/******************************************************************** * COPYRIGHT: * Copyright (c) 1997-2007, International Business Machines Corporation and * others. All Rights Reserved. ********************************************************************/ /******************************************************************************** * * File CNORMTST.C * * Modification History: * Name Description * Madhu Katragadda Ported for C API * synwee added test for quick check * synwee added test for checkFCD *********************************************************************************/ /*tests for u_normalization*/ #include "unicode/utypes.h" #include "unicode/unorm.h" #include "unormimp.h" #include "cintltst.h" #if UCONFIG_NO_NORMALIZATION void addNormTest(TestNode** root) { /* no normalization - nothing to do */ } #else #include <stdlib.h> #include <time.h> #include "unicode/uchar.h" #include "unicode/ustring.h" #include "unicode/unorm.h" #include "cnormtst.h" #define LENGTHOF(array) (int32_t)(sizeof(array)/sizeof ((array)[0])) static void TestAPI(void); static void TestNormCoverage(void); static void TestConcatenate(void); static void TestNextPrevious(void); static void TestIsNormalized(void); static void TestFCNFKCClosure(void); static void TestQuickCheckPerCP(void); static void TestComposition(void); const static char* canonTests[][3] = { /* Input*/ /*Decomposed*/ /*Composed*/ { "cat", "cat", "cat" }, { "\\u00e0ardvark", "a\\u0300ardvark", "\\u00e0ardvark", }, { "\\u1e0a", "D\\u0307", "\\u1e0a" }, /* D-dot_above*/ { "D\\u0307", "D\\u0307", "\\u1e0a" }, /* D dot_above*/ { "\\u1e0c\\u0307", "D\\u0323\\u0307", "\\u1e0c\\u0307" }, /* D-dot_below dot_above*/ { "\\u1e0a\\u0323", "D\\u0323\\u0307", "\\u1e0c\\u0307" }, /* D-dot_above dot_below */ { "D\\u0307\\u0323", "D\\u0323\\u0307", "\\u1e0c\\u0307" }, /* D dot_below dot_above */ { "\\u1e10\\u0307\\u0323", "D\\u0327\\u0323\\u0307", "\\u1e10\\u0323\\u0307" }, /*D dot_below cedilla dot_above*/ { "D\\u0307\\u0328\\u0323", "D\\u0328\\u0323\\u0307", "\\u1e0c\\u0328\\u0307" }, /* D dot_above ogonek dot_below*/ { "\\u1E14", "E\\u0304\\u0300", "\\u1E14" }, /* E-macron-grave*/ { "\\u0112\\u0300", "E\\u0304\\u0300", "\\u1E14" }, /* E-macron + grave*/ { "\\u00c8\\u0304", "E\\u0300\\u0304", "\\u00c8\\u0304" }, /* E-grave + macron*/ { "\\u212b", "A\\u030a", "\\u00c5" }, /* angstrom_sign*/ { "\\u00c5", "A\\u030a", "\\u00c5" }, /* A-ring*/ { "\\u00C4ffin", "A\\u0308ffin", "\\u00C4ffin" }, { "\\u00C4\\uFB03n", "A\\u0308\\uFB03n", "\\u00C4\\uFB03n" }, { "Henry IV", "Henry IV", "Henry IV" }, { "Henry \\u2163", "Henry \\u2163", "Henry \\u2163" }, { "\\u30AC", "\\u30AB\\u3099", "\\u30AC" }, /* ga (Katakana)*/ { "\\u30AB\\u3099", "\\u30AB\\u3099", "\\u30AC" }, /*ka + ten*/ { "\\uFF76\\uFF9E", "\\uFF76\\uFF9E", "\\uFF76\\uFF9E" }, /* hw_ka + hw_ten*/ { "\\u30AB\\uFF9E", "\\u30AB\\uFF9E", "\\u30AB\\uFF9E" }, /* ka + hw_ten*/ { "\\uFF76\\u3099", "\\uFF76\\u3099", "\\uFF76\\u3099" }, /* hw_ka + ten*/ { "A\\u0300\\u0316", "A\\u0316\\u0300", "\\u00C0\\u0316" } /* hw_ka + ten*/ }; const static char* compatTests[][3] = { /* Input*/ /*Decomposed */ /*Composed*/ { "cat", "cat", "cat" }, { "\\uFB4f", "\\u05D0\\u05DC", "\\u05D0\\u05DC" }, /* Alef-Lamed vs. Alef, Lamed*/ { "\\u00C4ffin", "A\\u0308ffin", "\\u00C4ffin" }, { "\\u00C4\\uFB03n", "A\\u0308ffin", "\\u00C4ffin" }, /* ffi ligature -> f + f + i*/ { "Henry IV", "Henry IV", "Henry IV" }, { "Henry \\u2163", "Henry IV", "Henry IV" }, { "\\u30AC", "\\u30AB\\u3099", "\\u30AC" }, /* ga (Katakana)*/ { "\\u30AB\\u3099", "\\u30AB\\u3099", "\\u30AC" }, /*ka + ten*/ { "\\uFF76\\u3099", "\\u30AB\\u3099", "\\u30AC" }, /* hw_ka + ten*/ /*These two are broken in Unicode 2.1.2 but fixed in 2.1.5 and later*/ { "\\uFF76\\uFF9E", "\\u30AB\\u3099", "\\u30AC" }, /* hw_ka + hw_ten*/ { "\\u30AB\\uFF9E", "\\u30AB\\u3099", "\\u30AC" } /* ka + hw_ten*/ }; void addNormTest(TestNode** root); void addNormTest(TestNode** root) { addTest(root, &TestAPI, "tscoll/cnormtst/TestAPI"); addTest(root, &TestDecomp, "tscoll/cnormtst/TestDecomp"); addTest(root, &TestCompatDecomp, "tscoll/cnormtst/TestCompatDecomp"); addTest(root, &TestCanonDecompCompose, "tscoll/cnormtst/TestCanonDecompCompose"); addTest(root, &TestCompatDecompCompose, "tscoll/cnormtst/CompatDecompCompose"); addTest(root, &TestNull, "tscoll/cnormtst/TestNull"); addTest(root, &TestQuickCheck, "tscoll/cnormtst/TestQuickCheck"); addTest(root, &TestQuickCheckPerCP, "tscoll/cnormtst/TestQuickCheckPerCP"); addTest(root, &TestIsNormalized, "tscoll/cnormtst/TestIsNormalized"); addTest(root, &TestCheckFCD, "tscoll/cnormtst/TestCheckFCD"); addTest(root, &TestNormCoverage, "tscoll/cnormtst/TestNormCoverage"); addTest(root, &TestConcatenate, "tscoll/cnormtst/TestConcatenate"); addTest(root, &TestNextPrevious, "tscoll/cnormtst/TestNextPrevious"); addTest(root, &TestFCNFKCClosure, "tscoll/cnormtst/TestFCNFKCClosure"); addTest(root, &TestComposition, "tscoll/cnormtst/TestComposition"); } void TestDecomp() { UErrorCode status = U_ZERO_ERROR; int32_t x, neededLen, resLen; UChar *source=NULL, *result=NULL; status = U_ZERO_ERROR; resLen=0; log_verbose("Testing unorm_normalize with Decomp canonical\n"); for(x=0; x < LENGTHOF(canonTests); x++) { source=CharsToUChars(canonTests[x][0]); neededLen= unorm_normalize(source, u_strlen(source), UNORM_NFD, 0, NULL, 0, &status); if(status==U_BUFFER_OVERFLOW_ERROR) { status=U_ZERO_ERROR; resLen=neededLen+1; result=(UChar*)malloc(sizeof(UChar*) * resLen); unorm_normalize(source, u_strlen(source), UNORM_NFD, 0, result, resLen, &status); } if(U_FAILURE(status)){ log_err("ERROR in unorm_normalize at %s: %s\n", austrdup(source), myErrorName(status) ); } else { assertEqual(result, canonTests[x][1], x); } free(result); free(source); } } void TestCompatDecomp() { UErrorCode status = U_ZERO_ERROR; int32_t x, neededLen, resLen; UChar *source=NULL, *result=NULL; status = U_ZERO_ERROR; resLen=0; log_verbose("Testing unorm_normalize with Decomp compat\n"); for(x=0; x < LENGTHOF(compatTests); x++) { source=CharsToUChars(compatTests[x][0]); neededLen= unorm_normalize(source, u_strlen(source), UNORM_NFKD, 0, NULL, 0, &status); if(status==U_BUFFER_OVERFLOW_ERROR) { status=U_ZERO_ERROR; resLen=neededLen+1; result=(UChar*)malloc(sizeof(UChar*) * resLen); unorm_normalize(source, u_strlen(source), UNORM_NFKD, 0, result, resLen, &status); } if(U_FAILURE(status)){ log_err("ERROR in unorm_normalize at %s: %s\n", austrdup(source), myErrorName(status) ); } else { assertEqual(result, compatTests[x][1], x); } free(result); free(source); } } void TestCanonDecompCompose() { UErrorCode status = U_ZERO_ERROR; int32_t x, neededLen, resLen; UChar *source=NULL, *result=NULL; status = U_ZERO_ERROR; resLen=0; log_verbose("Testing unorm_normalize with Decomp can compose compat\n"); for(x=0; x < LENGTHOF(canonTests); x++) { source=CharsToUChars(canonTests[x][0]); neededLen= unorm_normalize(source, u_strlen(source), UNORM_NFC, 0, NULL, 0, &status); if(status==U_BUFFER_OVERFLOW_ERROR) { status=U_ZERO_ERROR; resLen=neededLen+1; result=(UChar*)malloc(sizeof(UChar*) * resLen); unorm_normalize(source, u_strlen(source), UNORM_NFC, 0, result, resLen, &status); } if(U_FAILURE(status)){ log_err("ERROR in unorm_normalize at %s: %s\n", austrdup(source),myErrorName(status) ); } else { assertEqual(result, canonTests[x][2], x); } free(result); free(source); } } void TestCompatDecompCompose() { UErrorCode status = U_ZERO_ERROR; int32_t x, neededLen, resLen; UChar *source=NULL, *result=NULL; status = U_ZERO_ERROR; resLen=0; log_verbose("Testing unorm_normalize with compat decomp compose can\n"); for(x=0; x < LENGTHOF(compatTests); x++) { source=CharsToUChars(compatTests[x][0]); neededLen= unorm_normalize(source, u_strlen(source), UNORM_NFKC, 0, NULL, 0, &status); if(status==U_BUFFER_OVERFLOW_ERROR) { status=U_ZERO_ERROR; resLen=neededLen+1; result=(UChar*)malloc(sizeof(UChar*) * resLen); unorm_normalize(source, u_strlen(source), UNORM_NFKC, 0, result, resLen, &status); } if(U_FAILURE(status)){ log_err("ERROR in unorm_normalize at %s: %s\n", austrdup(source), myErrorName(status) ); } else { assertEqual(result, compatTests[x][2], x); } free(result); free(source); } } /* static void assertEqual(const UChar* result, const UChar* expected, int32_t index) { if(u_strcmp(result, expected)!=0){ log_err("ERROR in decomposition at index = %d. EXPECTED: %s , GOT: %s\n", index, austrdup(expected), austrdup(result) ); } } */ static void assertEqual(const UChar* result, const char* expected, int32_t index) { UChar *expectedUni = CharsToUChars(expected); if(u_strcmp(result, expectedUni)!=0){ log_err("ERROR in decomposition at index = %d. EXPECTED: %s , GOT: %s\n", index, expected, austrdup(result) ); } free(expectedUni); } static void TestNull_check(UChar *src, int32_t srcLen, UChar *exp, int32_t expLen, UNormalizationMode mode, const char *name) { UErrorCode status = U_ZERO_ERROR; int32_t len, i; UChar result[50]; status = U_ZERO_ERROR; for(i=0;i<50;i++) { result[i] = 0xFFFD; } len = unorm_normalize(src, srcLen, mode, 0, result, 50, &status); if(U_FAILURE(status)) { log_err("unorm_normalize(%s) with 0x0000 failed: %s\n", name, u_errorName(status)); } else if (len != expLen) { log_err("unorm_normalize(%s) with 0x0000 failed: Expected len %d, got %d\n", name, expLen, len); } { for(i=0;i<len;i++){ if(exp[i] != result[i]) { log_err("unorm_normalize(%s): @%d, expected \\u%04X got \\u%04X\n", name, i, exp[i], result[i]); return; } log_verbose(" %d: \\u%04X\n", i, result[i]); } } log_verbose("unorm_normalize(%s) with 0x0000: OK\n", name); } void TestNull() { UChar source_comp[] = { 0x0061, 0x0000, 0x0044, 0x0307 }; int32_t source_comp_len = 4; UChar expect_comp[] = { 0x0061, 0x0000, 0x1e0a }; int32_t expect_comp_len = 3; UChar source_dcmp[] = { 0x1e0A, 0x0000, 0x0929 }; int32_t source_dcmp_len = 3; UChar expect_dcmp[] = { 0x0044, 0x0307, 0x0000, 0x0928, 0x093C }; int32_t expect_dcmp_len = 5; TestNull_check(source_comp, source_comp_len, expect_comp, expect_comp_len, UNORM_NFC, "UNORM_NFC"); TestNull_check(source_dcmp, source_dcmp_len, expect_dcmp, expect_dcmp_len, UNORM_NFD, "UNORM_NFD"); TestNull_check(source_comp, source_comp_len, expect_comp, expect_comp_len, UNORM_NFKC, "UNORM_NFKC"); } static void TestQuickCheckResultNO() { const UChar CPNFD[] = {0x00C5, 0x0407, 0x1E00, 0x1F57, 0x220C, 0x30AE, 0xAC00, 0xD7A3, 0xFB36, 0xFB4E}; const UChar CPNFC[] = {0x0340, 0x0F93, 0x1F77, 0x1FBB, 0x1FEB, 0x2000, 0x232A, 0xF900, 0xFA1E, 0xFB4E}; const UChar CPNFKD[] = {0x00A0, 0x02E4, 0x1FDB, 0x24EA, 0x32FE, 0xAC00, 0xFB4E, 0xFA10, 0xFF3F, 0xFA2D}; const UChar CPNFKC[] = {0x00A0, 0x017F, 0x2000, 0x24EA, 0x32FE, 0x33FE, 0xFB4E, 0xFA10, 0xFF3F, 0xFA2D}; const int SIZE = 10; int count = 0; UErrorCode error = U_ZERO_ERROR; for (; count < SIZE; count ++) { if (unorm_quickCheck(&(CPNFD[count]), 1, UNORM_NFD, &error) != UNORM_NO) { log_err("ERROR in NFD quick check at U+%04x\n", CPNFD[count]); return; } if (unorm_quickCheck(&(CPNFC[count]), 1, UNORM_NFC, &error) != UNORM_NO) { log_err("ERROR in NFC quick check at U+%04x\n", CPNFC[count]); return; } if (unorm_quickCheck(&(CPNFKD[count]), 1, UNORM_NFKD, &error) != UNORM_NO) { log_err("ERROR in NFKD quick check at U+%04x\n", CPNFKD[count]); return; } if (unorm_quickCheck(&(CPNFKC[count]), 1, UNORM_NFKC, &error) != UNORM_NO) { log_err("ERROR in NFKC quick check at U+%04x\n", CPNFKC[count]); return; } } } static void TestQuickCheckResultYES() { const UChar CPNFD[] = {0x00C6, 0x017F, 0x0F74, 0x1000, 0x1E9A, 0x2261, 0x3075, 0x4000, 0x5000, 0xF000}; const UChar CPNFC[] = {0x0400, 0x0540, 0x0901, 0x1000, 0x1500, 0x1E9A, 0x3000, 0x4000, 0x5000, 0xF000}; const UChar CPNFKD[] = {0x00AB, 0x02A0, 0x1000, 0x1027, 0x2FFB, 0x3FFF, 0x4FFF, 0xA000, 0xF000, 0xFA27}; const UChar CPNFKC[] = {0x00B0, 0x0100, 0x0200, 0x0A02, 0x1000, 0x2010, 0x3030, 0x4000, 0xA000, 0xFA0E}; const int SIZE = 10; int count = 0; UErrorCode error = U_ZERO_ERROR; UChar cp = 0; while (cp < 0xA0) { if (unorm_quickCheck(&cp, 1, UNORM_NFD, &error) != UNORM_YES) { log_err("ERROR in NFD quick check at U+%04x\n", cp); return; } if (unorm_quickCheck(&cp, 1, UNORM_NFC, &error) != UNORM_YES) { log_err("ERROR in NFC quick check at U+%04x\n", cp); return; } if (unorm_quickCheck(&cp, 1, UNORM_NFKD, &error) != UNORM_YES) { log_err("ERROR in NFKD quick check at U+%04x\n", cp); return; } if (unorm_quickCheck(&cp, 1, UNORM_NFKC, &error) != UNORM_YES) { log_err("ERROR in NFKC quick check at U+%04x\n", cp); return; } cp ++; } for (; count < SIZE; count ++) { if (unorm_quickCheck(&(CPNFD[count]), 1, UNORM_NFD, &error) != UNORM_YES) { log_err("ERROR in NFD quick check at U+%04x\n", CPNFD[count]); return; } if (unorm_quickCheck(&(CPNFC[count]), 1, UNORM_NFC, &error) != UNORM_YES) { log_err("ERROR in NFC quick check at U+%04x\n", CPNFC[count]); return; } if (unorm_quickCheck(&(CPNFKD[count]), 1, UNORM_NFKD, &error) != UNORM_YES) { log_err("ERROR in NFKD quick check at U+%04x\n", CPNFKD[count]); return; } if (unorm_quickCheck(&(CPNFKC[count]), 1, UNORM_NFKC, &error) != UNORM_YES) { log_err("ERROR in NFKC quick check at U+%04x\n", CPNFKC[count]); return; } } } static void TestQuickCheckResultMAYBE() { const UChar CPNFC[] = {0x0306, 0x0654, 0x0BBE, 0x102E, 0x1161, 0x116A, 0x1173, 0x1175, 0x3099, 0x309A}; const UChar CPNFKC[] = {0x0300, 0x0654, 0x0655, 0x09D7, 0x0B3E, 0x0DCF, 0xDDF, 0x102E, 0x11A8, 0x3099}; const int SIZE = 10; int count = 0; UErrorCode error = U_ZERO_ERROR; /* NFD and NFKD does not have any MAYBE codepoints */ for (; count < SIZE; count ++) { if (unorm_quickCheck(&(CPNFC[count]), 1, UNORM_NFC, &error) != UNORM_MAYBE) { log_err("ERROR in NFC quick check at U+%04x\n", CPNFC[count]); return; } if (unorm_quickCheck(&(CPNFKC[count]), 1, UNORM_NFKC, &error) != UNORM_MAYBE) { log_err("ERROR in NFKC quick check at U+%04x\n", CPNFKC[count]); return; } } } static void TestQuickCheckStringResult() { int count; UChar *d = NULL; UChar *c = NULL; UErrorCode error = U_ZERO_ERROR; for (count = 0; count < LENGTHOF(canonTests); count ++) { d = CharsToUChars(canonTests[count][1]); c = CharsToUChars(canonTests[count][2]); if (unorm_quickCheck(d, u_strlen(d), UNORM_NFD, &error) != UNORM_YES) { log_err("ERROR in NFD quick check for string at count %d\n", count); return; } if (unorm_quickCheck(c, u_strlen(c), UNORM_NFC, &error) == UNORM_NO) { log_err("ERROR in NFC quick check for string at count %d\n", count); return; } free(d); free(c); } for (count = 0; count < LENGTHOF(compatTests); count ++) { d = CharsToUChars(compatTests[count][1]); c = CharsToUChars(compatTests[count][2]); if (unorm_quickCheck(d, u_strlen(d), UNORM_NFKD, &error) != UNORM_YES) { log_err("ERROR in NFKD quick check for string at count %d\n", count); return; } if (unorm_quickCheck(c, u_strlen(c), UNORM_NFKC, &error) != UNORM_YES) { log_err("ERROR in NFKC quick check for string at count %d\n", count); return; } free(d); free(c); } } void TestQuickCheck() { TestQuickCheckResultNO(); TestQuickCheckResultYES(); TestQuickCheckResultMAYBE(); TestQuickCheckStringResult(); } /* * The intltest/NormalizerConformanceTest tests a lot of strings that _are_ * normalized, and some that are not. * Here we pick some specific cases and test the C API. */ static void TestIsNormalized(void) { static const UChar notNFC[][8]={ /* strings that are not in NFC */ { 0x62, 0x61, 0x300, 0x63, 0 }, /* 0061 0300 compose */ { 0xfb1d, 0 }, /* excluded from composition */ { 0x0627, 0x0653, 0 }, /* 0627 0653 compose */ { 0x3071, 0x306f, 0x309a, 0x3073, 0 } /* 306F 309A compose */ }; static const UChar notNFKC[][8]={ /* strings that are not in NFKC */ { 0x1100, 0x1161, 0 }, /* Jamo compose */ { 0x1100, 0x314f, 0 }, /* compatibility Jamo compose */ { 0x03b1, 0x1f00, 0x0345, 0x03b3, 0 } /* 1F00 0345 compose */ }; int32_t i; UErrorCode errorCode; /* API test */ /* normal case with length>=0 (length -1 used for special cases below) */ errorCode=U_ZERO_ERROR; if(!unorm_isNormalized(notNFC[0]+2, 1, UNORM_NFC, &errorCode) || U_FAILURE(errorCode)) { log_err("error: !isNormalized(<U+0300>, NFC) (%s)\n", u_errorName(errorCode)); } /* incoming U_FAILURE */ errorCode=U_TRUNCATED_CHAR_FOUND; (void)unorm_isNormalized(notNFC[0]+2, 1, UNORM_NFC, &errorCode); if(errorCode!=U_TRUNCATED_CHAR_FOUND) { log_err("error: isNormalized(U_TRUNCATED_CHAR_FOUND) changed the error code to %s\n", u_errorName(errorCode)); } /* NULL source */ errorCode=U_ZERO_ERROR; (void)unorm_isNormalized(NULL, 1, UNORM_NFC, &errorCode); if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) { log_err("error: isNormalized(NULL) did not set U_ILLEGAL_ARGUMENT_ERROR but %s\n", u_errorName(errorCode)); } /* bad length */ errorCode=U_ZERO_ERROR; (void)unorm_isNormalized(notNFC[0]+2, -2, UNORM_NFC, &errorCode); if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) { log_err("error: isNormalized([-2]) did not set U_ILLEGAL_ARGUMENT_ERROR but %s\n", u_errorName(errorCode)); } /* specific cases */ for(i=0; i<LENGTHOF(notNFC); ++i) { errorCode=U_ZERO_ERROR; if(unorm_isNormalized(notNFC[i], -1, UNORM_NFC, &errorCode) || U_FAILURE(errorCode)) { log_err("error: isNormalized(notNFC[%d], NFC) is wrong (%s)\n", i, u_errorName(errorCode)); } errorCode=U_ZERO_ERROR; if(unorm_isNormalized(notNFC[i], -1, UNORM_NFKC, &errorCode) || U_FAILURE(errorCode)) { log_err("error: isNormalized(notNFC[%d], NFKC) is wrong (%s)\n", i, u_errorName(errorCode)); } } for(i=0; i<LENGTHOF(notNFKC); ++i) { errorCode=U_ZERO_ERROR; if(unorm_isNormalized(notNFKC[i], -1, UNORM_NFKC, &errorCode) || U_FAILURE(errorCode)) { log_err("error: isNormalized(notNFKC[%d], NFKC) is wrong (%s)\n", i, u_errorName(errorCode)); } } } void TestCheckFCD() { UErrorCode status = U_ZERO_ERROR; static const UChar FAST_[] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A}; static const UChar FALSE_[] = {0x0001, 0x0002, 0x02EA, 0x03EB, 0x0300, 0x0301, 0x02B9, 0x0314, 0x0315, 0x0316}; static const UChar TRUE_[] = {0x0030, 0x0040, 0x0440, 0x056D, 0x064F, 0x06E7, 0x0050, 0x0730, 0x09EE, 0x1E10}; static const UChar datastr[][5] = { {0x0061, 0x030A, 0x1E05, 0x0302, 0}, {0x0061, 0x030A, 0x00E2, 0x0323, 0}, {0x0061, 0x0323, 0x00E2, 0x0323, 0}, {0x0061, 0x0323, 0x1E05, 0x0302, 0} }; static const UBool result[] = {UNORM_YES, UNORM_NO, UNORM_NO, UNORM_YES}; static const UChar datachar[] = {0x60, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67, 0x68, 0x69, 0x6a, 0xe0, 0xe1, 0xe2, 0xe3, 0xe4, 0xe5, 0xe6, 0xe7, 0xe8, 0xe9, 0xea, 0x0300, 0x0301, 0x0302, 0x0303, 0x0304, 0x0305, 0x0306, 0x0307, 0x0308, 0x0309, 0x030a, 0x0320, 0x0321, 0x0322, 0x0323, 0x0324, 0x0325, 0x0326, 0x0327, 0x0328, 0x0329, 0x032a, 0x1e00, 0x1e01, 0x1e02, 0x1e03, 0x1e04, 0x1e05, 0x1e06, 0x1e07, 0x1e08, 0x1e09, 0x1e0a}; int count = 0; if (unorm_quickCheck(FAST_, 10, UNORM_FCD, &status) != UNORM_YES) log_err("unorm_quickCheck(FCD) failed: expected value for fast unorm_quickCheck is UNORM_YES\n"); if (unorm_quickCheck(FALSE_, 10, UNORM_FCD, &status) != UNORM_NO) log_err("unorm_quickCheck(FCD) failed: expected value for error unorm_quickCheck is UNORM_NO\n"); if (unorm_quickCheck(TRUE_, 10, UNORM_FCD, &status) != UNORM_YES) log_err("unorm_quickCheck(FCD) failed: expected value for correct unorm_quickCheck is UNORM_YES\n"); if (U_FAILURE(status)) log_err("unorm_quickCheck(FCD) failed: %s\n", u_errorName(status)); while (count < 4) { UBool fcdresult = unorm_quickCheck(datastr[count], 4, UNORM_FCD, &status); if (U_FAILURE(status)) { log_err("unorm_quickCheck(FCD) failed: exception occured at data set %d\n", count); break; } else { if (result[count] != fcdresult) { log_err("unorm_quickCheck(FCD) failed: Data set %d expected value %d\n", count, result[count]); } } count ++; } /* random checks of long strings */ status = U_ZERO_ERROR; srand((unsigned)time( NULL )); for (count = 0; count < 50; count ++) { int size = 0; UBool testresult = UNORM_YES; UChar data[20]; UChar norm[100]; UChar nfd[100]; int normsize = 0; int nfdsize = 0; while (size != 19) { data[size] = datachar[(rand() * 50) / RAND_MAX]; log_verbose("0x%x", data[size]); normsize += unorm_normalize(data + size, 1, UNORM_NFD, 0, norm + normsize, 100 - normsize, &status); if (U_FAILURE(status)) { log_err("unorm_quickCheck(FCD) failed: exception occured at data generation\n"); break; } size ++; } log_verbose("\n"); nfdsize = unorm_normalize(data, size, UNORM_NFD, 0, nfd, 100, &status); if (U_FAILURE(status)) { log_err("unorm_quickCheck(FCD) failed: exception occured at normalized data generation\n"); } if (nfdsize != normsize || u_memcmp(nfd, norm, nfdsize) != 0) { testresult = UNORM_NO; } if (testresult == UNORM_YES) { log_verbose("result UNORM_YES\n"); } else { log_verbose("result UNORM_NO\n"); } if (unorm_quickCheck(data, size, UNORM_FCD, &status) != testresult || U_FAILURE(status)) { log_err("unorm_quickCheck(FCD) failed: expected %d for random data\n", testresult); } } } static void TestAPI() { static const UChar in[]={ 0x68, 0xe4 }; UChar out[20]={ 0xffff, 0xffff, 0xffff, 0xffff }; UErrorCode errorCode; int32_t length; /* try preflighting */ errorCode=U_ZERO_ERROR; length=unorm_normalize(in, 2, UNORM_NFD, 0, NULL, 0, &errorCode); if(errorCode!=U_BUFFER_OVERFLOW_ERROR || length!=3) { log_err("unorm_normalize(pure preflighting NFD)=%ld failed with %s\n", length, u_errorName(errorCode)); return; } errorCode=U_ZERO_ERROR; length=unorm_normalize(in, 2, UNORM_NFD, 0, out, 3, &errorCode); if(U_FAILURE(errorCode)) { log_err("unorm_normalize(NFD)=%ld failed with %s\n", length, u_errorName(errorCode)); return; } if(length!=3 || out[2]!=0x308 || out[3]!=0xffff) { log_err("unorm_normalize(NFD ma<umlaut>)=%ld failed with out[]=U+%04x U+%04x U+%04x U+%04x\n", length, out[0], out[1], out[2], out[3]); return; } } /* test cases to improve test code coverage */ enum { HANGUL_K_KIYEOK=0x3131, /* NFKD->Jamo L U+1100 */ HANGUL_K_WEO=0x315d, /* NFKD->Jamo V U+116f */ HANGUL_K_KIYEOK_SIOS=0x3133, /* NFKD->Jamo T U+11aa */ HANGUL_KIYEOK=0x1100, /* Jamo L U+1100 */ HANGUL_WEO=0x116f, /* Jamo V U+116f */ HANGUL_KIYEOK_SIOS=0x11aa, /* Jamo T U+11aa */ HANGUL_AC00=0xac00, /* Hangul syllable = Jamo LV U+ac00 */ HANGUL_SYLLABLE=0xac00+14*28+3, /* Hangul syllable = U+1100 * U+116f * U+11aa */ MUSICAL_VOID_NOTEHEAD=0x1d157, MUSICAL_HALF_NOTE=0x1d15e, /* NFC/NFD->Notehead+Stem */ MUSICAL_STEM=0x1d165, /* cc=216 */ MUSICAL_STACCATO=0x1d17c /* cc=220 */ }; static void TestNormCoverage() { UChar input[1000], expect[1000], output[1000]; UErrorCode errorCode; int32_t i, length, inLength, expectLength, hangulPrefixLength, preflightLength; /* create a long and nasty string with NFKC-unsafe characters */ inLength=0; /* 3 Jamos L/V/T, all 8 combinations normal/compatibility */ input[inLength++]=HANGUL_KIYEOK; input[inLength++]=HANGUL_WEO; input[inLength++]=HANGUL_KIYEOK_SIOS; input[inLength++]=HANGUL_KIYEOK; input[inLength++]=HANGUL_WEO; input[inLength++]=HANGUL_K_KIYEOK_SIOS; input[inLength++]=HANGUL_KIYEOK; input[inLength++]=HANGUL_K_WEO; input[inLength++]=HANGUL_KIYEOK_SIOS; input[inLength++]=HANGUL_KIYEOK; input[inLength++]=HANGUL_K_WEO; input[inLength++]=HANGUL_K_KIYEOK_SIOS; input[inLength++]=HANGUL_K_KIYEOK; input[inLength++]=HANGUL_WEO; input[inLength++]=HANGUL_KIYEOK_SIOS; input[inLength++]=HANGUL_K_KIYEOK; input[inLength++]=HANGUL_WEO; input[inLength++]=HANGUL_K_KIYEOK_SIOS; input[inLength++]=HANGUL_K_KIYEOK; input[inLength++]=HANGUL_K_WEO; input[inLength++]=HANGUL_KIYEOK_SIOS; input[inLength++]=HANGUL_K_KIYEOK; input[inLength++]=HANGUL_K_WEO; input[inLength++]=HANGUL_K_KIYEOK_SIOS; /* Hangul LV with normal/compatibility Jamo T */ input[inLength++]=HANGUL_AC00; input[inLength++]=HANGUL_KIYEOK_SIOS; input[inLength++]=HANGUL_AC00; input[inLength++]=HANGUL_K_KIYEOK_SIOS; /* compatibility Jamo L, V */ input[inLength++]=HANGUL_K_KIYEOK; input[inLength++]=HANGUL_K_WEO; hangulPrefixLength=inLength; input[inLength++]=UTF16_LEAD(MUSICAL_HALF_NOTE); input[inLength++]=UTF16_TRAIL(MUSICAL_HALF_NOTE); for(i=0; i<200; ++i) { input[inLength++]=UTF16_LEAD(MUSICAL_STACCATO); input[inLength++]=UTF16_TRAIL(MUSICAL_STACCATO); input[inLength++]=UTF16_LEAD(MUSICAL_STEM); input[inLength++]=UTF16_TRAIL(MUSICAL_STEM); } /* (compatibility) Jamo L, T do not compose */ input[inLength++]=HANGUL_K_KIYEOK; input[inLength++]=HANGUL_K_KIYEOK_SIOS; /* quick checks */ errorCode=U_ZERO_ERROR; if(UNORM_NO!=unorm_quickCheck(input, inLength, UNORM_NFD, &errorCode) || U_FAILURE(errorCode)) { log_err("error unorm_quickCheck(long input, UNORM_NFD)!=NO (%s)\n", u_errorName(errorCode)); } errorCode=U_ZERO_ERROR; if(UNORM_NO!=unorm_quickCheck(input, inLength, UNORM_NFKD, &errorCode) || U_FAILURE(errorCode)) { log_err("error unorm_quickCheck(long input, UNORM_NFKD)!=NO (%s)\n", u_errorName(errorCode)); } errorCode=U_ZERO_ERROR; if(UNORM_NO!=unorm_quickCheck(input, inLength, UNORM_NFC, &errorCode) || U_FAILURE(errorCode)) { log_err("error unorm_quickCheck(long input, UNORM_NFC)!=NO (%s)\n", u_errorName(errorCode)); } errorCode=U_ZERO_ERROR; if(UNORM_NO!=unorm_quickCheck(input, inLength, UNORM_NFKC, &errorCode) || U_FAILURE(errorCode)) { log_err("error unorm_quickCheck(long input, UNORM_NFKC)!=NO (%s)\n", u_errorName(errorCode)); } errorCode=U_ZERO_ERROR; if(UNORM_NO!=unorm_quickCheck(input, inLength, UNORM_FCD, &errorCode) || U_FAILURE(errorCode)) { log_err("error unorm_quickCheck(long input, UNORM_FCD)!=NO (%s)\n", u_errorName(errorCode)); } /* NFKC */ expectLength=0; expect[expectLength++]=HANGUL_SYLLABLE; expect[expectLength++]=HANGUL_SYLLABLE; expect[expectLength++]=HANGUL_SYLLABLE; expect[expectLength++]=HANGUL_SYLLABLE; expect[expectLength++]=HANGUL_SYLLABLE; expect[expectLength++]=HANGUL_SYLLABLE; expect[expectLength++]=HANGUL_SYLLABLE; expect[expectLength++]=HANGUL_SYLLABLE; expect[expectLength++]=HANGUL_AC00+3; expect[expectLength++]=HANGUL_AC00+3; expect[expectLength++]=HANGUL_AC00+14*28; expect[expectLength++]=UTF16_LEAD(MUSICAL_VOID_NOTEHEAD); expect[expectLength++]=UTF16_TRAIL(MUSICAL_VOID_NOTEHEAD); expect[expectLength++]=UTF16_LEAD(MUSICAL_STEM); expect[expectLength++]=UTF16_TRAIL(MUSICAL_STEM); for(i=0; i<200; ++i) { expect[expectLength++]=UTF16_LEAD(MUSICAL_STEM); expect[expectLength++]=UTF16_TRAIL(MUSICAL_STEM); } for(i=0; i<200; ++i) { expect[expectLength++]=UTF16_LEAD(MUSICAL_STACCATO); expect[expectLength++]=UTF16_TRAIL(MUSICAL_STACCATO); } expect[expectLength++]=HANGUL_KIYEOK; expect[expectLength++]=HANGUL_KIYEOK_SIOS; /* try destination overflow first */ errorCode=U_ZERO_ERROR; preflightLength=unorm_normalize(input, inLength, UNORM_NFKC, 0, output, 100, /* too short */ &errorCode); if(errorCode!=U_BUFFER_OVERFLOW_ERROR) { log_err("error unorm_normalize(long input, output too short, UNORM_NFKC) did not overflow but %s\n", u_errorName(errorCode)); } /* real NFKC */ errorCode=U_ZERO_ERROR; length=unorm_normalize(input, inLength, UNORM_NFKC, 0, output, sizeof(output)/U_SIZEOF_UCHAR, &errorCode); if(U_FAILURE(errorCode)) { log_err("error unorm_normalize(long input, UNORM_NFKC) failed with %s\n", u_errorName(errorCode)); } else if(length!=expectLength || u_memcmp(output, expect, length)!=0) { log_err("error unorm_normalize(long input, UNORM_NFKC) produced wrong result\n"); for(i=0; i<length; ++i) { if(output[i]!=expect[i]) { log_err(" NFKC[%d]==U+%04lx expected U+%04lx\n", i, output[i], expect[i]); break; } } } if(length!=preflightLength) { log_err("error unorm_normalize(long input, UNORM_NFKC)==%ld but preflightLength==%ld\n", length, preflightLength); } /* FCD */ u_memcpy(expect, input, hangulPrefixLength); expectLength=hangulPrefixLength; expect[expectLength++]=UTF16_LEAD(MUSICAL_VOID_NOTEHEAD); expect[expectLength++]=UTF16_TRAIL(MUSICAL_VOID_NOTEHEAD); expect[expectLength++]=UTF16_LEAD(MUSICAL_STEM); expect[expectLength++]=UTF16_TRAIL(MUSICAL_STEM); for(i=0; i<200; ++i) { expect[expectLength++]=UTF16_LEAD(MUSICAL_STEM); expect[expectLength++]=UTF16_TRAIL(MUSICAL_STEM); } for(i=0; i<200; ++i) { expect[expectLength++]=UTF16_LEAD(MUSICAL_STACCATO); expect[expectLength++]=UTF16_TRAIL(MUSICAL_STACCATO); } expect[expectLength++]=HANGUL_K_KIYEOK; expect[expectLength++]=HANGUL_K_KIYEOK_SIOS; errorCode=U_ZERO_ERROR; length=unorm_normalize(input, inLength, UNORM_FCD, 0, output, sizeof(output)/U_SIZEOF_UCHAR, &errorCode); if(U_FAILURE(errorCode)) { log_err("error unorm_normalize(long input, UNORM_FCD) failed with %s\n", u_errorName(errorCode)); } else if(length!=expectLength || u_memcmp(output, expect, length)!=0) { log_err("error unorm_normalize(long input, UNORM_FCD) produced wrong result\n"); for(i=0; i<length; ++i) { if(output[i]!=expect[i]) { log_err(" FCD[%d]==U+%04lx expected U+%04lx\n", i, output[i], expect[i]); break; } } } } /* API test for unorm_concatenate() - for real test strings see intltest/tstnorm.cpp */ static void TestConcatenate(void) { /* "re + 'sume'" */ static const UChar left[]={ 0x72, 0x65, 0 }, right[]={ 0x301, 0x73, 0x75, 0x6d, 0xe9, 0 }, expect[]={ 0x72, 0xe9, 0x73, 0x75, 0x6d, 0xe9, 0 }; UChar buffer[100]; UErrorCode errorCode; int32_t length; /* left with length, right NUL-terminated */ errorCode=U_ZERO_ERROR; length=unorm_concatenate(left, 2, right, -1, buffer, 100, UNORM_NFC, 0, &errorCode); if(U_FAILURE(errorCode) || length!=6 || 0!=u_memcmp(buffer, expect, length)) { log_err("error: unorm_concatenate()=%ld (expect 6) failed with %s\n", length, u_errorName(errorCode)); } /* preflighting */ errorCode=U_ZERO_ERROR; length=unorm_concatenate(left, 2, right, -1, NULL, 0, UNORM_NFC, 0, &errorCode); if(errorCode!=U_BUFFER_OVERFLOW_ERROR || length!=6) { log_err("error: unorm_concatenate(preflighting)=%ld (expect 6) failed with %s\n", length, u_errorName(errorCode)); } buffer[2]=0x5555; errorCode=U_ZERO_ERROR; length=unorm_concatenate(left, 2, right, -1, buffer, 1, UNORM_NFC, 0, &errorCode); if(errorCode!=U_BUFFER_OVERFLOW_ERROR || length!=6 || buffer[2]!=0x5555) { log_err("error: unorm_concatenate(preflighting 2)=%ld (expect 6) failed with %s\n", length, u_errorName(errorCode)); } /* enter with U_FAILURE */ buffer[2]=0xaaaa; errorCode=U_UNEXPECTED_TOKEN; length=unorm_concatenate(left, 2, right, -1, buffer, 100, UNORM_NFC, 0, &errorCode); if(errorCode!=U_UNEXPECTED_TOKEN || buffer[2]!=0xaaaa) { log_err("error: unorm_concatenate(failure)=%ld failed with %s\n", length, u_errorName(errorCode)); } /* illegal arguments */ buffer[2]=0xaaaa; errorCode=U_ZERO_ERROR; length=unorm_concatenate(NULL, 2, right, -1, buffer, 100, UNORM_NFC, 0, &errorCode); if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR || buffer[2]!=0xaaaa) { log_err("error: unorm_concatenate(left=NULL)=%ld failed with %s\n", length, u_errorName(errorCode)); } errorCode=U_ZERO_ERROR; length=unorm_concatenate(left, 2, right, -1, NULL, 100, UNORM_NFC, 0, &errorCode); if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) { log_err("error: unorm_concatenate(buffer=NULL)=%ld failed with %s\n", length, u_errorName(errorCode)); } } enum { _PLUS=0x2b }; static const char *const _modeString[UNORM_MODE_COUNT]={ "0", "NONE", "NFD", "NFKD", "NFC", "NFKC", "FCD" }; static void _testIter(const UChar *src, int32_t srcLength, UCharIterator *iter, UNormalizationMode mode, UBool forward, const UChar *out, int32_t outLength, const int32_t *srcIndexes, int32_t srcIndexesLength) { UChar buffer[4]; const UChar *expect, *outLimit, *in; int32_t length, i, expectLength, expectIndex, prevIndex, index, inLength; UErrorCode errorCode; UBool neededToNormalize, expectNeeded; errorCode=U_ZERO_ERROR; outLimit=out+outLength; if(forward) { expect=out; i=index=0; } else { expect=outLimit; i=srcIndexesLength-2; index=srcLength; } for(;;) { prevIndex=index; if(forward) { if(!iter->hasNext(iter)) { return; } length=unorm_next(iter, buffer, sizeof(buffer)/U_SIZEOF_UCHAR, mode, 0, (UBool)(out!=NULL), &neededToNormalize, &errorCode); expectIndex=srcIndexes[i+1]; in=src+prevIndex; inLength=expectIndex-prevIndex; if(out!=NULL) { /* get output piece from between plus signs */ expectLength=0; while((expect+expectLength)!=outLimit && expect[expectLength]!=_PLUS) { ++expectLength; } expectNeeded=(UBool)(0!=u_memcmp(buffer, in, inLength)); } else { expect=in; expectLength=inLength; expectNeeded=FALSE; } } else { if(!iter->hasPrevious(iter)) { return; } length=unorm_previous(iter, buffer, sizeof(buffer)/U_SIZEOF_UCHAR, mode, 0, (UBool)(out!=NULL), &neededToNormalize, &errorCode); expectIndex=srcIndexes[i]; in=src+expectIndex; inLength=prevIndex-expectIndex; if(out!=NULL) { /* get output piece from between plus signs */ expectLength=0; while(expect!=out && expect[-1]!=_PLUS) { ++expectLength; --expect; } expectNeeded=(UBool)(0!=u_memcmp(buffer, in, inLength)); } else { expect=in; expectLength=inLength; expectNeeded=FALSE; } } index=iter->getIndex(iter, UITER_CURRENT); if(U_FAILURE(errorCode)) { log_err("error unorm iteration (next/previous %d %s)[%d]: %s\n", forward, _modeString[mode], i, u_errorName(errorCode)); return; } if(expectIndex!=index) { log_err("error unorm iteration (next/previous %d %s): index[%d] wrong, got %d expected %d\n", forward, _modeString[mode], i, index, expectIndex); return; } if(expectLength!=length) { log_err("error unorm iteration (next/previous %d %s): length[%d] wrong, got %d expected %d\n", forward, _modeString[mode], i, length, expectLength); return; } if(0!=u_memcmp(expect, buffer, length)) { log_err("error unorm iteration (next/previous %d %s): output string[%d] wrong\n", forward, _modeString[mode], i); return; } if(neededToNormalize!=expectNeeded) { } if(forward) { expect+=expectLength+1; /* go after the + */ ++i; } else { --expect; /* go before the + */ --i; } } } static void TestNextPrevious() { static const UChar src[]={ /* input string */ 0xa0, 0xe4, 0x63, 0x302, 0x327, 0xac00, 0x3133 }, nfd[]={ /* + separates expected output pieces */ 0xa0, _PLUS, 0x61, 0x308, _PLUS, 0x63, 0x327, 0x302, _PLUS, 0x1100, 0x1161, _PLUS, 0x3133 }, nfkd[]={ 0x20, _PLUS, 0x61, 0x308, _PLUS, 0x63, 0x327, 0x302, _PLUS, 0x1100, 0x1161, _PLUS, 0x11aa }, nfc[]={ 0xa0, _PLUS, 0xe4, _PLUS, 0xe7, 0x302, _PLUS, 0xac00, _PLUS, 0x3133 }, nfkc[]={ 0x20, _PLUS, 0xe4, _PLUS, 0xe7, 0x302, _PLUS, 0xac03 }, fcd[]={ 0xa0, _PLUS, 0xe4, _PLUS, 0x63, 0x327, 0x302, _PLUS, 0xac00, _PLUS, 0x3133 }; /* expected iterator indexes in the source string for each iteration piece */ static const int32_t nfdIndexes[]={ 0, 1, 2, 5, 6, 7 }, nfkdIndexes[]={ 0, 1, 2, 5, 6, 7 }, nfcIndexes[]={ 0, 1, 2, 5, 6, 7 }, nfkcIndexes[]={ 0, 1, 2, 5, 7 }, fcdIndexes[]={ 0, 1, 2, 5, 6, 7 }; UCharIterator iter; UChar buffer[4]; int32_t length; UBool neededToNormalize; UErrorCode errorCode; uiter_setString(&iter, src, sizeof(src)/U_SIZEOF_UCHAR); /* test iteration with doNormalize */ iter.index=0; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFD, TRUE, nfd, sizeof(nfd)/U_SIZEOF_UCHAR, nfdIndexes, sizeof(nfdIndexes)/4); iter.index=0; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKD, TRUE, nfkd, sizeof(nfkd)/U_SIZEOF_UCHAR, nfkdIndexes, sizeof(nfkdIndexes)/4); iter.index=0; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFC, TRUE, nfc, sizeof(nfc)/U_SIZEOF_UCHAR, nfcIndexes, sizeof(nfcIndexes)/4); iter.index=0; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKC, TRUE, nfkc, sizeof(nfkc)/U_SIZEOF_UCHAR, nfkcIndexes, sizeof(nfkcIndexes)/4); iter.index=0; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_FCD, TRUE, fcd, sizeof(fcd)/U_SIZEOF_UCHAR, fcdIndexes, sizeof(fcdIndexes)/4); iter.index=iter.length; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFD, FALSE, nfd, sizeof(nfd)/U_SIZEOF_UCHAR, nfdIndexes, sizeof(nfdIndexes)/4); iter.index=iter.length; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKD, FALSE, nfkd, sizeof(nfkd)/U_SIZEOF_UCHAR, nfkdIndexes, sizeof(nfkdIndexes)/4); iter.index=iter.length; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFC, FALSE, nfc, sizeof(nfc)/U_SIZEOF_UCHAR, nfcIndexes, sizeof(nfcIndexes)/4); iter.index=iter.length; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKC, FALSE, nfkc, sizeof(nfkc)/U_SIZEOF_UCHAR, nfkcIndexes, sizeof(nfkcIndexes)/4); iter.index=iter.length; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_FCD, FALSE, fcd, sizeof(fcd)/U_SIZEOF_UCHAR, fcdIndexes, sizeof(fcdIndexes)/4); /* test iteration without doNormalize */ iter.index=0; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFD, TRUE, NULL, 0, nfdIndexes, sizeof(nfdIndexes)/4); iter.index=0; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKD, TRUE, NULL, 0, nfkdIndexes, sizeof(nfkdIndexes)/4); iter.index=0; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFC, TRUE, NULL, 0, nfcIndexes, sizeof(nfcIndexes)/4); iter.index=0; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKC, TRUE, NULL, 0, nfkcIndexes, sizeof(nfkcIndexes)/4); iter.index=0; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_FCD, TRUE, NULL, 0, fcdIndexes, sizeof(fcdIndexes)/4); iter.index=iter.length; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFD, FALSE, NULL, 0, nfdIndexes, sizeof(nfdIndexes)/4); iter.index=iter.length; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKD, FALSE, NULL, 0, nfkdIndexes, sizeof(nfkdIndexes)/4); iter.index=iter.length; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFC, FALSE, NULL, 0, nfcIndexes, sizeof(nfcIndexes)/4); iter.index=iter.length; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_NFKC, FALSE, NULL, 0, nfkcIndexes, sizeof(nfkcIndexes)/4); iter.index=iter.length; _testIter(src, sizeof(src)/U_SIZEOF_UCHAR, &iter, UNORM_FCD, FALSE, NULL, 0, fcdIndexes, sizeof(fcdIndexes)/4); /* try without neededToNormalize */ errorCode=U_ZERO_ERROR; buffer[0]=5; iter.index=1; length=unorm_next(&iter, buffer, sizeof(buffer)/U_SIZEOF_UCHAR, UNORM_NFD, 0, TRUE, NULL, &errorCode); if(U_FAILURE(errorCode) || length!=2 || buffer[0]!=nfd[2] || buffer[1]!=nfd[3]) { log_err("error unorm_next(without needed) %s\n", u_errorName(errorCode)); return; } /* preflight */ neededToNormalize=9; iter.index=1; length=unorm_next(&iter, NULL, 0, UNORM_NFD, 0, TRUE, &neededToNormalize, &errorCode); if(errorCode!=U_BUFFER_OVERFLOW_ERROR || neededToNormalize!=FALSE || length!=2) { log_err("error unorm_next(pure preflighting) %s\n", u_errorName(errorCode)); return; } errorCode=U_ZERO_ERROR; buffer[0]=buffer[1]=5; neededToNormalize=9; iter.index=1; length=unorm_next(&iter, buffer, 1, UNORM_NFD, 0, TRUE, &neededToNormalize, &errorCode); if(errorCode!=U_BUFFER_OVERFLOW_ERROR || neededToNormalize!=FALSE || length!=2 || buffer[1]!=5) { log_err("error unorm_next(preflighting) %s\n", u_errorName(errorCode)); return; } /* no iterator */ errorCode=U_ZERO_ERROR; buffer[0]=buffer[1]=5; neededToNormalize=9; iter.index=1; length=unorm_next(NULL, buffer, sizeof(buffer)/U_SIZEOF_UCHAR, UNORM_NFD, 0, TRUE, &neededToNormalize, &errorCode); if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) { log_err("error unorm_next(no iterator) %s\n", u_errorName(errorCode)); return; } /* illegal mode */ buffer[0]=buffer[1]=5; neededToNormalize=9; iter.index=1; length=unorm_next(&iter, buffer, sizeof(buffer)/U_SIZEOF_UCHAR, (UNormalizationMode)0, 0, TRUE, &neededToNormalize, &errorCode); if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) { log_err("error unorm_next(illegal mode) %s\n", u_errorName(errorCode)); return; } /* error coming in */ errorCode=U_MISPLACED_QUANTIFIER; buffer[0]=5; iter.index=1; length=unorm_next(&iter, buffer, sizeof(buffer)/U_SIZEOF_UCHAR, UNORM_NFD, 0, TRUE, NULL, &errorCode); if(errorCode!=U_MISPLACED_QUANTIFIER) { log_err("error unorm_next(U_MISPLACED_QUANTIFIER) %s\n", u_errorName(errorCode)); return; } /* missing pErrorCode */ buffer[0]=5; iter.index=1; length=unorm_next(&iter, buffer, sizeof(buffer)/U_SIZEOF_UCHAR, UNORM_NFD, 0, TRUE, NULL, NULL); if(iter.index!=1 || buffer[0]!=5) { log_err("error unorm_next(pErrorCode==NULL) %s\n", u_errorName(errorCode)); return; } } static void TestFCNFKCClosure(void) { static const struct { UChar32 c; const UChar s[6]; } tests[]={ { 0x037A, { 0x0020, 0x03B9, 0 } }, { 0x03D2, { 0x03C5, 0 } }, { 0x20A8, { 0x0072, 0x0073, 0 } }, { 0x210B, { 0x0068, 0 } }, { 0x210C, { 0x0068, 0 } }, { 0x2121, { 0x0074, 0x0065, 0x006C, 0 } }, { 0x2122, { 0x0074, 0x006D, 0 } }, { 0x2128, { 0x007A, 0 } }, { 0x1D5DB, { 0x0068, 0 } }, { 0x1D5ED, { 0x007A, 0 } }, { 0x0061, { 0 } } }; UChar buffer[8]; UErrorCode errorCode; int32_t i, length; for(i=0; i<LENGTHOF(tests); ++i) { errorCode=U_ZERO_ERROR; length=u_getFC_NFKC_Closure(tests[i].c, buffer, LENGTHOF(buffer), &errorCode); if(U_FAILURE(errorCode) || length!=u_strlen(buffer) || 0!=u_strcmp(tests[i].s, buffer)) { log_err("u_getFC_NFKC_Closure(U+%04lx) is wrong (%s)\n", tests[i].c, u_errorName(errorCode)); } } /* error handling */ errorCode=U_ZERO_ERROR; length=u_getFC_NFKC_Closure(0x5c, NULL, LENGTHOF(buffer), &errorCode); if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) { log_err("u_getFC_NFKC_Closure(dest=NULL) is wrong (%s)\n", u_errorName(errorCode)); } length=u_getFC_NFKC_Closure(0x5c, buffer, LENGTHOF(buffer), &errorCode); if(errorCode!=U_ILLEGAL_ARGUMENT_ERROR) { log_err("u_getFC_NFKC_Closure(U_FAILURE) is wrong (%s)\n", u_errorName(errorCode)); } } static void TestQuickCheckPerCP() { UErrorCode errorCode; UChar32 c, lead, trail; UChar s[U16_MAX_LENGTH], nfd[16]; int32_t length, lccc1, lccc2, tccc1, tccc2; int32_t qc1, qc2; if( u_getIntPropertyMaxValue(UCHAR_NFD_QUICK_CHECK)!=(int32_t)UNORM_YES || u_getIntPropertyMaxValue(UCHAR_NFKD_QUICK_CHECK)!=(int32_t)UNORM_YES || u_getIntPropertyMaxValue(UCHAR_NFC_QUICK_CHECK)!=(int32_t)UNORM_MAYBE || u_getIntPropertyMaxValue(UCHAR_NFKC_QUICK_CHECK)!=(int32_t)UNORM_MAYBE || u_getIntPropertyMaxValue(UCHAR_LEAD_CANONICAL_COMBINING_CLASS)!=u_getIntPropertyMaxValue(UCHAR_CANONICAL_COMBINING_CLASS) || u_getIntPropertyMaxValue(UCHAR_TRAIL_CANONICAL_COMBINING_CLASS)!=u_getIntPropertyMaxValue(UCHAR_CANONICAL_COMBINING_CLASS) ) { log_err("wrong result from one of the u_getIntPropertyMaxValue(UCHAR_NF*_QUICK_CHECK) or UCHAR_*_CANONICAL_COMBINING_CLASS\n"); } /* * compare the quick check property values for some code points * to the quick check results for checking same-code point strings */ errorCode=U_ZERO_ERROR; c=0; while(c<0x110000) { length=0; U16_APPEND_UNSAFE(s, length, c); qc1=u_getIntPropertyValue(c, UCHAR_NFC_QUICK_CHECK); qc2=unorm_quickCheck(s, length, UNORM_NFC, &errorCode); if(qc1!=qc2) { log_err("u_getIntPropertyValue(NFC)=%d != %d=unorm_quickCheck(NFC) for U+%04x\n", qc1, qc2, c); } qc1=u_getIntPropertyValue(c, UCHAR_NFD_QUICK_CHECK); qc2=unorm_quickCheck(s, length, UNORM_NFD, &errorCode); if(qc1!=qc2) { log_err("u_getIntPropertyValue(NFD)=%d != %d=unorm_quickCheck(NFD) for U+%04x\n", qc1, qc2, c); } qc1=u_getIntPropertyValue(c, UCHAR_NFKC_QUICK_CHECK); qc2=unorm_quickCheck(s, length, UNORM_NFKC, &errorCode); if(qc1!=qc2) { log_err("u_getIntPropertyValue(NFKC)=%d != %d=unorm_quickCheck(NFKC) for U+%04x\n", qc1, qc2, c); } qc1=u_getIntPropertyValue(c, UCHAR_NFKD_QUICK_CHECK); qc2=unorm_quickCheck(s, length, UNORM_NFKD, &errorCode); if(qc1!=qc2) { log_err("u_getIntPropertyValue(NFKD)=%d != %d=unorm_quickCheck(NFKD) for U+%04x\n", qc1, qc2, c); } length=unorm_normalize(s, length, UNORM_NFD, 0, nfd, LENGTHOF(nfd), &errorCode); /* length-length == 0 is used to get around a compiler warning. */ U16_GET(nfd, 0, length-length, length, lead); U16_GET(nfd, 0, length-1, length, trail); lccc1=u_getIntPropertyValue(c, UCHAR_LEAD_CANONICAL_COMBINING_CLASS); lccc2=u_getCombiningClass(lead); tccc1=u_getIntPropertyValue(c, UCHAR_TRAIL_CANONICAL_COMBINING_CLASS); tccc2=u_getCombiningClass(trail); if(lccc1!=lccc2) { log_err("u_getIntPropertyValue(lccc)=%d != %d=u_getCombiningClass(lead) for U+%04x\n", lccc1, lccc2, c); } if(tccc1!=tccc2) { log_err("u_getIntPropertyValue(tccc)=%d != %d=u_getCombiningClass(trail) for U+%04x\n", tccc1, tccc2, c); } /* skip some code points */ c=(20*c)/19+1; } } static void TestComposition(void) { static const struct { UNormalizationMode mode; uint32_t options; UChar input[12]; UChar expect[12]; } cases[]={ /* * special cases for UAX #15 bug * see Unicode Public Review Issue #29 * at http://www.unicode.org/review/resolved-pri.html#pri29 */ { UNORM_NFC, 0, { 0x1100, 0x0300, 0x1161, 0x0327 }, { 0x1100, 0x0300, 0x1161, 0x0327 } }, { UNORM_NFC, 0, { 0x1100, 0x0300, 0x1161, 0x0327, 0x11a8 }, { 0x1100, 0x0300, 0x1161, 0x0327, 0x11a8 } }, { UNORM_NFC, 0, { 0xac00, 0x0300, 0x0327, 0x11a8 }, { 0xac00, 0x0327, 0x0300, 0x11a8 } }, { UNORM_NFC, 0, { 0x0b47, 0x0300, 0x0b3e }, { 0x0b47, 0x0300, 0x0b3e } }, { UNORM_NFC, UNORM_BEFORE_PRI_29, { 0x1100, 0x0300, 0x1161, 0x0327 }, { 0xac00, 0x0300, 0x0327 } }, { UNORM_NFC, UNORM_BEFORE_PRI_29, { 0x1100, 0x0300, 0x1161, 0x0327, 0x11a8 }, { 0xac01, 0x0300, 0x0327 } }, { UNORM_NFC, UNORM_BEFORE_PRI_29, { 0xac00, 0x0300, 0x0327, 0x11a8 }, { 0xac01, 0x0327, 0x0300 } }, { UNORM_NFC, UNORM_BEFORE_PRI_29, { 0x0b47, 0x0300, 0x0b3e }, { 0x0b4b, 0x0300 } } /* TODO: add test cases for UNORM_FCC here (j2151) */ }; UChar output[16]; UErrorCode errorCode; int32_t i, length; for(i=0; i<LENGTHOF(cases); ++i) { errorCode=U_ZERO_ERROR; length=unorm_normalize( cases[i].input, -1, cases[i].mode, cases[i].options, output, LENGTHOF(output), &errorCode); if( U_FAILURE(errorCode) || length!=u_strlen(cases[i].expect) || 0!=u_memcmp(output, cases[i].expect, length) ) { log_err("unexpected result for case %d\n", i); } } } #endif /* #if !UCONFIG_NO_NORMALIZATION */