, 0x091E,0x091F,0x0920,0x0921,0x0922,0x0923,0x0924,0x0925,0x0926, 0x0927,0x0928,0x0929,0x092A,0x092B,0x092C,0x092D,0x092E,0x092F, 0x095F,0x0930,0x0931,0x0932,0x0933,0x0934,0x0935,0x0936,0x0937, 0x0938,0x0939,0x200D,0x093E,0x093F,0x0940,0x0941,0x0942,0x0943, 0x0946,0x0947,0x0948,0x0945,0x094A,0x094B,0x094C,0x0949,0x094D, 0x093d,0x0966,0x0967,0x0968,0x0969,0x096A,0x096B,0x096C, 0x096D,0x096E,0x096F, /* test Soft halant*/ 0x0915,0x094d, 0x200D, /* test explicit halant */ 0x0915,0x094d, 0x200c, /* test double danda */ 0x965, /* test ASCII */ 0x1B, 0x24, 0x29, 0x47, 0x0E, 0x23, 0x21, 0x23, 0x22, 0x23, 0x23, 0x23, 0x24, 0x23, 0x25, 0x23, 0x26, 0x23, 0x27, 0x23, 0x28, 0x23, 0x29, 0x23, 0x2A, 0x23, 0x2B, 0x0F, 0x2F, 0x2A, /* tests from Lotus */ 0x0061,0x0915,0x000D,0x000A,0x0996,0x0043, 0x0930,0x094D,0x200D, 0x0901,0x000D,0x000A,0x0905,0x0985,0x0043, 0x0915,0x0921,0x002B,0x095F, /* tamil range */ 0x0B86, 0xB87, 0xB88, /* telugu range */ 0x0C05, 0x0C02, 0x0C03,0x0c31, /* kannada range */ 0x0C85, 0xC82, 0x0C83, /* test Abbr sign and Anudatta */ 0x0970, 0x952, /* 0x0958, 0x0959, 0x095A, 0x095B, 0x095C, 0x095D, 0x095E, 0x095F,*/ 0x0960 /* Vocallic RRI 0xAB, 0xE9*/, 0x0944 /* Vowel Sign Vocallic RRI 0xDF, 0xE9 */, 0x090C , 0x0962, 0x0961 /* Vocallic LL 0xa6, 0xE9 */, 0x0963 /* Vowel Sign Vocallic LL 0xdb, 0xE9, */, 0x0950 /* OM Symbol 0xa1, 0xE9,*/, 0x093D /* Avagraha 0xEA, 0xE9*/, 0x0958, 0x0959, 0x095A, 0x095B, 0x095C, 0x095D, 0x095E, 0x0020, 0x094D, 0x0930, 0x0000, 0x00A0 }; static const unsigned char byteArr[]={ 0xa1,0xa2,0xa3,0xa4,0xa5,0xa6,0xa7,0xa8,0xa9, 0xaa,0xab,0xac,0xad,0xae,0xaf,0xb0,0xb1,0xb2, 0xb3,0xb4,0xb5,0xb6,0xb7,0xb8,0xb9,0xba,0xbb, 0xbc,0xbd,0xbe,0xbf,0xc0,0xc1,0xc2,0xc3,0xc4, 0xc5,0xc6,0xc7,0xc8,0xc9,0xca,0xcb,0xcc,0xcd, 0xce,0xcf,0xd0,0xd1,0xd2,0xd3,0xd4,0xd5,0xd6, 0xd7,0xd8,0xd9,0xda,0xdb,0xdc,0xdd,0xde,0xdf, 0xe0,0xe1,0xe2,0xe3,0xe4,0xe5,0xe6,0xe7,0xe8, 0xea,0xe9,0xf1,0xf2,0xf3,0xf4,0xf5,0xf6,0xf7, 0xf8,0xf9,0xfa, /* test soft halant */ 0xb3, 0xE8, 0xE9, /* test explicit halant */ 0xb3, 0xE8, 0xE8, /* test double danda */ 0xea, 0xea, /* test ASCII */ 0x1B, 0x24, 0x29, 0x47, 0x0E, 0x23, 0x21, 0x23, 0x22, 0x23, 0x23, 0x23, 0x24, 0x23, 0x25, 0x23, 0x26, 0x23, 0x27, 0x23, 0x28, 0x23, 0x29, 0x23, 0x2A, 0x23, 0x2B, 0x0F, 0x2F, 0x2A, /* test ATR code */ /* tests from Lotus */ 0x61,0xEF,0x42,0xEF,0x30,0xB3,0x0D,0x0A,0xEF,0x43,0xB4,0x43, 0xEF,0x42,0xCF,0xE8,0xD9, 0xEF,0x42,0xA1,0x0D,0x0A,0xEF,0x42,0xA4,0xEF,0x43,0xA4,0x43, 0xEF,0x42,0xB3,0xBF,0x2B,0xEF,0x42,0xCE, /* tamil range */ 0xEF, 0x44, 0xa5, 0xa6, 0xa7, /* telugu range */ 0xEF, 0x45,0xa4, 0xa2, 0xa3,0xd0, /* kannada range */ 0xEF, 0x48,0xa4, 0xa2, 0xa3, /* anudatta and abbreviation sign */ 0xEF, 0x42, 0xF0, 0xBF, 0xF0, 0xB8, 0xAA, 0xE9,/* RI + NUKTA 0x0960*/ 0xDF, 0xE9,/* Vowel sign RI + NUKTA 0x0944*/ 0xa6, 0xE9,/* Vowel I + NUKTA 0x090C*/ 0xdb, 0xE9,/* Vowel sign I + Nukta 0x0962*/ 0xa7, 0xE9,/* Vowel II + NUKTA 0x0961*/ 0xdc, 0xE9,/* Vowel sign II + Nukta 0x0963*/ 0xa1, 0xE9,/* chandrabindu + Nukta 0x0950*/ 0xEA, 0xE9, /* Danda + Nukta 0x093D*/ 0xB3, 0xE9, /* Ka + NUKTA */ 0xB4, 0xE9, /* Kha + NUKTA */ 0xB5, 0xE9, /* Ga + NUKTA */ 0xBA, 0xE9, 0xBF, 0xE9, 0xC0, 0xE9, 0xC9, 0xE9, /* INV halant RA */ 0xD9, 0xE8, 0xCF, 0x00, 0x00A0, /* just consume unhandled codepoints */ 0xEF, 0x30, }; testConvertToU(byteArr,(sizeof(byteArr)),in,(sizeof(in)/U_SIZEOF_UCHAR),"x-iscii-de",NULL,TRUE); TestConv(in,(sizeof(in)/2),"ISCII,version=0","hindi", (char *)byteArr,sizeof(byteArr)); } static void TestISO_2022_JP() { /* test input */ static const uint16_t in[]={ 0x0041,/*0x00E9,*/0x3000, 0x3001, 0x3002, 0x0020, 0x000D, 0x000A, 0x0043, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x0049, 0x004A, 0x000D, 0x000A, 0x004B, 0x004C, 0x004D, 0x004E, 0x004F, 0x0050, 0x0051, 0x0052, 0x000D, 0x000A, 0x3005, 0x3006, 0x3007, 0x30FC, 0x2015, 0x2010, 0xFF0F, 0x005C, 0x000D, 0x000A, 0x3013, 0x2018, 0x2026, 0x2025, 0x2018, 0x2019, 0x201C, 0x000D, 0x000A, 0x201D, 0x3014, 0x000D, 0x000A, 0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x000D, 0x000A, 0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x000D, 0x000A, }; const UChar* uSource; const UChar* uSourceLimit; const char* cSource; const char* cSourceLimit; UChar *uTargetLimit =NULL; UChar *uTarget; char *cTarget; const char *cTargetLimit; char *cBuf; UChar *uBuf,*test; int32_t uBufSize = 120; UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv; int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5); int32_t* myOff= offsets; cnv=ucnv_open("ISO_2022_JP_1", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open an ISO_2022_JP_1 converter: %s\n", u_errorName(errorCode)); return; } uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5); cBuf =(char*)malloc(uBufSize * sizeof(char) * 5); uSource = (const UChar*)in; uSourceLimit=(const UChar*)in + (sizeof(in)/sizeof(in[0])); cTarget = cBuf; cTargetLimit = cBuf +uBufSize*5; uTarget = uBuf; uTargetLimit = uBuf+ uBufSize*5; ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } cSource = cBuf; cSourceLimit =cTarget; test =uBuf; myOff=offsets; ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } uSource = (const UChar*)in; while(uSource<uSourceLimit){ if(*test!=*uSource){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ; } uSource++; test++; } TestSmallTargetBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestSmallSourceBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestGetNextUChar2022(cnv, cBuf, cTarget, in, "ISO-2022-JP encoding"); TestToAndFromUChars(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestJitterbug930("csISO2022JP"); ucnv_close(cnv); free(uBuf); free(cBuf); free(offsets); } static void TestConv(const uint16_t in[],int len, const char* conv, const char* lang, char byteArr[],int byteArrLen){ const UChar* uSource; const UChar* uSourceLimit; const char* cSource; const char* cSourceLimit; UChar *uTargetLimit =NULL; UChar *uTarget; char *cTarget; const char *cTargetLimit; char *cBuf; UChar *uBuf,*test; int32_t uBufSize = 120*10; UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv; int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) ); int32_t* myOff= offsets; cnv=my_ucnv_open(conv, &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a %s converter: %s\n", conv, u_errorName(errorCode)); return; } uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)); cBuf =(char*)malloc(uBufSize * sizeof(char)); uSource = (const UChar*)in; uSourceLimit=uSource+len; cTarget = cBuf; cTargetLimit = cBuf +uBufSize; uTarget = uBuf; uTargetLimit = uBuf+ uBufSize; ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } /*log_verbose("length of compressed string for language %s using %s:%i \n",conv,lang,(cTarget-cBuf));*/ cSource = cBuf; cSourceLimit =cTarget; test =uBuf; myOff=offsets; ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed, reason: %s\n", u_errorName(errorCode)); return; } uSource = (const UChar*)in; while(uSource<uSourceLimit){ if(*test!=*uSource){ log_err("for codepage %s : Expected : \\u%04X \t Got: \\u%04X\n",conv,*uSource,(int)*test) ; } uSource++; test++; } TestSmallTargetBuffer(in,(const UChar*)&in[len],cnv); TestSmallSourceBuffer(in,(const UChar*)&in[len],cnv); TestGetNextUChar2022(cnv, cBuf, cTarget, in, conv); if(byteArr && byteArrLen!=0){ TestGetNextUChar2022(cnv, byteArr, (byteArr+byteArrLen), in, lang); TestToAndFromUChars(in,(const UChar*)&in[len],cnv); { cSource = byteArr; cSourceLimit = cSource+byteArrLen; test=uBuf; myOff = offsets; ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } uSource = (const UChar*)in; while(uSource<uSourceLimit){ if(*test!=*uSource){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ; } uSource++; test++; } } } ucnv_close(cnv); free(uBuf); free(cBuf); free(offsets); } static UChar U_CALLCONV _charAt(int32_t offset, void *context) { return ((char*)context)[offset]; } static int32_t unescape(UChar* dst, int32_t dstLen,const char* src,int32_t srcLen,UErrorCode *status){ int32_t srcIndex=0; int32_t dstIndex=0; if(U_FAILURE(*status)){ return 0; } if((dst==NULL && dstLen>0) || (src==NULL ) || dstLen < -1 || srcLen <-1 ){ *status = U_ILLEGAL_ARGUMENT_ERROR; return 0; } if(srcLen==-1){ srcLen = (int32_t)uprv_strlen(src); } for (; srcIndex<srcLen; ) { UChar32 c = src[srcIndex++]; if (c == 0x005C /*'\\'*/) { c = u_unescapeAt(_charAt,&srcIndex,srcLen,(void*)src); /* advances i*/ if (c == (UChar32)0xFFFFFFFF) { *status=U_INVALID_CHAR_FOUND; /* return empty string */ break; /* invalid escape sequence */ } } if(dstIndex < dstLen){ if(c>0xFFFF){ dst[dstIndex++] = UTF16_LEAD(c); if(dstIndex<dstLen){ dst[dstIndex]=UTF16_TRAIL(c); }else{ *status=U_BUFFER_OVERFLOW_ERROR; } }else{ dst[dstIndex]=(UChar)c; } }else{ *status = U_BUFFER_OVERFLOW_ERROR; } dstIndex++; /* for preflighting */ } return dstIndex; } static void TestFullRoundtrip(const char* cp){ UChar usource[10] ={0}; UChar nsrc[10] = {0}; uint32_t i=1; int len=0, ulen; nsrc[0]=0x0061; /* Test codepoint 0 */ TestConv(usource,1,cp,"",NULL,0); TestConv(usource,2,cp,"",NULL,0); nsrc[2]=0x5555; TestConv(nsrc,3,cp,"",NULL,0); for(;i<=0x10FFFF;i++){ if(i==0xD800){ i=0xDFFF; continue; } if(i<=0xFFFF){ usource[0] =(UChar) i; len=1; }else{ usource[0]=UTF16_LEAD(i); usource[1]=UTF16_TRAIL(i); len=2; } ulen=len; if(i==0x80) { usource[2]=0; } /* Test only single code points */ TestConv(usource,ulen,cp,"",NULL,0); /* Test codepoint repeated twice */ usource[ulen]=usource[0]; usource[ulen+1]=usource[1]; ulen+=len; TestConv(usource,ulen,cp,"",NULL,0); /* Test codepoint repeated 3 times */ usource[ulen]=usource[0]; usource[ulen+1]=usource[1]; ulen+=len; TestConv(usource,ulen,cp,"",NULL,0); /* Test codepoint in between 2 codepoints */ nsrc[1]=usource[0]; nsrc[2]=usource[1]; nsrc[len+1]=0x5555; TestConv(nsrc,len+2,cp,"",NULL,0); uprv_memset(usource,0,sizeof(UChar)*10); } } static void TestRoundTrippingAllUTF(void){ if(!QUICK){ log_verbose("Running exhaustive round trip test for BOCU-1\n"); TestFullRoundtrip("BOCU-1"); log_verbose("Running exhaustive round trip test for SCSU\n"); TestFullRoundtrip("SCSU"); log_verbose("Running exhaustive round trip test for UTF-8\n"); TestFullRoundtrip("UTF-8"); log_verbose("Running exhaustive round trip test for CESU-8\n"); TestFullRoundtrip("CESU-8"); log_verbose("Running exhaustive round trip test for UTF-16BE\n"); TestFullRoundtrip("UTF-16BE"); log_verbose("Running exhaustive round trip test for UTF-16LE\n"); TestFullRoundtrip("UTF-16LE"); log_verbose("Running exhaustive round trip test for UTF-16\n"); TestFullRoundtrip("UTF-16"); log_verbose("Running exhaustive round trip test for UTF-32BE\n"); TestFullRoundtrip("UTF-32BE"); log_verbose("Running exhaustive round trip test for UTF-32LE\n"); TestFullRoundtrip("UTF-32LE"); log_verbose("Running exhaustive round trip test for UTF-32\n"); TestFullRoundtrip("UTF-32"); log_verbose("Running exhaustive round trip test for UTF-7\n"); TestFullRoundtrip("UTF-7"); log_verbose("Running exhaustive round trip test for UTF-7\n"); TestFullRoundtrip("UTF-7,version=1"); log_verbose("Running exhaustive round trip test for IMAP-mailbox-name\n"); TestFullRoundtrip("IMAP-mailbox-name"); log_verbose("Running exhaustive round trip test for GB18030\n"); TestFullRoundtrip("GB18030"); } } static void TestSCSU() { static const uint16_t germanUTF16[]={ 0x00d6, 0x006c, 0x0020, 0x0066, 0x006c, 0x0069, 0x0065, 0x00df, 0x0074 }; static const uint8_t germanSCSU[]={ 0xd6, 0x6c, 0x20, 0x66, 0x6c, 0x69, 0x65, 0xdf, 0x74 }; static const uint16_t russianUTF16[]={ 0x041c, 0x043e, 0x0441, 0x043a, 0x0432, 0x0430 }; static const uint8_t russianSCSU[]={ 0x12, 0x9c, 0xbe, 0xc1, 0xba, 0xb2, 0xb0 }; static const uint16_t japaneseUTF16[]={ 0x3000, 0x266a, 0x30ea, 0x30f3, 0x30b4, 0x53ef, 0x611b, 0x3044, 0x3084, 0x53ef, 0x611b, 0x3044, 0x3084, 0x30ea, 0x30f3, 0x30b4, 0x3002, 0x534a, 0x4e16, 0x7d00, 0x3082, 0x524d, 0x306b, 0x6d41, 0x884c, 0x3057, 0x305f, 0x300c, 0x30ea, 0x30f3, 0x30b4, 0x306e, 0x6b4c, 0x300d, 0x304c, 0x3074, 0x3063, 0x305f, 0x308a, 0x3059, 0x308b, 0x304b, 0x3082, 0x3057, 0x308c, 0x306a, 0x3044, 0x3002, 0x7c73, 0x30a2, 0x30c3, 0x30d7, 0x30eb, 0x30b3, 0x30f3, 0x30d4, 0x30e5, 0x30fc, 0x30bf, 0x793e, 0x306e, 0x30d1, 0x30bd, 0x30b3, 0x30f3, 0x300c, 0x30de, 0x30c3, 0x30af, 0xff08, 0x30de, 0x30c3, 0x30ad, 0x30f3, 0x30c8, 0x30c3, 0x30b7, 0x30e5, 0xff09, 0x300d, 0x3092, 0x3001, 0x3053, 0x3088, 0x306a, 0x304f, 0x611b, 0x3059, 0x308b, 0x4eba, 0x305f, 0x3061, 0x306e, 0x3053, 0x3068, 0x3060, 0x3002, 0x300c, 0x30a2, 0x30c3, 0x30d7, 0x30eb, 0x4fe1, 0x8005, 0x300d, 0x306a, 0x3093, 0x3066, 0x8a00, 0x3044, 0x65b9, 0x307e, 0x3067, 0x3042, 0x308b, 0x3002 }; /* SCSUEncoder produces a slightly longer result (179B vs. 178B) because of one different choice: it uses an SQn once where a longer look-ahead could have shown that SCn is more efficient */ static const uint8_t japaneseSCSU[]={ 0x08, 0x00, 0x1b, 0x4c, 0xea, 0x16, 0xca, 0xd3, 0x94, 0x0f, 0x53, 0xef, 0x61, 0x1b, 0xe5, 0x84, 0xc4, 0x0f, 0x53, 0xef, 0x61, 0x1b, 0xe5, 0x84, 0xc4, 0x16, 0xca, 0xd3, 0x94, 0x08, 0x02, 0x0f, 0x53, 0x4a, 0x4e, 0x16, 0x7d, 0x00, 0x30, 0x82, 0x52, 0x4d, 0x30, 0x6b, 0x6d, 0x41, 0x88, 0x4c, 0xe5, 0x97, 0x9f, 0x08, 0x0c, 0x16, 0xca, 0xd3, 0x94, 0x15, 0xae, 0x0e, 0x6b, 0x4c, 0x08, 0x0d, 0x8c, 0xb4, 0xa3, 0x9f, 0xca, 0x99, 0xcb, 0x8b, 0xc2, 0x97, 0xcc, 0xaa, 0x84, 0x08, 0x02, 0x0e, 0x7c, 0x73, 0xe2, 0x16, 0xa3, 0xb7, 0xcb, 0x93, 0xd3, 0xb4, 0xc5, 0xdc, 0x9f, 0x0e, 0x79, 0x3e, 0x06, 0xae, 0xb1, 0x9d, 0x93, 0xd3, 0x08, 0x0c, 0xbe, 0xa3, 0x8f, 0x08, 0x88, 0xbe, 0xa3, 0x8d, 0xd3, 0xa8, 0xa3, 0x97, 0xc5, 0x17, 0x89, 0x08, 0x0d, 0x15, 0xd2, 0x08, 0x01, 0x93, 0xc8, 0xaa, 0x8f, 0x0e, 0x61, 0x1b, 0x99, 0xcb, 0x0e, 0x4e, 0xba, 0x9f, 0xa1, 0xae, 0x93, 0xa8, 0xa0, 0x08, 0x02, 0x08, 0x0c, 0xe2, 0x16, 0xa3, 0xb7, 0xcb, 0x0f, 0x4f, 0xe1, 0x80, 0x05, 0xec, 0x60, 0x8d, 0xea, 0x06, 0xd3, 0xe6, 0x0f, 0x8a, 0x00, 0x30, 0x44, 0x65, 0xb9, 0xe4, 0xfe, 0xe7, 0xc2, 0x06, 0xcb, 0x82 }; static const uint16_t allFeaturesUTF16[]={ 0x0041, 0x00df, 0x0401, 0x015f, 0x00df, 0x01df, 0xf000, 0xdbff, 0xdfff, 0x000d, 0x000a, 0x0041, 0x00df, 0x0401, 0x015f, 0x00df, 0x01df, 0xf000, 0xdbff, 0xdfff }; /* see comment at japaneseSCSU: the same kind of different choice yields a slightly shorter * result here (34B vs. 35B) */ static const uint8_t allFeaturesSCSU[]={ 0x41, 0xdf, 0x12, 0x81, 0x03, 0x5f, 0x10, 0xdf, 0x1b, 0x03, 0xdf, 0x1c, 0x88, 0x80, 0x0b, 0xbf, 0xff, 0xff, 0x0d, 0x0a, 0x41, 0x10, 0xdf, 0x12, 0x81, 0x03, 0x5f, 0x10, 0xdf, 0x13, 0xdf, 0x14, 0x80, 0x15, 0xff }; static const uint16_t monkeyIn[]={ 0x00A8, 0x3003, 0x3005, 0x2015, 0xFF5E, 0x2016, 0x2026, 0x2018, 0x000D, 0x000A, 0x2019, 0x201C, 0x201D, 0x3014, 0x3015, 0x3008, 0x3009, 0x300A, 0x000D, 0x000A, 0x300B, 0x300C, 0x300D, 0x300E, 0x300F, 0x3016, 0x3017, 0x3010, 0x000D, 0x000A, 0x3011, 0x00B1, 0x00D7, 0x00F7, 0x2236, 0x2227, 0x7FC1, 0x8956, 0x000D, 0x000A, 0x9D2C, 0x9D0E, 0x9EC4, 0x5CA1, 0x6C96, 0x837B, 0x5104, 0x5C4B, 0x000D, 0x000A, 0x61B6, 0x81C6, 0x6876, 0x7261, 0x4E59, 0x4FFA, 0x5378, 0x57F7, 0x000D, 0x000A, 0x57F4, 0x57F9, 0x57FA, 0x57FC, 0x5800, 0x5802, 0x5805, 0x5806, 0x000D, 0x000A, 0x580A, 0x581E, 0x6BB5, 0x6BB7, 0x6BBA, 0x6BBC, 0x9CE2, 0x977C, 0x000D, 0x000A, 0x6BBF, 0x6BC1, 0x6BC5, 0x6BC6, 0x6BCB, 0x6BCD, 0x6BCF, 0x6BD2, 0x000D, 0x000A, 0x6BD3, 0x6BD4, 0x6BD6, 0x6BD7, 0x6BD8, 0x6BDB, 0x6BEB, 0x6BEC, 0x000D, 0x000A, 0x6C05, 0x6C08, 0x6C0F, 0x6C11, 0x6C13, 0x6C23, 0x6C34, 0x0041, 0x000D, 0x000A, 0x0043, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x0049, 0x004A, 0x000D, 0x000A, 0x004B, 0x004C, 0x004D, 0x004E, 0x004F, 0x0050, 0x0051, 0x0052, 0x000D, 0x000A, 0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x000D, 0x000A, 0x005B, 0x9792, 0x9CCC, 0x9CCD, 0x9CCE, 0x9CCF, 0x9CD0, 0x9CD3, 0x000D, 0x000A, 0x9CD4, 0x9CD5, 0x9CD7, 0x9CD8, 0x9CD9, 0x9CDC, 0x9CDD, 0x9CDF, 0x000D, 0x000A, 0x9785, 0x9791, 0x00BD, 0x0390, 0x0385, 0x0386, 0x0388, 0x0389, 0x000D, 0x000A, 0x038E, 0x038F, 0x0390, 0x0391, 0x0392, 0x0393, 0x0394, 0x0395, 0x000D, 0x000A, 0x0396, 0x0397, 0x0398, 0x0399, 0x039A, 0x038A, 0x038C, 0x039C, 0x000D, 0x000A, /* test non-BMP code points */ 0xD869, 0xDE99, 0xD869, 0xDE9C, 0xD869, 0xDE9D, 0xD869, 0xDE9E, 0xD869, 0xDE9F, 0xD869, 0xDEA0, 0xD869, 0xDEA5, 0xD869, 0xDEA6, 0xD869, 0xDEA7, 0xD869, 0xDEA8, 0xD869, 0xDEAB, 0xD869, 0xDEAC, 0xD869, 0xDEAD, 0xD869, 0xDEAE, 0xD869, 0xDEAF, 0xD869, 0xDEB0, 0xD869, 0xDEB1, 0xD869, 0xDEB3, 0xD869, 0xDEB5, 0xD869, 0xDEB6, 0xD869, 0xDEB7, 0xD869, 0xDEB8, 0xD869, 0xDEB9, 0xD869, 0xDEBA, 0xD869, 0xDEBB, 0xD869, 0xDEBC, 0xD869, 0xDEBD, 0xD869, 0xDEBE, 0xD869, 0xDEBF, 0xD869, 0xDEC0, 0xD869, 0xDEC1, 0xD869, 0xDEC2, 0xD869, 0xDEC3, 0xD869, 0xDEC4, 0xD869, 0xDEC8, 0xD869, 0xDECA, 0xD869, 0xDECB, 0xD869, 0xDECD, 0xD869, 0xDECE, 0xD869, 0xDECF, 0xD869, 0xDED0, 0xD869, 0xDED1, 0xD869, 0xDED2, 0xD869, 0xDED3, 0xD869, 0xDED4, 0xD869, 0xDED5, 0xD800, 0xDC00, 0xD800, 0xDC00, 0xD800, 0xDC00, 0xDBFF, 0xDFFF, 0xDBFF, 0xDFFF, 0xDBFF, 0xDFFF, 0x4DB3, 0x4DB4, 0x4DB5, 0x4E00, 0x4E00, 0x4E01, 0x4E02, 0x4E03, 0x000D, 0x000A, 0x0392, 0x0393, 0x0394, 0x0395, 0x0396, 0x0397, 0x33E0, 0x33E6, 0x000D, 0x000A, 0x4E05, 0x4E07, 0x4E04, 0x4E08, 0x4E08, 0x4E09, 0x4E0A, 0x4E0B, 0x000D, 0x000A, 0x4E0C, 0x0021, 0x0022, 0x0023, 0x0024, 0xFF40, 0xFF41, 0xFF42, 0x000D, 0x000A, 0xFF43, 0xFF44, 0xFF45, 0xFF46, 0xFF47, 0xFF48, 0xFF49, 0xFF4A, 0x000D, 0x000A, }; static const char *fTestCases [] = { "\\ud800\\udc00", /* smallest surrogate*/ "\\ud8ff\\udcff", "\\udBff\\udFff", /* largest surrogate pair*/ "\\ud834\\udc00", "\\U0010FFFF", "Hello \\u9292 \\u9192 World!", "Hell\\u0429o \\u9292 \\u9192 W\\u00e4rld!", "Hell\\u0429o \\u9292 \\u9292W\\u00e4rld!", "\\u0648\\u06c8", /* catch missing reset*/ "\\u0648\\u06c8", "\\u4444\\uE001", /* lowest quotable*/ "\\u4444\\uf2FF", /* highest quotable*/ "\\u4444\\uf188\\u4444", "\\u4444\\uf188\\uf288", "\\u4444\\uf188abc\\u0429\\uf288", "\\u9292\\u2222", "Hell\\u0429\\u04230o \\u9292 \\u9292W\\u00e4\\u0192rld!", "Hell\\u0429o \\u9292 \\u9292W\\u00e4rld!", "Hello World!123456", "Hello W\\u0081\\u011f\\u0082!", /* Latin 1 run*/ "abc\\u0301\\u0302", /* uses SQn for u301 u302*/ "abc\\u4411d", /* uses SQU*/ "abc\\u4411\\u4412d",/* uses SCU*/ "abc\\u0401\\u0402\\u047f\\u00a5\\u0405", /* uses SQn for ua5*/ "\\u9191\\u9191\\u3041\\u9191\\u3041\\u3041\\u3000", /* SJIS like data*/ "\\u9292\\u2222", "\\u9191\\u9191\\u3041\\u9191\\u3041\\u3041\\u3000", "\\u9999\\u3051\\u300c\\u9999\\u9999\\u3060\\u9999\\u3065\\u3065\\u3065\\u300c", "\\u3000\\u266a\\u30ea\\u30f3\\u30b4\\u53ef\\u611b\\u3044\\u3084\\u53ef\\u611b\\u3044\\u3084\\u30ea\\u30f3\\u30b4\\u3002", "", /* empty input*/ "\\u0000", /* smallest BMP character*/ "\\uFFFF", /* largest BMP character*/ /* regression tests*/ "\\u6441\\ub413\\ua733\\uf8fe\\ueedb\\u587f\\u195f\\u4899\\uf23d\\u49fd\\u0aac\\u5792\\ufc22\\ufc3c\\ufc46\\u00aa", "\\u00df\\u01df\\uf000\\udbff\\udfff\\u000d\n\\u0041\\u00df\\u0401\\u015f\\u00df\\u01df\\uf000\\udbff\\udfff", "\\u30f9\\u8321\\u05e5\\u181c\\ud72b\\u2019\\u99c9\\u2f2f\\uc10c\\u82e1\\u2c4d\\u1ebc\\u6013\\u66dc\\ubbde\\u94a5\\u4726\\u74af\\u3083\\u55b9\\u000c", "\\u0041\\u00df\\u0401\\u015f", "\\u9066\\u2123abc", "\\ud266\\u43d7\\u\\ue386\\uc9c0\\u4a6b\\u9222\\u901f\\u7410\\ua63f\\u539b\\u9596\\u482e\\u9d47\\ucfe4\\u7b71\\uc280\\uf26a\\u982f\\u862a\\u4edd\\uf513\\ufda6\\u869d\\u2ee0\\ua216\\u3ff6\\u3c70\\u89c0\\u9576\\ud5ec\\ubfda\\u6cca\\u5bb3\\ubcea\\u554c\\u914e\\ufa4a\\uede3\\u2990\\ud2f5\\u2729\\u5141\\u0f26\\uccd8\\u5413\\ud196\\ubbe2\\u51b9\\u9b48\\u0dc8\\u2195\\u21a2\\u21e9\\u00e4\\u9d92\\u0bc0\\u06c5", "\\uf95b\\u2458\\u2468\\u0e20\\uf51b\\ue36e\\ubfc1\\u0080\\u02dd\\uf1b5\\u0cf3\\u6059\\u7489", }; int i=0; for(;i<sizeof(fTestCases)/sizeof(*fTestCases);i++){ const char* cSrc = fTestCases[i]; UErrorCode status = U_ZERO_ERROR; int32_t cSrcLen,srcLen; UChar* src; /* UConverter* cnv = ucnv_open("SCSU",&status); */ cSrcLen = srcLen = (int32_t)uprv_strlen(fTestCases[i]); src = (UChar*) malloc((sizeof(UChar) * srcLen) + sizeof(UChar)); srcLen=unescape(src,srcLen,cSrc,cSrcLen,&status); log_verbose("Testing roundtrip for src: %s at index :%d\n",cSrc,i); TestConv(src,srcLen,"SCSU","Coverage",NULL,0); free(src); } TestConv(allFeaturesUTF16,(sizeof(allFeaturesUTF16)/2),"SCSU","all features", (char *)allFeaturesSCSU,sizeof(allFeaturesSCSU)); TestConv(allFeaturesUTF16,(sizeof(allFeaturesUTF16)/2),"SCSU","all features",(char *)allFeaturesSCSU,sizeof(allFeaturesSCSU)); TestConv(japaneseUTF16,(sizeof(japaneseUTF16)/2),"SCSU","japaneese",(char *)japaneseSCSU,sizeof(japaneseSCSU)); TestConv(japaneseUTF16,(sizeof(japaneseUTF16)/2),"SCSU,locale=ja","japaneese",(char *)japaneseSCSU,sizeof(japaneseSCSU)); TestConv(germanUTF16,(sizeof(germanUTF16)/2),"SCSU","german",(char *)germanSCSU,sizeof(germanSCSU)); TestConv(russianUTF16,(sizeof(russianUTF16)/2), "SCSU","russian",(char *)russianSCSU,sizeof(russianSCSU)); TestConv(monkeyIn,(sizeof(monkeyIn)/2),"SCSU","monkey",NULL,0); } #if !UCONFIG_NO_LEGACY_CONVERSION static void TestJitterbug2346(){ char source[] = { 0x1b,0x24,0x42,0x3d,0x45,0x1b,0x28,0x4a,0x0d,0x0a, 0x1b,0x24,0x42,0x3d,0x45,0x1b,0x28,0x4a,0x0d,0x0a}; uint16_t expected[] = {0x91CD,0x000D,0x000A,0x91CD,0x000D,0x000A}; UChar uTarget[500]={'\0'}; UChar* utarget=uTarget; UChar* utargetLimit=uTarget+sizeof(uTarget)/2; char cTarget[500]={'\0'}; char* ctarget=cTarget; char* ctargetLimit=cTarget+sizeof(cTarget); const char* csource=source; UChar* temp = expected; UErrorCode err=U_ZERO_ERROR; UConverter* conv =ucnv_open("ISO_2022_JP",&err); if(U_FAILURE(err)) { log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(err)); return; } ucnv_toUnicode(conv,&utarget,utargetLimit,&csource,csource+sizeof(source),NULL,TRUE,&err); if(U_FAILURE(err)) { log_err("ISO_2022_JP to Unicode conversion failed: %s\n", u_errorName(err)); return; } utargetLimit=utarget; utarget = uTarget; while(utarget<utargetLimit){ if(*temp!=*utarget){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",*utarget,(int)*temp) ; } utarget++; temp++; } ucnv_fromUnicode(conv,&ctarget,ctargetLimit,(const UChar**)&utarget,utargetLimit,NULL,TRUE,&err); if(U_FAILURE(err)) { log_err("ISO_2022_JP from Unicode conversion failed: %s\n", u_errorName(err)); return; } ctargetLimit=ctarget; ctarget =cTarget; ucnv_close(conv); } static void TestISO_2022_JP_1() { /* test input */ static const uint16_t in[]={ 0x3000, 0x3001, 0x3002, 0x0020, 0xFF0E, 0x30FB, 0xFF1A, 0xFF1B, 0x000D, 0x000A, 0x0043, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x0049, 0x004A, 0x000D, 0x000A, 0x52C8, 0x52CC, 0x52CF, 0x52D1, 0x52D4, 0x52D6, 0x52DB, 0x52DC, 0x000D, 0x000A, 0x004B, 0x004C, 0x004D, 0x004E, 0x004F, 0x0050, 0x0051, 0x0052, 0x000D, 0x000A, 0x3005, 0x3006, 0x3007, 0x30FC, 0x2015, 0x2010, 0xFF0F, 0x005C, 0x000D, 0x000A, 0x3013, 0x2018, 0x2026, 0x2025, 0x2018, 0x2019, 0x201C, 0x000D, 0x000A, 0x201D, 0x000D, 0x000A, 0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x000D, 0x000A, 0x4F94, 0x4F97, 0x52BA, 0x52BB, 0x52BD, 0x52C0, 0x52C4, 0x52C6, 0x000D, 0x000A, 0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x000D, 0x000A, 0x4F78, 0x4F79, 0x4F7A, 0x4F7D, 0x4F7E, 0x4F81, 0x4F82, 0x4F84, 0x000D, 0x000A, 0x4F85, 0x4F89, 0x4F8A, 0x4F8C, 0x4F8E, 0x4F90, 0x4F92, 0x4F93, 0x000D, 0x000A, 0x52E1, 0x52E5, 0x52E8, 0x52E9, 0x000D, 0x000A }; const UChar* uSource; const UChar* uSourceLimit; const char* cSource; const char* cSourceLimit; UChar *uTargetLimit =NULL; UChar *uTarget; char *cTarget; const char *cTargetLimit; char *cBuf; UChar *uBuf,*test; int32_t uBufSize = 120; UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv; cnv=ucnv_open("ISO_2022_JP_1", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode)); return; } uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5); cBuf =(char*)malloc(uBufSize * sizeof(char) * 5); uSource = (const UChar*)in; uSourceLimit=(const UChar*)in + (sizeof(in)/sizeof(in[0])); cTarget = cBuf; cTargetLimit = cBuf +uBufSize*5; uTarget = uBuf; uTargetLimit = uBuf+ uBufSize*5; ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,NULL,TRUE, &errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } cSource = cBuf; cSourceLimit =cTarget; test =uBuf; ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,NULL,TRUE,&errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } uSource = (const UChar*)in; while(uSource<uSourceLimit){ if(*test!=*uSource){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ; } uSource++; test++; } /*ucnv_close(cnv); cnv=ucnv_open("ISO_2022,locale=jp,version=1", &errorCode);*/ /*Test for the condition where there is an invalid character*/ ucnv_reset(cnv); { static const uint8_t source2[]={0x0e,0x24,0x053}; TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character [ISO-2022-JP-1]"); } TestSmallTargetBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestSmallSourceBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); ucnv_close(cnv); free(uBuf); free(cBuf); } static void TestISO_2022_JP_2() { /* test input */ static const uint16_t in[]={ 0x00A8, 0x3003, 0x3005, 0x2015, 0xFF5E, 0x2016, 0x2026, 0x2018, 0x000D, 0x000A, 0x2019, 0x201C, 0x201D, 0x3014, 0x3015, 0x3008, 0x3009, 0x300A, 0x000D, 0x000A, 0x300B, 0x300C, 0x300D, 0x300E, 0x300F, 0x3016, 0x3017, 0x3010, 0x000D, 0x000A, 0x3011, 0x00B1, 0x00D7, 0x00F7, 0x2236, 0x2227, 0x7FC1, 0x8956, 0x000D, 0x000A, 0x9D2C, 0x9D0E, 0x9EC4, 0x5CA1, 0x6C96, 0x837B, 0x5104, 0x5C4B, 0x000D, 0x000A, 0x61B6, 0x81C6, 0x6876, 0x7261, 0x4E59, 0x4FFA, 0x5378, 0x57F7, 0x000D, 0x000A, 0x57F4, 0x57F9, 0x57FA, 0x57FC, 0x5800, 0x5802, 0x5805, 0x5806, 0x000D, 0x000A, 0x580A, 0x581E, 0x6BB5, 0x6BB7, 0x6BBA, 0x6BBC, 0x9CE2, 0x977C, 0x000D, 0x000A, 0x6BBF, 0x6BC1, 0x6BC5, 0x6BC6, 0x6BCB, 0x6BCD, 0x6BCF, 0x6BD2, 0x000D, 0x000A, 0x6BD3, 0x6BD4, 0x6BD6, 0x6BD7, 0x6BD8, 0x6BDB, 0x6BEB, 0x6BEC, 0x000D, 0x000A, 0x6C05, 0x6C08, 0x6C0F, 0x6C11, 0x6C13, 0x6C23, 0x6C34, 0x0041, 0x000D, 0x000A, 0x0043, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x0049, 0x004A, 0x000D, 0x000A, 0x004B, 0x004C, 0x004D, 0x004E, 0x004F, 0x0050, 0x0051, 0x0052, 0x000D, 0x000A, 0x0053, 0x0054, 0x0055, 0x0056, 0x0057, 0x0058, 0x0059, 0x005A, 0x000D, 0x000A, 0x005B, 0x9792, 0x9CCC, 0x9CCD, 0x9CCE, 0x9CCF, 0x9CD0, 0x9CD3, 0x000D, 0x000A, 0x9CD4, 0x9CD5, 0x9CD7, 0x9CD8, 0x9CD9, 0x9CDC, 0x9CDD, 0x9CDF, 0x000D, 0x000A, 0x9785, 0x9791, 0x00BD, 0x0390, 0x0385, 0x0386, 0x0388, 0x0389, 0x000D, 0x000A, 0x038E, 0x038F, 0x0390, 0x0391, 0x0392, 0x0393, 0x0394, 0x0395, 0x000D, 0x000A, 0x0396, 0x0397, 0x0398, 0x0399, 0x039A, 0x038A, 0x038C, 0x039C, 0x000D, 0x000A }; const UChar* uSource; const UChar* uSourceLimit; const char* cSource; const char* cSourceLimit; UChar *uTargetLimit =NULL; UChar *uTarget; char *cTarget; const char *cTargetLimit; char *cBuf; UChar *uBuf,*test; int32_t uBufSize = 120; UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv; int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5); int32_t* myOff= offsets; cnv=ucnv_open("ISO_2022_JP_2", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode)); return; } uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5); cBuf =(char*)malloc(uBufSize * sizeof(char) * 5); uSource = (const UChar*)in; uSourceLimit=(const UChar*)in + (sizeof(in)/sizeof(in[0])); cTarget = cBuf; cTargetLimit = cBuf +uBufSize*5; uTarget = uBuf; uTargetLimit = uBuf+ uBufSize*5; ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } cSource = cBuf; cSourceLimit =cTarget; test =uBuf; myOff=offsets; ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } uSource = (const UChar*)in; while(uSource<uSourceLimit){ if(*test!=*uSource){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ; } uSource++; test++; } TestSmallTargetBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestSmallSourceBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestToAndFromUChars(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); /*Test for the condition where there is an invalid character*/ ucnv_reset(cnv); { static const uint8_t source2[]={0x0e,0x24,0x053}; TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character [ISO-2022-JP-2]"); } ucnv_close(cnv); free(uBuf); free(cBuf); free(offsets); } static void TestISO_2022_KR() { /* test input */ static const uint16_t in[]={ 0x9F4B,0x9F4E,0x9F52,0x9F5F,0x9F61,0x9F66,0x9F67,0x9F6A,0x000A,0x000D ,0x9F6C,0x9F77,0x9F8D,0x9F90,0x9F95,0x9F9C,0xAC00,0xAC01,0xAC02,0xAC04 ,0xAC07,0xAC08,0xAC09,0x0025,0x0026,0x0027,0x000A,0x000D,0x0028,0x0029 ,0x002A,0x002B,0x002C,0x002D,0x002E,0x53C3,0x53C8,0x53C9,0x53CA,0x53CB ,0x53CD,0x53D4,0x53D6,0x53D7,0x53DB,0x000A,0x000D,0x53DF,0x53E1,0x53E2 ,0x53E3,0x53E4,0x000A,0x000D}; const UChar* uSource; const UChar* uSourceLimit; const char* cSource; const char* cSourceLimit; UChar *uTargetLimit =NULL; UChar *uTarget; char *cTarget; const char *cTargetLimit; char *cBuf; UChar *uBuf,*test; int32_t uBufSize = 120; UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv; int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5); int32_t* myOff= offsets; cnv=ucnv_open("ISO_2022,locale=kr", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode)); return; } uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5); cBuf =(char*)malloc(uBufSize * sizeof(char) * 5); uSource = (const UChar*)in; uSourceLimit=(const UChar*)in + (sizeof(in)/sizeof(in[0])); cTarget = cBuf; cTargetLimit = cBuf +uBufSize*5; uTarget = uBuf; uTargetLimit = uBuf+ uBufSize*5; ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } cSource = cBuf; cSourceLimit =cTarget; test =uBuf; myOff=offsets; ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } uSource = (const UChar*)in; while(uSource<uSourceLimit){ if(*test!=*uSource){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,*test) ; } uSource++; test++; } TestGetNextUChar2022(cnv, cBuf, cTarget, in, "ISO-2022-KR encoding"); TestSmallTargetBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestSmallSourceBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestToAndFromUChars(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestJitterbug930("csISO2022KR"); /*Test for the condition where there is an invalid character*/ ucnv_reset(cnv); { static const uint8_t source2[]={0x1b,0x24,0x053}; ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode); TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ILLEGAL_ESCAPE_SEQUENCE, "an invalid character [ISO-2022-KR]"); } ucnv_close(cnv); free(uBuf); free(cBuf); free(offsets); } static void TestISO_2022_KR_1() { /* test input */ static const uint16_t in[]={ 0x9F4B,0x9F4E,0x9F52,0x9F5F,0x9F61,0x9F67,0x9F6A,0x000A,0x000D ,0x9F6C,0x9F77,0x9F8D,0x9F90,0x9F95,0x9F9C,0xAC00,0xAC01,0xAC04 ,0xAC07,0xAC08,0xAC09,0x0025,0x0026,0x0027,0x000A,0x000D,0x0028,0x0029 ,0x002A,0x002B,0x002C,0x002D,0x002E,0x53C3,0x53C8,0x53C9,0x53CA,0x53CB ,0x53CD,0x53D4,0x53D6,0x53D7,0x53DB,0x000A,0x000D,0x53E1,0x53E2 ,0x53E3,0x53E4,0x000A,0x000D}; const UChar* uSource; const UChar* uSourceLimit; const char* cSource; const char* cSourceLimit; UChar *uTargetLimit =NULL; UChar *uTarget; char *cTarget; const char *cTargetLimit; char *cBuf; UChar *uBuf,*test; int32_t uBufSize = 120; UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv; int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5); int32_t* myOff= offsets; cnv=ucnv_open("ibm-25546", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode)); return; } uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5); cBuf =(char*)malloc(uBufSize * sizeof(char) * 5); uSource = (const UChar*)in; uSourceLimit=(const UChar*)in + (sizeof(in)/sizeof(in[0])); cTarget = cBuf; cTargetLimit = cBuf +uBufSize*5; uTarget = uBuf; uTargetLimit = uBuf+ uBufSize*5; ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } cSource = cBuf; cSourceLimit =cTarget; test =uBuf; myOff=offsets; ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } uSource = (const UChar*)in; while(uSource<uSourceLimit){ if(*test!=*uSource){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,*test) ; } uSource++; test++; } ucnv_reset(cnv); TestGetNextUChar2022(cnv, cBuf, cTarget, in, "ISO-2022-KR encoding"); TestSmallTargetBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestSmallSourceBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); ucnv_reset(cnv); TestToAndFromUChars(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); /*Test for the condition where there is an invalid character*/ ucnv_reset(cnv); { static const uint8_t source2[]={0x1b,0x24,0x053}; ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode); TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ILLEGAL_ESCAPE_SEQUENCE, "an invalid character [ISO-2022-KR]"); } ucnv_close(cnv); free(uBuf); free(cBuf); free(offsets); } static void TestJitterbug2411(){ static const char* source = "\x1b\x24\x29\x43\x6b\x6b\x6e\x6e\x6a\x68\x70\x6f\x69\x75\x79\x71\x77\x65\x68\x67\x0A" "\x1b\x24\x29\x43\x6a\x61\x73\x64\x66\x6a\x61\x73\x64\x66\x68\x6f\x69\x75\x79\x1b\x24\x29\x43"; UConverter* kr=NULL, *kr1=NULL; UErrorCode errorCode = U_ZERO_ERROR; UChar tgt[100]={'\0'}; UChar* target = tgt; UChar* targetLimit = target+100; kr=ucnv_open("iso-2022-kr", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a iso-2022-kr converter: %s\n", u_errorName(errorCode)); return; } ucnv_toUnicode(kr,&target,targetLimit,&source,source+uprv_strlen(source),NULL,TRUE,&errorCode); if(U_FAILURE(errorCode)) { log_err("iso-2022-kr cannot handle multiple escape sequences : %s\n", u_errorName(errorCode)); return; } kr1 = ucnv_open("ibm-25546", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a iso-2022-kr_1 converter: %s\n", u_errorName(errorCode)); return; } target = tgt; targetLimit = target+100; ucnv_toUnicode(kr,&target,targetLimit,&source,source+uprv_strlen(source),NULL,TRUE,&errorCode); if(U_FAILURE(errorCode)) { log_err("iso-2022-kr_1 cannot handle multiple escape sequences : %s\n", u_errorName(errorCode)); return; } ucnv_close(kr); ucnv_close(kr1); } static void TestJIS(){ /* From Unicode moved to testdata/conversion.txt */ /*To Unicode*/ { static const uint8_t sampleTextJIS[] = { 0x1b,0x28,0x48,0x41,0x42, /*jis-Roman*/ 0x1b,0x28,0x49,0x41,0x42, /*Katakana Set*/ 0x1b,0x26,0x40,0x1b,0x24,0x42,0x21,0x21 /*recognize and ignore <esc>&@*/ }; static const uint16_t expectedISO2022JIS[] = { 0x0041, 0x0042, 0xFF81, 0xFF82, 0x3000 }; static const int32_t toISO2022JISOffs[]={ 3,4, 8,9, 16 }; static const uint8_t sampleTextJIS7[] = { 0x1b,0x28,0x48,0x41,0x42, /*JIS7-Roman*/ 0x1b,0x28,0x49,0x41,0x42, /*Katakana Set*/ 0x1b,0x24,0x42,0x21,0x21, 0x0e,0x41,0x42,0x0f, /*Test Katakana set with SI and SO */ 0x21,0x22, 0x1b,0x26,0x40,0x1b,0x24,0x42,0x21,0x21 /*recognize and ignore <esc>&@*/ }; static const uint16_t expectedISO2022JIS7[] = { 0x0041, 0x0042, 0xFF81, 0xFF82, 0x3000, 0xFF81, 0xFF82, 0x3001, 0x3000 }; static const int32_t toISO2022JIS7Offs[]={ 3,4, 8,9, 13,16, 17, 19,27 }; static const uint8_t sampleTextJIS8[] = { 0x1b,0x28,0x48,0x41,0x42, /*JIS8-Roman*/ 0xa1,0xc8,0xd9,/*Katakana Set*/ 0x1b,0x28,0x42, 0x41,0x42, 0xb1,0xc3, /*Katakana Set*/ 0x1b,0x24,0x42,0x21,0x21 }; static const uint16_t expectedISO2022JIS8[] = { 0x0041, 0x0042, 0xff61, 0xff88, 0xff99, 0x0041, 0x0042, 0xff71, 0xff83, 0x3000 }; static const int32_t toISO2022JIS8Offs[]={ 3, 4, 5, 6, 7, 11, 12, 13, 14, 18, }; testConvertToU(sampleTextJIS,sizeof(sampleTextJIS),expectedISO2022JIS, sizeof(expectedISO2022JIS)/sizeof(expectedISO2022JIS[0]),"JIS", toISO2022JISOffs,TRUE); testConvertToU(sampleTextJIS7,sizeof(sampleTextJIS7),expectedISO2022JIS7, sizeof(expectedISO2022JIS7)/sizeof(expectedISO2022JIS7[0]),"JIS7", toISO2022JIS7Offs,TRUE); testConvertToU(sampleTextJIS8,sizeof(sampleTextJIS8),expectedISO2022JIS8, sizeof(expectedISO2022JIS8)/sizeof(expectedISO2022JIS8[0]),"JIS8", toISO2022JIS8Offs,TRUE); } } static void TestJitterbug915(){ /* tests for roundtripping of the below sequence \x1b$)G\x0E#!#"###$#%#&#'#(#)#*#+ / *plane 1 * / \x1b$*H\x1bN"!\x1bN""\x1bN"#\x1bN"$\x1bN"% / *plane 2 * / \x1b$+I\x1bO"D\x1bO"E\x1bO"F\x1bO"G\x1bO"H / *plane 3 * / \x1b$+J\x1bO!D\x1bO!E\x1bO"j\x1bO"k\x1bO"l / *plane 4 * / \x1b$+K\x1bO!t\x1bO"P\x1bO"Q\x1bO#7\x1bO"\ / *plane 5 * / \x1b$+L\x1bO!#\x1bO",\x1bO#N\x1bO!n\x1bO#q / *plane 6 * / \x1b$+M\x1bO"q\x1bO!N\x1bO!j\x1bO#:\x1bO#o / *plane 7 * / */ static const char cSource[]={ 0x1B, 0x24, 0x29, 0x47, 0x0E, 0x23, 0x21, 0x23, 0x22, 0x23, 0x23, 0x23, 0x24, 0x23, 0x25, 0x23, 0x26, 0x23, 0x27, 0x23, 0x28, 0x23, 0x29, 0x23, 0x2A, 0x23, 0x2B, 0x0F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x31, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2A, 0x48, 0x1B, 0x4E, 0x22, 0x21, 0x1B, 0x4E, 0x22, 0x22, 0x1B, 0x4E, 0x22, 0x23, 0x1B, 0x4E, 0x22, 0x24, 0x1B, 0x4E, 0x22, 0x25, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x32, 0x2A, 0x2F, 0x20, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x49, 0x1B, 0x4F, 0x22, 0x44, 0x1B, 0x4F, 0x22, 0x45, 0x1B, 0x4F, 0x22, 0x46, 0x1B, 0x4F, 0x22, 0x47, 0x1B, 0x4F, 0x22, 0x48, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x33, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x4A, 0x1B, 0x4F, 0x21, 0x44, 0x1B, 0x4F, 0x21, 0x45, 0x1B, 0x4F, 0x22, 0x6A, 0x1B, 0x4F, 0x22, 0x6B, 0x1B, 0x4F, 0x22, 0x6C, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x34, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x4B, 0x1B, 0x4F, 0x21, 0x74, 0x1B, 0x4F, 0x22, 0x50, 0x1B, 0x4F, 0x22, 0x51, 0x1B, 0x4F, 0x23, 0x37, 0x1B, 0x4F, 0x22, 0x5C, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x35, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x4C, 0x1B, 0x4F, 0x21, 0x23, 0x1B, 0x4F, 0x22, 0x2C, 0x1B, 0x4F, 0x23, 0x4E, 0x1B, 0x4F, 0x21, 0x6E, 0x1B, 0x4F, 0x23, 0x71, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x36, 0x20, 0x2A, 0x2F, 0x0D, 0x0A, 0x1B, 0x24, 0x2B, 0x4D, 0x1B, 0x4F, 0x22, 0x71, 0x1B, 0x4F, 0x21, 0x4E, 0x1B, 0x4F, 0x21, 0x6A, 0x1B, 0x4F, 0x23, 0x3A, 0x1B, 0x4F, 0x23, 0x6F, 0x2F, 0x2A, 0x70, 0x6C, 0x61, 0x6E, 0x65, 0x20, 0x37, 0x20, 0x2A, 0x2F }; UChar uTarget[500]={'\0'}; UChar* utarget=uTarget; UChar* utargetLimit=uTarget+sizeof(uTarget)/2; char cTarget[500]={'\0'}; char* ctarget=cTarget; char* ctargetLimit=cTarget+sizeof(cTarget); const char* csource=cSource; const char* tempSrc = cSource; UErrorCode err=U_ZERO_ERROR; UConverter* conv =ucnv_open("ISO_2022_CN_EXT",&err); if(U_FAILURE(err)) { log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(err)); return; } ucnv_toUnicode(conv,&utarget,utargetLimit,&csource,csource+sizeof(cSource),NULL,TRUE,&err); if(U_FAILURE(err)) { log_err("iso-2022-CN to Unicode conversion failed: %s\n", u_errorName(err)); return; } utargetLimit=utarget; utarget = uTarget; ucnv_fromUnicode(conv,&ctarget,ctargetLimit,(const UChar**)&utarget,utargetLimit,NULL,TRUE,&err); if(U_FAILURE(err)) { log_err("iso-2022-CN from Unicode conversion failed: %s\n", u_errorName(err)); return; } ctargetLimit=ctarget; ctarget =cTarget; while(ctarget<ctargetLimit){ if(*ctarget != *tempSrc){ log_err("j915[%d] Expected : \\x%02X \t Got: \\x%02X\n", (int)(ctarget-cTarget), *ctarget,(int)*tempSrc) ; } ++ctarget; ++tempSrc; } ucnv_close(conv); } static void TestISO_2022_CN_EXT() { /* test input */ static const uint16_t in[]={ /* test Non-BMP code points */ 0xD869, 0xDE99, 0xD869, 0xDE9C, 0xD869, 0xDE9D, 0xD869, 0xDE9E, 0xD869, 0xDE9F, 0xD869, 0xDEA0, 0xD869, 0xDEA5, 0xD869, 0xDEA6, 0xD869, 0xDEA7, 0xD869, 0xDEA8, 0xD869, 0xDEAB, 0xD869, 0xDEAC, 0xD869, 0xDEAD, 0xD869, 0xDEAE, 0xD869, 0xDEAF, 0xD869, 0xDEB0, 0xD869, 0xDEB1, 0xD869, 0xDEB3, 0xD869, 0xDEB5, 0xD869, 0xDEB6, 0xD869, 0xDEB7, 0xD869, 0xDEB8, 0xD869, 0xDEB9, 0xD869, 0xDEBA, 0xD869, 0xDEBB, 0xD869, 0xDEBC, 0xD869, 0xDEBD, 0xD869, 0xDEBE, 0xD869, 0xDEBF, 0xD869, 0xDEC0, 0xD869, 0xDEC1, 0xD869, 0xDEC2, 0xD869, 0xDEC3, 0xD869, 0xDEC4, 0xD869, 0xDEC8, 0xD869, 0xDECA, 0xD869, 0xDECB, 0xD869, 0xDECD, 0xD869, 0xDECE, 0xD869, 0xDECF, 0xD869, 0xDED0, 0xD869, 0xDED1, 0xD869, 0xDED2, 0xD869, 0xDED3, 0xD869, 0xDED4, 0xD869, 0xDED5, 0x4DB3, 0x4DB4, 0x4DB5, 0x4E00, 0x4E00, 0x4E01, 0x4E02, 0x4E03, 0x000D, 0x000A, 0x0392, 0x0393, 0x0394, 0x0395, 0x0396, 0x0397, 0x33E0, 0x33E6, 0x000D, 0x000A, 0x4E05, 0x4E07, 0x4E04, 0x4E08, 0x4E08, 0x4E09, 0x4E0A, 0x4E0B, 0x000D, 0x000A, 0x4E0C, 0x0021, 0x0022, 0x0023, 0x0024, 0xFF40, 0xFF41, 0xFF42, 0x000D, 0x000A, 0xFF43, 0xFF44, 0xFF45, 0xFF46, 0xFF47, 0xFF48, 0xFF49, 0xFF4A, 0x000D, 0x000A, 0xFF4B, 0xFF4C, 0xFF4D, 0xFF4E, 0xFF4F, 0x6332, 0x63B0, 0x643F, 0x000D, 0x000A, 0x64D8, 0x8004, 0x6BEA, 0x6BF3, 0x6BFD, 0x6BF5, 0x6BF9, 0x6C05, 0x000D, 0x000A, 0x0041, 0x0042, 0x0043, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x000D, 0x000A, 0x6C07, 0x6C06, 0x6C0D, 0x6C15, 0x9CD9, 0x9CDC, 0x9CDD, 0x9CDF, 0x000D, 0x000A, 0x9CE2, 0x977C, 0x9785, 0x9791, 0x9792, 0x9794, 0x97AF, 0x97AB, 0x000D, 0x000A, 0x97A3, 0x97B2, 0x97B4, 0x9AB1, 0x9AB0, 0x9AB7, 0x9E58, 0x9AB6, 0x000D, 0x000A, 0x9ABA, 0x9ABC, 0x9AC1, 0x9AC0, 0x9AC5, 0x9AC2, 0x9ACB, 0x9ACC, 0x000D, 0x000A, 0x9AD1, 0x9B45, 0x9B43, 0x9B47, 0x9B49, 0x9B48, 0x9B4D, 0x9B51, 0x000D, 0x000A, 0x98E8, 0x990D, 0x992E, 0x9955, 0x9954, 0x9ADF, 0x3443, 0x3444, 0x000D, 0x000A, 0x3445, 0x3449, 0x344A, 0x344B, 0x60F2, 0x60F3, 0x60F4, 0x60F5, 0x000D, 0x000A, 0x60F6, 0x60F7, 0x60F8, 0x60F9, 0x60FA, 0x60FB, 0x60FC, 0x60FD, 0x000D, 0x000A, 0x60FE, 0x60FF, 0x6100, 0x6101, 0x6102, 0x0041, 0x0042, 0x0043, 0x000D, 0x000A, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x0049, 0x004A, 0x004B, 0x000D, 0x000A, 0x33E7, 0x33E8, 0x33E9, 0x33EA, 0x000D, 0x000A }; const UChar* uSource; const UChar* uSourceLimit; const char* cSource; const char* cSourceLimit; UChar *uTargetLimit =NULL; UChar *uTarget; char *cTarget; const char *cTargetLimit; char *cBuf; UChar *uBuf,*test; int32_t uBufSize = 180; UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv; int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5); int32_t* myOff= offsets; cnv=ucnv_open("ISO_2022,locale=cn,version=1", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode)); return; } uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5); cBuf =(char*)malloc(uBufSize * sizeof(char) * 10); uSource = (const UChar*)in; uSourceLimit=(const UChar*)in + (sizeof(in)/sizeof(in[0])); cTarget = cBuf; cTargetLimit = cBuf +uBufSize*5; uTarget = uBuf; uTargetLimit = uBuf+ uBufSize*5; ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } cSource = cBuf; cSourceLimit =cTarget; test =uBuf; myOff=offsets; ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } uSource = (const UChar*)in; while(uSource<uSourceLimit){ if(*test!=*uSource){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ; } else{ log_verbose(" Got: \\u%04X\n",(int)*test) ; } uSource++; test++; } TestSmallTargetBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestSmallSourceBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); /*Test for the condition where there is an invalid character*/ ucnv_reset(cnv); { static const uint8_t source2[]={0x0e,0x24,0x053}; TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character [ISO-2022-CN-EXT]"); } ucnv_close(cnv); free(uBuf); free(cBuf); free(offsets); } static void TestISO_2022_CN() { /* test input */ static const uint16_t in[]={ /* jitterbug 951 */ 0xFF2D, 0xFF49, 0xFF58, 0xFF45, 0xFF44, 0x0020, 0xFF43, 0xFF48, 0xFF41, 0xFF52, 0x0020, 0xFF06, 0x0020, 0xFF11, 0xFF12, 0xFF13, 0xFF14, 0xFF15, 0xFF16, 0xFF17, 0xFF18, 0xFF19, 0xFF10, 0x0020, 0xFF4E, 0xFF55, 0xFF4D, 0xFF42, 0xFF45, 0xFF52, 0x0020, 0xFF54, 0xFF45, 0xFF53, 0xFF54, 0x0020, 0xFF4C, 0xFF49, 0xFF4E, 0xFF45, 0x0020, 0x0045, 0x004e, 0x0044, /**/ 0x4E00, 0x4E00, 0x4E01, 0x4E03, 0x60F6, 0x60F7, 0x60F8, 0x60FB, 0x000D, 0x000A, 0x0392, 0x0393, 0x0394, 0x0395, 0x0396, 0x0397, 0x60FB, 0x60FC, 0x000D, 0x000A, 0x4E07, 0x4E08, 0x4E08, 0x4E09, 0x4E0A, 0x4E0B, 0x0042, 0x0043, 0x000D, 0x000A, 0x4E0C, 0x0021, 0x0022, 0x0023, 0x0024, 0xFF40, 0xFF41, 0xFF42, 0x000D, 0x000A, 0xFF43, 0xFF44, 0xFF45, 0xFF46, 0xFF47, 0xFF48, 0xFF49, 0xFF4A, 0x000D, 0x000A, 0xFF4B, 0xFF4C, 0xFF4D, 0xFF4E, 0xFF4F, 0x6332, 0x63B0, 0x643F, 0x000D, 0x000A, 0x64D8, 0x8004, 0x6BEA, 0x6BF3, 0x6BFD, 0x6BF5, 0x6BF9, 0x6C05, 0x000D, 0x000A, 0x6C07, 0x6C06, 0x6C0D, 0x6C15, 0x9CD9, 0x9CDC, 0x9CDD, 0x9CDF, 0x000D, 0x000A, 0x9CE2, 0x977C, 0x9785, 0x9791, 0x9792, 0x9794, 0x97AF, 0x97AB, 0x000D, 0x000A, 0x97A3, 0x97B2, 0x97B4, 0x9AB1, 0x9AB0, 0x9AB7, 0x9E58, 0x9AB6, 0x000D, 0x000A, 0x9ABA, 0x9ABC, 0x9AC1, 0x9AC0, 0x9AC5, 0x9AC2, 0x9ACB, 0x9ACC, 0x000D, 0x000A, 0x9AD1, 0x9B45, 0x9B43, 0x9B47, 0x9B49, 0x9B48, 0x9B4D, 0x9B51, 0x000D, 0x000A, 0x98E8, 0x990D, 0x992E, 0x9955, 0x9954, 0x9ADF, 0x60FE, 0x60FF, 0x000D, 0x000A, 0x60F2, 0x60F3, 0x60F4, 0x60F5, 0x000D, 0x000A, 0x60F9, 0x60FA, 0x000D, 0x000A, 0x6100, 0x6101, 0x0041, 0x0044, 0x0045, 0x0046, 0x0047, 0x0048, 0x000D, 0x000A, 0x247D, 0x247E, 0x247F, 0x2480, 0x2481, 0x2482, 0x2483, 0x2484, 0x2485, 0x2486, 0x2487, 0x2460, 0x2461, 0xFF20, 0xFF21, 0xFF22, 0x0049, 0x004A, 0x000D, 0x000A, }; const UChar* uSource; const UChar* uSourceLimit; const char* cSource; const char* cSourceLimit; UChar *uTargetLimit =NULL; UChar *uTarget; char *cTarget; const char *cTargetLimit; char *cBuf; UChar *uBuf,*test; int32_t uBufSize = 180; UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv; int32_t* offsets = (int32_t*) malloc(uBufSize * sizeof(int32_t) * 5); int32_t* myOff= offsets; cnv=ucnv_open("ISO_2022,locale=cn,version=0", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a iso-2022 converter: %s\n", u_errorName(errorCode)); return; } uBuf = (UChar*)malloc(uBufSize * sizeof(UChar)*5); cBuf =(char*)malloc(uBufSize * sizeof(char) * 10); uSource = (const UChar*)in; uSourceLimit=(const UChar*)in + (sizeof(in)/sizeof(in[0])); cTarget = cBuf; cTargetLimit = cBuf +uBufSize*5; uTarget = uBuf; uTargetLimit = uBuf+ uBufSize*5; ucnv_fromUnicode( cnv , &cTarget, cTargetLimit,&uSource,uSourceLimit,myOff,TRUE, &errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_fromUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } cSource = cBuf; cSourceLimit =cTarget; test =uBuf; myOff=offsets; ucnv_toUnicode(cnv,&uTarget,uTargetLimit,&cSource,cSourceLimit,myOff,TRUE,&errorCode); if(U_FAILURE(errorCode)){ log_err("ucnv_toUnicode conversion failed reason %s\n", u_errorName(errorCode)); return; } uSource = (const UChar*)in; while(uSource<uSourceLimit){ if(*test!=*uSource){ log_err("Expected : \\u%04X \t Got: \\u%04X\n",*uSource,(int)*test) ; } else{ log_verbose(" Got: \\u%04X\n",(int)*test) ; } uSource++; test++; } TestGetNextUChar2022(cnv, cBuf, cTarget, in, "ISO-2022-CN encoding"); TestSmallTargetBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestSmallSourceBuffer(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestToAndFromUChars(in,(const UChar*)in + (sizeof(in)/sizeof(in[0])),cnv); TestJitterbug930("csISO2022CN"); /*Test for the condition where there is an invalid character*/ ucnv_reset(cnv); { static const uint8_t source2[]={0x0e,0x24,0x053}; TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character [ISO-2022-CN]"); } ucnv_close(cnv); free(uBuf); free(cBuf); free(offsets); } static void TestEBCDIC_STATEFUL() { /* test input */ static const uint8_t in[]={ 0x61, 0x1a, 0x0f, 0x4b, 0x42, 0x40, 0x36, }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 1, 0x002f, 1, 0x0092, 2, 0x002e, 1, 0xff62, 1, 0x0020, 1, 0x0096, }; static const uint8_t in2[]={ 0x0f, 0xa1, 0x01 }; /* expected test results */ static const int32_t results2[]={ /* number of bytes read, code point */ 2, 0x203E, 1, 0x0001, }; const char *source=(const char *)in, *limit=(const char *)in+sizeof(in); UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("ibm-930", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a EBCDIC_STATEFUL(ibm-930) converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, source, limit, results, "EBCDIC_STATEFUL(ibm-930)"); ucnv_reset(cnv); /* Test the condition when source >= sourceLimit */ TestNextUCharError(cnv, source, source, U_INDEX_OUTOFBOUNDS_ERROR, "sourceLimit <= source"); ucnv_reset(cnv); /*Test for the condition where source > sourcelimit after consuming the shift chracter */ { static const uint8_t source1[]={0x0f}; TestNextUCharError(cnv, (const char*)source1, (const char*)source1+sizeof(source1), U_INDEX_OUTOFBOUNDS_ERROR, "a character is truncated"); } /*Test for the condition where there is an invalid character*/ ucnv_reset(cnv); { static const uint8_t source2[]={0x0e, 0x7F, 0xFF}; TestNextUCharError(cnv, (const char*)source2, (const char*)source2+sizeof(source2), U_ZERO_ERROR, "an invalid character [EBCDIC STATEFUL]"); } ucnv_reset(cnv); source=(const char*)in2; limit=(const char*)in2+sizeof(in2); TestNextUChar(cnv,source,limit,results2,"EBCDIC_STATEFUL(ibm-930),seq#2"); ucnv_close(cnv); } static void TestGB18030() { /* test input */ static const uint8_t in[]={ 0x24, 0x7f, 0x81, 0x30, 0x81, 0x30, 0xa8, 0xbf, 0xa2, 0xe3, 0xd2, 0xbb, 0x82, 0x35, 0x8f, 0x33, 0x84, 0x31, 0xa4, 0x39, 0x90, 0x30, 0x81, 0x30, 0xe3, 0x32, 0x9a, 0x35 #if 0 /* * Feature removed markus 2000-oct-26 * Only some codepages must match surrogate pairs into supplementary code points - * see javadoc for ucnv_getNextUChar() and implementation notes in ucnvmbcs.c . * GB 18030 provides direct encodings for supplementary code points, therefore * it must not combine two single-encoded surrogates into one code point. */ 0x83, 0x36, 0xc8, 0x30, 0x83, 0x37, 0xb0, 0x34 /* separately encoded surrogates */ #endif }; /* expected test results */ static const int32_t results[]={ /* number of bytes read, code point */ 1, 0x24, 1, 0x7f, 4, 0x80, 2, 0x1f9, 2, 0x20ac, 2, 0x4e00, 4, 0x9fa6, 4, 0xffff, 4, 0x10000, 4, 0x10ffff #if 0 /* Feature removed. See comment above. */ 8, 0x10000 #endif }; /* const char *source=(const char *)in,*limit=(const char *)in+sizeof(in); */ UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv=ucnv_open("gb18030", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a gb18030 converter: %s\n", u_errorName(errorCode)); return; } TestNextUChar(cnv, (const char *)in, (const char *)in+sizeof(in), results, "gb18030"); ucnv_close(cnv); } static void TestLMBCS() { /* LMBCS-1 string */ static const uint8_t pszLMBCS[]={ 0x61, 0x01, 0x29, 0x81, 0xA0, 0x0F, 0x27, 0x0F, 0x91, 0x14, 0x0a, 0x74, 0x14, 0xF6, 0x02, 0x14, 0xd8, 0x4d, 0x14, 0xdc, 0x56, /* UTF-16 surrogate pair */ 0x10, 0x88, 0xA0, }; /* Unicode UChar32 equivalents */ static const UChar32 pszUnicode32[]={ /* code point */ 0x00000061, 0x00002013, 0x000000FC, 0x000000E1, 0x00000007, 0x00000091, 0x00000a74, 0x00000200, 0x00023456, /* code point for surrogate pair */ 0x00005516 }; /* Unicode UChar equivalents */ static const UChar pszUnicode[]={ /* code point */ 0x0061, 0x2013, 0x00FC, 0x00E1, 0x0007, 0x0091, 0x0a74, 0x0200, 0xD84D, /* low surrogate */ 0xDC56, /* high surrogate */ 0x5516 }; /* expected test results */ static const int offsets32[]={ /* number of bytes read, code point */ 0, 1, 3, 4, 5, 7, 9, 12, 15, 21, 24 }; /* expected test results */ static const int offsets[]={ /* number of bytes read, code point */ 0, 1, 3, 4, 5, 7, 9, 12, 15, 18, 21, 24 }; UConverter *cnv; #define NAME_LMBCS_1 "LMBCS-1" #define NAME_LMBCS_2 "LMBCS-2" /* Some basic open/close/property tests on some LMBCS converters */ { char expected_subchars[] = {0x3F}; /* ANSI Question Mark */ char new_subchars [] = {0x7F}; /* subst char used by SmartSuite..*/ char get_subchars [1]; const char * get_name; UConverter *cnv1; UConverter *cnv2; int8_t len = sizeof(get_subchars); UErrorCode errorCode=U_ZERO_ERROR; /* Open */ cnv1=ucnv_open(NAME_LMBCS_1, &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a LMBCS-1 converter: %s\n", u_errorName(errorCode)); return; } cnv2=ucnv_open(NAME_LMBCS_2, &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a LMBCS-2 converter: %s\n", u_errorName(errorCode)); return; } /* Name */ get_name = ucnv_getName (cnv1, &errorCode); if (strcmp(NAME_LMBCS_1,get_name)){ log_err("Unexpected converter name: %s\n", get_name); } get_name = ucnv_getName (cnv2, &errorCode); if (strcmp(NAME_LMBCS_2,get_name)){ log_err("Unexpected converter name: %s\n", get_name); } /* substitution chars */ ucnv_getSubstChars (cnv1, get_subchars, &len, &errorCode); if(U_FAILURE(errorCode)) { log_err("Failure on get subst chars: %s\n", u_errorName(errorCode)); } if (len!=1){ log_err("Unexpected length of sub chars\n"); } if (get_subchars[0] != expected_subchars[0]){ log_err("Unexpected value of sub chars\n"); } ucnv_setSubstChars (cnv2,new_subchars, len, &errorCode); if(U_FAILURE(errorCode)) { log_err("Failure on set subst chars: %s\n", u_errorName(errorCode)); } ucnv_getSubstChars (cnv2, get_subchars, &len, &errorCode); if(U_FAILURE(errorCode)) { log_err("Failure on get subst chars: %s\n", u_errorName(errorCode)); } if (len!=1){ log_err("Unexpected length of sub chars\n"); } if (get_subchars[0] != new_subchars[0]){ log_err("Unexpected value of sub chars\n"); } ucnv_close(cnv1); ucnv_close(cnv2); } /* LMBCS to Unicode - offsets */ { UErrorCode errorCode=U_ZERO_ERROR; const char * pSource = (const char *)pszLMBCS; const char * sourceLimit = (const char *)pszLMBCS + sizeof(pszLMBCS); UChar Out [sizeof(pszUnicode) + 1]; UChar * pOut = Out; UChar * OutLimit = Out + sizeof(pszUnicode)/sizeof(UChar); int32_t off [sizeof(offsets)]; /* last 'offset' in expected results is just the final size. (Makes other tests easier). Compensate here: */ off[(sizeof(offsets)/sizeof(offsets[0]))-1] = sizeof(pszLMBCS); cnv=ucnv_open("lmbcs", &errorCode); /* use generic name for LMBCS-1 */ if(U_FAILURE(errorCode)) { log_data_err("Unable to open a LMBCS converter: %s\n", u_errorName(errorCode)); return; } ucnv_toUnicode (cnv, &pOut, OutLimit, &pSource, sourceLimit, off, TRUE, &errorCode); if (memcmp(off,offsets,sizeof(offsets))) { log_err("LMBCS->Uni: Calculated offsets do not match expected results\n"); } if (memcmp(Out,pszUnicode,sizeof(pszUnicode))) { log_err("LMBCS->Uni: Calculated codepoints do not match expected results\n"); } ucnv_close(cnv); } { /* LMBCS to Unicode - getNextUChar */ const char * sourceStart; const char *source=(const char *)pszLMBCS; const char *limit=(const char *)pszLMBCS+sizeof(pszLMBCS); const UChar32 *results= pszUnicode32; const int *off = offsets32; UErrorCode errorCode=U_ZERO_ERROR; UChar32 uniChar; cnv=ucnv_open("LMBCS-1", &errorCode); if(U_FAILURE(errorCode)) { log_data_err("Unable to open a LMBCS-1 converter: %s\n", u_errorName(errorCode)); return; } else { while(source<limit) { sourceStart=source; uniChar=ucnv_getNextUChar(cnv, &source, source + (off[1] - off[0]), &errorCode); if(U_FAILURE(errorCode)) { log_err("LMBCS-1 ucnv_getNextUChar() failed: %s\n", u_errorName(errorCode)); break; } else if(source-sourceStart != off[1] - off[0] || uniChar != *results) { log_err("LMBCS-1 ucnv_getNextUChar() result %lx from %d bytes, should have been %lx from %d bytes.\n", uniChar, (source-sourceStart), *results, *off); break; } results++; off++; } } ucnv_close(cnv); } { /* test locale & optimization group operations: Unicode to LMBCS */ UErrorCode errorCode=U_ZERO_ERROR; UConverter *cnv16he = ucnv_open("LMBCS-16,locale=he", &errorCode); UConverter *cnv16jp = ucnv_open("LMBCS-16,locale=ja_JP", &errorCode); UConverter *cnv01us = ucnv_open("LMBCS-1,locale=us_EN", &errorCode); UChar uniString [] = {0x0192}; /* Latin Small letter f with hook */ const UChar * pUniOut = uniString; UChar * pUniIn = uniString; uint8_t lmbcsString [4]; const char * pLMBCSOut = (const char *)lmbcsString; char * pLMBCSIn = (char *)lmbcsString; /* 0192 (hook) converts to both group 3 & group 1. input locale should differentiate */ ucnv_fromUnicode (cnv16he, &pLMBCSIn, (pLMBCSIn + sizeof(lmbcsString)/sizeof(lmbcsString[0])), &pUniOut, pUniOut + sizeof(uniString)/sizeof(uniString[0]), NULL, 1, &errorCode); if (lmbcsString[0] != 0x3 || lmbcsString[1] != 0x83) { log_err("LMBCS-16,locale=he gives unexpected translation\n"); } pLMBCSIn= (char *)lmbcsString; pUniOut = uniString; ucnv_fromUnicode (cnv01us, &pLMBCSIn, (const char *)(lmbcsString + sizeof(lmbcsString)/sizeof(lmbcsString[0])), &pUniOut, pUniOut + sizeof(uniString)/sizeof(uniString[0]), NULL, 1, &errorCode); if (lmbcsString[0] != 0x9F) { log_err("LMBCS-1,locale=US gives unexpected translation\n"); } /* single byte char from mbcs char set */ lmbcsString[0] = 0xAE; /* 1/2 width katakana letter small Yo */ pLMBCSOut = (const char *)lmbcsString; pUniIn = uniString; ucnv_toUnicode (cnv16jp, &pUniIn, pUniIn + 1, &pLMBCSOut, (pLMBCSOut + 1), NULL, 1, &errorCode); if (U_FAILURE(errorCode) || pLMBCSOut != (const char *)lmbcsString+1 || pUniIn != uniString+1 || uniString[0] != 0xFF6E) { log_err("Unexpected results from LMBCS-16 single byte char\n"); } /* convert to group 1: should be 3 bytes */ pLMBCSIn = (char *)lmbcsString; pUniOut = uniString; ucnv_fromUnicode (cnv01us, &pLMBCSIn, (const char *)(pLMBCSIn + 3), &pUniOut, pUniOut + 1, NULL, 1, &errorCode); if (U_FAILURE(errorCode) || pLMBCSIn != (const char *)lmbcsString+3 || pUniOut != uniString+1 || lmbcsString[0] != 0x10 || lmbcsString[1] != 0x10 || lmbcsString[2] != 0xAE) { log_err("Unexpected results to LMBCS-1 single byte mbcs char\n"); } pLMBCSOut = (const char *)lmbcsString; pUniIn = uniString; ucnv_toUnicode (cnv01us, &pUniIn, pUniIn + 1, &pLMBCSOut, (const char *)(pLMBCSOut + 3), NULL, 1, &errorCode); if (U_FAILURE(errorCode) || pLMBCSOut != (const char *)lmbcsString+3 || pUniIn != uniString+1 || uniString[0] != 0xFF6E) { log_err("Unexpected results from LMBCS-1 single byte mbcs char\n"); } pLMBCSIn = (char *)lmbcsString; pUniOut = uniString; ucnv_fromUnicode (cnv16jp, &pLMBCSIn, (const char *)(pLMBCSIn + 1), &pUniOut, pUniOut + 1, NULL, 1, &errorCode); if (U_FAILURE(errorCode) || pLMBCSIn != (const char *)lmbcsString+1 || pUniOut != uniString+1 || lmbcsString[0] != 0xAE) { log_err("Unexpected results to LMBCS-16 single byte mbcs char\n"); } ucnv_close(cnv16he); ucnv_close(cnv16jp); ucnv_close(cnv01us); } { /* Small source buffer testing, LMBCS -> Unicode */ UErrorCode errorCode=U_ZERO_ERROR; const char * pSource = (const char *)pszLMBCS; const char * sourceLimit = (const char *)pszLMBCS + sizeof(pszLMBCS); int codepointCount = 0; UChar Out [sizeof(pszUnicode) + 1]; UChar * pOut = Out; UChar * OutLimit = Out + sizeof(pszUnicode)/sizeof(UChar); cnv = ucnv_open(NAME_LMBCS_1, &errorCode); if(U_FAILURE(errorCode)) { log_err("Unable to open a LMBCS-1 converter: %s\n", u_errorName(errorCode)); return; } while ((pSource < sourceLimit) && U_SUCCESS (errorCode)) { ucnv_toUnicode (cnv, &pOut, OutLimit, &pSource, (pSource+1), /* claim that this is a 1- byte buffer */ NULL, FALSE, /* FALSE means there might be more chars in the next buffer */ &errorCode); if (U_SUCCESS (errorCode)) { if ((pSource - (const char *)pszLMBCS) == offsets [codepointCount+1]) { /* we are on to the next code point: check value */ if (Out[0] != pszUnicode[codepointCount]){ log_err("LMBCS->Uni result %lx should have been %lx \n", Out[0], pszUnicode[codepointCount]); } pOut = Out; /* reset for accumulating next code point */ codepointCount++; } } else { log_err("Unexpected Error on toUnicode: %s\n", u_errorName(errorCode)); } } { /* limits & surrogate error testing */ char LIn [sizeof(pszLMBCS)]; const char * pLIn = LIn; char LOut [sizeof(pszLMBCS)]; char * pLOut = LOut; UChar UOut [sizeof(pszUnicode)]; UChar * pUOut = UOut; UChar UIn [sizeof(pszUnicode)]; const UChar * pUIn = UIn; int32_t off [sizeof(offsets)]; UChar32 uniChar; errorCode=U_ZERO_ERROR; /* negative source request should always return U_ILLEGAL_ARGUMENT_ERROR */ ucnv_fromUnicode(cnv, &pLOut,pLOut+1,&pUIn,pUIn-1,off,FALSE, &errorCode); if (errorCode != U_ILLEGAL_ARGUMENT_ERROR) { log_err("Unexpected Error on negative source request to ucnv_fromUnicode: %s\n", u_errorName(errorCode)); } errorCode=U_ZERO_ERROR; ucnv_toUnicode(cnv, &pUOut,pUOut+1,(const char **)&pLIn,(const char *)(pLIn-1),off,FALSE, &errorCode); if (errorCode != U_ILLEGAL_ARGUMENT_ERROR) { log_err("Unexpected Error on negative source request to ucnv_toUnicode: %s\n", u_errorName(errorCode)); } errorCode=U_ZERO_ERROR; uniChar = ucnv_getNextUChar(cnv, (const char **)&pLIn, (const char *)(pLIn-1), &errorCode); if (errorCode != U_ILLEGAL_ARGUMENT_ERROR) { log_err("Unexpected Error on negative source request to ucnv_getNextUChar: %s\n", u_errorName(errorCode)); } errorCode=U_ZERO_ERROR; /* 0 byte source request - no error, no pointer movement */ ucnv_toUnicode(cnv, &pUOut,pUOut+1,(const char **)&pLIn,(const char *)pLIn,off,FALSE, &errorCode); ucnv_fromUnicode(cnv, &pLOut,pLOut+1,&pUIn,pUIn,off,FALSE, &errorCode); if(U_FAILURE(errorCode)) { log_err("0 byte source request: unexpected error: %s\n", u_errorName(errorCode)); } if ((pUOut != UOut) || (pUIn != UIn) || (pLOut != LOut) || (pLIn != LIn)) { log_err("Unexpected pointer move in 0 byte source request \n"); } /*0 byte source request - GetNextUChar : error & value == fffe or ffff */ uniChar = ucnv_getNextUChar(cnv, (const char **)&pLIn, (const char *)pLIn, &errorCode); if (errorCode != U_INDEX_OUTOFBOUNDS_ERROR) { log_err("Unexpected Error on 0-byte source request to ucnv_getnextUChar: %s\n", u_errorName(errorCode)); } if (((uint32_t)uniChar - 0xfffe) > 1) /* not 0xfffe<=uniChar<=0xffff */ { log_err("Unexpected value on 0-byte source request to ucnv_getnextUChar \n"); } errorCode = U_ZERO_ERROR; /* running out of target room : U_BUFFER_OVERFLOW_ERROR */ pUIn = pszUnicode; ucnv_fromUnicode(cnv, &pLOut,pLOut+offsets[4],&pUIn,pUIn+sizeof(pszUnicode)/sizeof(UChar),off,FALSE, &errorCode); if (errorCode != U_BUFFER_OVERFLOW_ERROR || pLOut != LOut + offsets[4] || pUIn != pszUnicode+4 ) { log_err("Unexpected results on out of target room to ucnv_fromUnicode\n"); } errorCode = U_ZERO_ERROR; pLIn = (const char *)pszLMBCS; ucnv_toUnicode(cnv, &pUOut,pUOut+4,&pLIn,(pLIn+sizeof(pszLMBCS)),off,FALSE, &errorCode); if (errorCode != U_BUFFER_OVERFLOW_ERROR || pUOut != UOut + 4 || pLIn != (const char *)pszLMBCS+offsets[4]) { log_err("Unexpected results on out of target room to ucnv_toUnicode\n"); } /* unpaired or chopped LMBCS surrogates */ /* OK high surrogate, Low surrogate is chopped */ LIn [0] = (char)0x14; LIn [1] = (char)0xD8; LIn [2] = (char)0x01; LIn [3] = (char)0x14; LIn [4] = (char)0xDC; pLIn = LIn; errorCode = U_ZERO_ERROR; pUOut = UOut; ucnv_setToUCallBack(cnv, UCNV_TO_U_CALLBACK_STOP, NULL, NULL, NULL, &errorCode); ucnv_toUnicode(cnv, &pUOut,pUOut+sizeof(UOut)/sizeof(UChar),(const char **)&pLIn,(const char *)(pLIn+5),off,TRUE, &errorCode); if (UOut[0] != 0xD801 || errorCode != U_TRUNCATED_CHAR_FOUND || pUOut != UOut + 1 || pLIn != LIn + 5) { log_err("Unexpected results on chopped low surrogate\n"); } /* chopped at surrogate boundary */ LIn [0] = (char)0x14; LIn [1] = (char)0xD8; LIn [2] = (char)0x01; pLIn = LIn; errorCode = U_ZERO_ERROR; pUOut = UOut; ucnv_toUnicode(cnv, &pUOut,pUOut+sizeof(UOut)/sizeof(UChar),(const char **)&pLIn,(const char *)(pLIn+3),off,TRUE, &errorCode); if (UOut[0] != 0xD801 || U_FAILURE(errorCode) || pUOut != UOut + 1 || pLIn != LIn + 3) { log_err("Unexpected results on chopped at surrogate boundary \n"); } /* unpaired surrogate plus valid Unichar */ LIn [0] = (char)0x14; LIn [1] = (char)0xD8; LIn [2] = (char)0x01; LIn [3] = (char)0x14; LIn [4] = (char)0xC9; LIn [5] = (char)0xD0; pLIn = LIn; errorCode = U_ZERO_ERROR; pUOut = UOut; ucnv_toUnicode(cnv, &pUOut,pUOut+sizeof(UOut)/sizeof(UChar),(const char **)&pLIn,(const char *)(pLIn+6),off,TRUE, &errorCode); if (UOut[0] != 0xD801 || UOut[1] != 0xC9D0 || U_FAILURE(errorCode) || pUOut != UOut + 2 || pLIn != LIn + 6) { log_err("Unexpected results after unpaired surrogate plus valid Unichar \n"); } /* unpaired surrogate plus chopped Unichar */ LIn [0] = (char)0x14; LIn [1] = (char)0xD8; LIn [2] = (char)0x01; LIn [3] = (char)0x14; LIn [4] = (char)0xC9; pLIn = LIn; errorCode = U_ZERO_ERROR; pUOut = UOut; ucnv_toUnicode(cnv, &pUOut,pUOut+sizeof(UOut)/sizeof(UChar),(const char **)&pLIn,(const char *)(pLIn+5),off,TRUE, &errorCode); if (UOut[0] != 0xD801 || errorCode != U_TRUNCATED_CHAR_FOUND || pUOut != UOut + 1 || pLIn != LIn + 5) { log_err("Unexpected results after unpaired surrogate plus chopped Unichar \n"); } /* unpaired surrogate plus valid non-Unichar */ LIn [0] = (char)0x14; LIn [1] = (char)0xD8; LIn [2] = (char)0x01; LIn [3] = (char)0x0F; LIn [4] = (char)0x3B; pLIn = LIn; errorCode = U_ZERO_ERROR; pUOut = UOut; ucnv_toUnicode(cnv, &pUOut,pUOut+sizeof(UOut)/sizeof(UChar),(const char **)&pLIn,(const char *)(pLIn+5),off,TRUE, &errorCode); if (UOut[0] != 0xD801 || UOut[1] != 0x1B || U_FAILURE(errorCode) || pUOut != UOut + 2 || pLIn != LIn + 5) { log_err("Unexpected results after unpaired surrogate plus valid non-Unichar\n"); } /* unpaired surrogate plus chopped non-Unichar */ LIn [0] = (char)0x14; LIn [1] = (char)0xD8; LIn [2] = (char)0x01; LIn [3] = (char)0x0F; pLIn = LIn; errorCode = U_ZERO_ERROR; pUOut = UOut; ucnv_toUnicode(cnv, &pUOut,pUOut+sizeof(UOut)/sizeof(UChar),(const char **)&pLIn,(const char *)(pLIn+4),off,TRUE, &errorCode); if (UOut[0] != 0xD801 || errorCode != U_TRUNCATED_CHAR_FOUND || pUOut != UOut + 1 || pLIn != LIn + 4) { log_err("Unexpected results after unpaired surrogate plus chopped non-Unichar\n"); } } } ucnv_close(cnv); /* final cleanup */ } static void TestJitterbug255() { static const uint8_t testBytes[] = { 0x95, 0xcf, 0x8a, 0xb7, 0x0d, 0x0a, 0x00 }; const char *testBuffer = (const char *)testBytes; const char *testEnd = (const char *)testBytes + sizeof(testBytes); UErrorCode status = U_ZERO_ERROR; UChar32 result; UConverter *cnv = 0; cnv = ucnv_open("shift-jis", &status); if (U_FAILURE(status) || cnv == 0) { log_data_err("Failed to open the converter for SJIS.\n"); return; } while (testBuffer != testEnd) { result = ucnv_getNextUChar (cnv, &testBuffer, testEnd , &status); if (U_FAILURE(status)) { log_err("Failed to convert the next UChar for SJIS.\n"); break; } } ucnv_close(cnv); } static void TestEBCDICUS4XML() { UChar unicodes_x[] = {0x0000, 0x0000, 0x0000, 0x0000}; static const UChar toUnicodeMaps_x[] = {0x000A, 0x000A, 0x000D, 0x0000}; static const char fromUnicodeMaps_x[] = {0x25, 0x25, 0x0D, 0x00}; static const char newLines_x[] = {0x25, 0x15, 0x0D, 0x00}; char target_x[] = {0x00, 0x00, 0x00, 0x00}; UChar *unicodes = unicodes_x; const UChar *toUnicodeMaps = toUnicodeMaps_x; char *target = target_x; const char* fromUnicodeMaps = fromUnicodeMaps_x, *newLines = newLines_x; UErrorCode status = U_ZERO_ERROR; UConverter *cnv = 0; cnv = ucnv_open("ebcdic-xml-us", &status); if (U_FAILURE(status) || cnv == 0) { log_data_err("Failed to open the converter for EBCDIC-XML-US.\n"); return; } ucnv_toUnicode(cnv, &unicodes, unicodes+3, (const char**)&newLines, newLines+3, NULL, TRUE, &status); if (U_FAILURE(status) || memcmp(unicodes_x, toUnicodeMaps, sizeof(UChar)*3) != 0) { log_err("To Unicode conversion failed in EBCDICUS4XML test. %s\n", u_errorName(status)); printUSeqErr(unicodes_x, 3); printUSeqErr(toUnicodeMaps, 3); } status = U_ZERO_ERROR; ucnv_fromUnicode(cnv, &target, target+3, (const UChar**)&toUnicodeMaps, toUnicodeMaps+3, NULL, TRUE, &status); if (U_FAILURE(status) || memcmp(target_x, fromUnicodeMaps, sizeof(char)*3) != 0) { log_err("From Unicode conversion failed in EBCDICUS4XML test. %s\n", u_errorName(status)); printSeqErr((const unsigned char*)target_x, 3); printSeqErr((const unsigned char*)fromUnicodeMaps, 3); } ucnv_close(cnv); } #endif /* #if !UCONFIG_NO_LEGACY_COLLATION */ #if !UCONFIG_NO_COLLATION static void TestJitterbug981(){ const UChar* rules; int32_t rules_length, target_cap, bytes_needed, buff_size; UErrorCode status = U_ZERO_ERROR; UConverter *utf8cnv; UCollator* myCollator; char *buff; int numNeeded=0; utf8cnv = ucnv_open ("utf8", &status); if(U_FAILURE(status)){ log_err("Could not open UTF-8 converter. Error: %s", u_errorName(status)); return; } myCollator = ucol_open("zh", &status); if(U_FAILURE(status)){ log_err("Could not open collator for zh locale. Error: %s", u_errorName(status)); return; } rules = ucol_getRules(myCollator, &rules_length); buff_size = rules_length * ucnv_getMaxCharSize(utf8cnv); buff = malloc(buff_size); target_cap = 0; do { ucnv_reset(utf8cnv); status = U_ZERO_ERROR; if(target_cap >= buff_size) { log_err("wanted %d bytes, only %d available\n", target_cap, buff_size); break; } bytes_needed = ucnv_fromUChars(utf8cnv, buff, target_cap, rules, rules_length, &status); target_cap = (bytes_needed > target_cap) ? bytes_needed : target_cap +1; if(numNeeded!=0 && numNeeded!= bytes_needed){ log_err("ucnv_fromUChars returns different values for required capacity in pre-flight and conversion modes"); break; } numNeeded = bytes_needed; } while (status == U_BUFFER_OVERFLOW_ERROR); ucol_close(myCollator); ucnv_close(utf8cnv); free(buff); } #endif static void TestJitterbug1293(){ static const UChar src[] = {0x30DE, 0x30A4, 0x5E83, 0x544A, 0x30BF, 0x30A4, 0x30D7,0x000}; char target[256]; UErrorCode status = U_ZERO_ERROR; UConverter* conv=NULL; int32_t target_cap, bytes_needed, numNeeded = 0; conv = ucnv_open("shift-jis",&status); if(U_FAILURE(status)){ log_data_err("Could not open Shift-Jis converter. Error: %s", u_errorName(status)); return; } do{ target_cap =0; bytes_needed = ucnv_fromUChars(conv,target,256,src,u_strlen(src),&status); target_cap = (bytes_needed > target_cap) ? bytes_needed : target_cap +1; if(numNeeded!=0 && numNeeded!= bytes_needed){ log_err("ucnv_fromUChars returns different values for required capacity in pre-flight and conversion modes"); } numNeeded = bytes_needed; } while (status == U_BUFFER_OVERFLOW_ERROR); if(U_FAILURE(status)){ log_err("An error occured in ucnv_fromUChars. Error: %s", u_errorName(status)); return; } ucnv_close(conv); } static void TestJB5275_1(){ static const char* data = "\x3B\xB3\x0A" /* Easy characters */ "\xC0\xE9\xBF\xE9\xE8\xD8\x0A" /* Gurmukhi test */ /* Switch script: */ "\xEF\x43\xC0\xE9\xBF\xE9\xE8\xD8\x0A" /* Bengali test */ "\x3B\xB3\x0A" /* Easy characters - new line, so should default!*/ "\xEF\x40\x3B\xB3\x0A"; static const UChar expected[] ={ 0x003b, 0x0a15, 0x000a, /* Easy characters */ 0x0a22, 0x0a3c, 0x0a5c, 0x0a4d, 0x0a39, 0x000a, /* Gurmukhi test */ 0x09dd, 0x09dc, 0x09cd, 0x09b9, 0x000a, /* Switch script: to Bengali*/ 0x003b, 0x0a15, 0x000a, /* Easy characters - new line, so should default!*/ 0x003b, 0x0a15, 0x000a /* Back to Gurmukhi*/ }; UErrorCode status = U_ZERO_ERROR; UConverter* conv = ucnv_open("iscii-gur", &status); UChar dest[100] = {'\0'}; UChar* target = dest; UChar* targetLimit = dest+100; const char* source = data; const char* sourceLimit = data+strlen(data); const UChar* exp = expected; log_verbose("Testing switching back to default script when new line is encountered.\n"); ucnv_toUnicode(conv, &target, targetLimit, &source, sourceLimit, NULL, TRUE, &status); if(U_FAILURE(status)){ log_err("conversion failed: %s \n", u_errorName(status)); } targetLimit = target; target = dest; printUSeq(target, targetLimit-target); while(target<targetLimit){ if(*exp!=*target){ log_err("did not get the expected output. \\u%04X != \\u%04X (got)\n", *exp, *target); } target++; exp++; } ucnv_close(conv); } static void TestJB5275(){ static const char* data = /* "\xEF\x42\xEF\x41\xA4\xD5\xE5\xB3\xEA\x0A" unsupported sequence \xEF\x41 */ /* "\xEF\x42\xEF\x41\xD4\xDA\xB3\xE8\xEA\x0A" unsupported sequence \xEF\x41 */ /* "\xEF\x44\xEF\x41\xC8\xE1\x8B\xDB\xB3\xE8 \xB3\xE4\xC1\xE8\x0A" unsupported sequence \xEF\x41 */ "\xEF\x4B\xC0\xE9\xBF\xE9\xE8\xD8\x0A" /* Gurmukhi test */ "\xEF\x4A\xC0\xD4\xBF\xD4\xE8\xD8\x0A" /* Gujarati test */ "\xEF\x48\x38\xB3\x0A" /* Kannada test */ "\xEF\x49\x39\xB3\x0A" /* Malayalam test */ "\xEF\x4A\x3A\xB3\x0A" /* Gujarati test */ "\xEF\x4B\x3B\xB3\x0A" /* Punjabi test */ /* "\xEF\x4C\x3C\xB3\x0A" unsupported sequence \xEF\x41 */; static const UChar expected[] ={ 0x0A22, 0x0A3C, 0x0A5C, 0x0A4D, 0x0A39, 0x000A, /* Gurmukhi test */ 0x0AA2, 0x0AB5, 0x0AA1, 0x0AB5, 0x0ACD, 0x0AB9, 0x000A, /* Gujarati test */ 0x0038, 0x0C95, 0x000A, /* Kannada test */ 0x0039, 0x0D15, 0x000A, /* Malayalam test */ 0x003A, 0x0A95, 0x000A, /* Gujarati test */ 0x003B, 0x0A15, 0x000A, /* Punjabi test */ }; UErrorCode status = U_ZERO_ERROR; UConverter* conv = ucnv_open("iscii", &status); UChar dest[100] = {'\0'}; UChar* target = dest; UChar* targetLimit = dest+100; const char* source = data; const char* sourceLimit = data+strlen(data); const UChar* exp = expected; ucnv_toUnicode(conv, &target, targetLimit, &source, sourceLimit, NULL, TRUE, &status); if(U_FAILURE(status)){ log_err("conversion failed: %s \n", u_errorName(status)); } targetLimit = target; target = dest; printUSeq(target, targetLimit-target); while(target<targetLimit){ if(*exp!=*target){ log_err("did not get the expected output. \\u%04X != \\u%04X (got)\n", *exp, *target); } target++; exp++; } ucnv_close(conv); }