/* ****************************************************************************** * * Copyright (C) 2007, International Business Machines * Corporation and others. All Rights Reserved. * ****************************************************************************** * file name: bmpset.cpp * encoding: US-ASCII * tab size: 8 (not used) * indentation:4 * * created on: 2007jan29 * created by: Markus W. Scherer */ #include "unicode/utypes.h" #include "unicode/uniset.h" #include "cmemory.h" #include "bmpset.h" U_NAMESPACE_BEGIN BMPSet::BMPSet(const int32_t *parentList, int32_t parentListLength) : list(parentList), listLength(parentListLength) { uprv_memset(asciiBytes, 0, sizeof(asciiBytes)); uprv_memset(table7FF, 0, sizeof(table7FF)); uprv_memset(bmpBlockBits, 0, sizeof(bmpBlockBits)); /* * Set the list indexes for binary searches for * U+0800, U+1000, U+2000, .., U+F000, U+10000. * U+0800 is the first 3-byte-UTF-8 code point. Lower code points are * looked up in the bit tables. * The last pair of indexes is for finding supplementary code points. */ list4kStarts[0]=findCodePoint(0x800, 0, listLength-1); int32_t i; for(i=1; i<=0x10; ++i) { list4kStarts[i]=findCodePoint(i<<12, list4kStarts[i-1], listLength-1); } list4kStarts[0x11]=listLength-1; initBits(); overrideIllegal(); } BMPSet::BMPSet(const BMPSet &otherBMPSet, const int32_t *newParentList, int32_t newParentListLength) : list(newParentList), listLength(newParentListLength) { uprv_memcpy(asciiBytes, otherBMPSet.asciiBytes, sizeof(asciiBytes)); uprv_memcpy(table7FF, otherBMPSet.table7FF, sizeof(table7FF)); uprv_memcpy(bmpBlockBits, otherBMPSet.bmpBlockBits, sizeof(bmpBlockBits)); uprv_memcpy(list4kStarts, otherBMPSet.list4kStarts, sizeof(list4kStarts)); } BMPSet::~BMPSet() { } /* * Set bits in a bit rectangle in "vertical" bit organization. * start<limit<=0x800 */ static void set32x64Bits(uint32_t table[64], int32_t start, int32_t limit) { int32_t lead=start>>6; int32_t trail=start&0x3f; // Set one bit indicating an all-one block. uint32_t bits=(uint32_t)1<<lead; if((start+1)==limit) { // Single-character shortcut. table[trail]|=bits; return; } int32_t limitLead=limit>>6; int32_t limitTrail=limit&0x3f; if(lead==limitLead) { // Partial vertical bit column. while(trail<limitTrail) { table[trail++]|=bits; } } else { // Partial vertical bit column, // followed by a bit rectangle, // followed by another partial vertical bit column. if(trail>0) { do { table[trail++]|=bits; } while(trail<64); ++lead; } if(lead<limitLead) { bits=~((1<<lead)-1); if(limitLead<0x20) { bits&=(1<<limitLead)-1; } for(trail=0; trail<64; ++trail) { table[trail]|=bits; } } bits=1<<limitLead; for(trail=0; trail<limitTrail; ++trail) { table[trail]|=bits; } } } void BMPSet::initBits() { UChar32 start, limit; int32_t listIndex=0; // Set asciiBytes[]. do { start=list[listIndex++]; if(listIndex<listLength) { limit=list[listIndex++]; } else { limit=0x110000; } if(start>=0x80) { break; } do { asciiBytes[start++]=1; } while(start<limit && start<0x80); } while(limit<=0x80); // Set table7FF[]. while(start<0x800) { set32x64Bits(table7FF, start, limit<=0x800 ? limit : 0x800); if(limit>0x800) { start=0x800; break; } start=list[listIndex++]; if(listIndex<listLength) { limit=list[listIndex++]; } else { limit=0x110000; } } // Set bmpBlockBits[]. int32_t minStart=0x800; while(start<0x10000) { if(limit>0x10000) { limit=0x10000; } if(start<minStart) { start=minStart; } if(start<limit) { // Else: Another range entirely in a known mixed-value block. if(start&0x3f) { // Mixed-value block of 64 code points. start>>=6; bmpBlockBits[start&0x3f]|=0x10001<<(start>>6); start=(start+1)<<6; // Round up to the next block boundary. minStart=start; // Ignore further ranges in this block. } if(start<limit) { if(start<(limit&~0x3f)) { // Multiple all-ones blocks of 64 code points each. set32x64Bits(bmpBlockBits, start>>6, limit>>6); } if(limit&0x3f) { // Mixed-value block of 64 code points. limit>>=6; bmpBlockBits[limit&0x3f]|=0x10001<<(limit>>6); limit=(limit+1)<<6; // Round up to the next block boundary. minStart=limit; // Ignore further ranges in this block. } } } if(limit==0x10000) { break; } start=list[listIndex++]; if(listIndex<listLength) { limit=list[listIndex++]; } else { limit=0x110000; } } } /* * Override some bits and bytes to the result of contains(FFFD) * for faster validity checking at runtime. * No need to set 0 values where they were reset to 0 in the constructor * and not modified by initBits(). * (asciiBytes[] trail bytes, table7FF[] 0..7F, bmpBlockBits[] 0..7FF) * Need to set 0 values for surrogates D800..DFFF. */ void BMPSet::overrideIllegal() { uint32_t bits, mask; int32_t i; if(containsSlow(0xfffd, list4kStarts[0xf], list4kStarts[0x10])) { // contains(FFFD)==TRUE for(i=0x80; i<0xc0; ++i) { asciiBytes[i]=1; } bits=3; // Lead bytes 0xC0 and 0xC1. for(i=0; i<64; ++i) { table7FF[i]|=bits; } bits=1; // Lead byte 0xE0. for(i=0; i<32; ++i) { // First half of 4k block. bmpBlockBits[i]|=bits; } mask=~(0x10001<<0xd); // Lead byte 0xED. bits=1<<0xd; for(i=32; i<64; ++i) { // Second half of 4k block. bmpBlockBits[i]=(bmpBlockBits[i]&mask)|bits; } } else { // contains(FFFD)==FALSE mask=~(0x10001<<0xd); // Lead byte 0xED. for(i=32; i<64; ++i) { // Second half of 4k block. bmpBlockBits[i]&=mask; } } } int32_t BMPSet::findCodePoint(UChar32 c, int32_t lo, int32_t hi) const { /* Examples: findCodePoint(c) set list[] c=0 1 3 4 7 8 === ============== =========== [] [110000] 0 0 0 0 0 0 [\u0000-\u0003] [0, 4, 110000] 1 1 1 2 2 2 [\u0004-\u0007] [4, 8, 110000] 0 0 0 1 1 2 [:Any:] [0, 110000] 1 1 1 1 1 1 */ // Return the smallest i such that c < list[i]. Assume // list[len - 1] == HIGH and that c is legal (0..HIGH-1). if (c < list[lo]) return lo; // High runner test. c is often after the last range, so an // initial check for this condition pays off. if (lo >= hi || c >= list[hi-1]) return hi; // invariant: c >= list[lo] // invariant: c < list[hi] for (;;) { int32_t i = (lo + hi) >> 1; if (i == lo) { break; // Found! } else if (c < list[i]) { hi = i; } else { lo = i; } } return hi; } UBool BMPSet::contains(UChar32 c) const { if((uint32_t)c<=0x7f) { return (UBool)asciiBytes[c]; } else if((uint32_t)c<=0x7ff) { return (UBool)((table7FF[c&0x3f]&((uint32_t)1<<(c>>6)))!=0); } else if((uint32_t)c<0xd800 || (c>=0xe000 && c<=0xffff)) { int lead=c>>12; uint32_t twoBits=(bmpBlockBits[(c>>6)&0x3f]>>lead)&0x10001; if(twoBits<=1) { // All 64 code points with the same bits 15..6 // are either in the set or not. return (UBool)twoBits; } else { // Look up the code point in its 4k block of code points. return containsSlow(c, list4kStarts[lead], list4kStarts[lead+1]); } } else if((uint32_t)c<=0x10ffff) { // surrogate or supplementary code point return containsSlow(c, list4kStarts[0xd], list4kStarts[0x11]); } else { // Out-of-range code points get FALSE, consistent with long-standing // behavior of UnicodeSet::contains(c). return FALSE; } } /* * Check for sufficient length for trail unit for each surrogate pair. * Handle single surrogates as surrogate code points as usual in ICU. */ const UChar * BMPSet::span(const UChar *s, const UChar *limit, USetSpanCondition spanCondition) const { UChar c, c2; if(spanCondition) { // span do { c=*s; if(c<=0x7f) { if(!asciiBytes[c]) { break; } } else if(c<=0x7ff) { if((table7FF[c&0x3f]&((uint32_t)1<<(c>>6)))==0) { break; } } else if(c<0xd800 || c>=0xe000) { int lead=c>>12; uint32_t twoBits=(bmpBlockBits[(c>>6)&0x3f]>>lead)&0x10001; if(twoBits<=1) { // All 64 code points with the same bits 15..6 // are either in the set or not. if(twoBits==0) { break; } } else { // Look up the code point in its 4k block of code points. if(!containsSlow(c, list4kStarts[lead], list4kStarts[lead+1])) { break; } } } else if(c>=0xdc00 || (s+1)==limit || (c2=s[1])<0xdc00 || c2>=0xe000) { // surrogate code point if(!containsSlow(c, list4kStarts[0xd], list4kStarts[0xe])) { break; } } else { // surrogate pair if(!containsSlow(U16_GET_SUPPLEMENTARY(c, c2), list4kStarts[0x10], list4kStarts[0x11])) { break; } ++s; } } while(++s<limit); } else { // span not do { c=*s; if(c<=0x7f) { if(asciiBytes[c]) { break; } } else if(c<=0x7ff) { if((table7FF[c&0x3f]&((uint32_t)1<<(c>>6)))!=0) { break; } } else if(c<0xd800 || c>=0xe000) { int lead=c>>12; uint32_t twoBits=(bmpBlockBits[(c>>6)&0x3f]>>lead)&0x10001; if(twoBits<=1) { // All 64 code points with the same bits 15..6 // are either in the set or not. if(twoBits!=0) { break; } } else { // Look up the code point in its 4k block of code points. if(containsSlow(c, list4kStarts[lead], list4kStarts[lead+1])) { break; } } } else if(c>=0xdc00 || (s+1)==limit || (c2=s[1])<0xdc00 || c2>=0xe000) { // surrogate code point if(containsSlow(c, list4kStarts[0xd], list4kStarts[0xe])) { break; } } else { // surrogate pair if(containsSlow(U16_GET_SUPPLEMENTARY(c, c2), list4kStarts[0x10], list4kStarts[0x11])) { break; } ++s; } } while(++s<limit); } return s; } /* Symmetrical with span(). */ const UChar * BMPSet::spanBack(const UChar *s, const UChar *limit, USetSpanCondition spanCondition) const { UChar c, c2; if(spanCondition) { // span for(;;) { c=*(--limit); if(c<=0x7f) { if(!asciiBytes[c]) { break; } } else if(c<=0x7ff) { if((table7FF[c&0x3f]&((uint32_t)1<<(c>>6)))==0) { break; } } else if(c<0xd800 || c>=0xe000) { int lead=c>>12; uint32_t twoBits=(bmpBlockBits[(c>>6)&0x3f]>>lead)&0x10001; if(twoBits<=1) { // All 64 code points with the same bits 15..6 // are either in the set or not. if(twoBits==0) { break; } } else { // Look up the code point in its 4k block of code points. if(!containsSlow(c, list4kStarts[lead], list4kStarts[lead+1])) { break; } } } else if(c<0xdc00 || s==limit || (c2=*(limit-1))<0xd800 || c2>=0xdc00) { // surrogate code point if(!containsSlow(c, list4kStarts[0xd], list4kStarts[0xe])) { break; } } else { // surrogate pair if(!containsSlow(U16_GET_SUPPLEMENTARY(c2, c), list4kStarts[0x10], list4kStarts[0x11])) { break; } --limit; } if(s==limit) { return s; } } } else { // span not for(;;) { c=*(--limit); if(c<=0x7f) { if(asciiBytes[c]) { break; } } else if(c<=0x7ff) { if((table7FF[c&0x3f]&((uint32_t)1<<(c>>6)))!=0) { break; } } else if(c<0xd800 || c>=0xe000) { int lead=c>>12; uint32_t twoBits=(bmpBlockBits[(c>>6)&0x3f]>>lead)&0x10001; if(twoBits<=1) { // All 64 code points with the same bits 15..6 // are either in the set or not. if(twoBits!=0) { break; } } else { // Look up the code point in its 4k block of code points. if(containsSlow(c, list4kStarts[lead], list4kStarts[lead+1])) { break; } } } else if(c<0xdc00 || s==limit || (c2=*(limit-1))<0xd800 || c2>=0xdc00) { // surrogate code point if(containsSlow(c, list4kStarts[0xd], list4kStarts[0xe])) { break; } } else { // surrogate pair if(containsSlow(U16_GET_SUPPLEMENTARY(c2, c), list4kStarts[0x10], list4kStarts[0x11])) { break; } --limit; } if(s==limit) { return s; } } } return limit+1; } /* * Precheck for sufficient trail bytes at end of string only once per span. * Check validity. */ const uint8_t * BMPSet::spanUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { const uint8_t *limit=s+length; uint8_t b=*s; if((int8_t)b>=0) { // Initial all-ASCII span. if(spanCondition) { do { if(!asciiBytes[b] || ++s==limit) { return s; } b=*s; } while((int8_t)b>=0); } else { do { if(asciiBytes[b] || ++s==limit) { return s; } b=*s; } while((int8_t)b>=0); } length=(int32_t)(limit-s); } if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } const uint8_t *limit0=limit; /* * Make sure that the last 1/2/3/4-byte sequence before limit is complete * or runs into a lead byte. * In the span loop compare s with limit only once * per multi-byte character. * * Give a trailing illegal sequence the same value as the result of contains(FFFD), * including it if that is part of the span, otherwise set limit0 to before * the truncated sequence. */ b=*(limit-1); if((int8_t)b<0) { // b>=0x80: lead or trail byte if(b<0xc0) { // single trail byte, check for preceding 3- or 4-byte lead byte if(length>=2 && (b=*(limit-2))>=0xe0) { limit-=2; if(asciiBytes[0x80]!=spanCondition) { limit0=limit; } } else if(b<0xc0 && b>=0x80 && length>=3 && (b=*(limit-3))>=0xf0) { // 4-byte lead byte with only two trail bytes limit-=3; if(asciiBytes[0x80]!=spanCondition) { limit0=limit; } } } else { // lead byte with no trail bytes --limit; if(asciiBytes[0x80]!=spanCondition) { limit0=limit; } } } uint8_t t1, t2, t3; while(s<limit) { b=*s; if(b<0xc0) { // ASCII; or trail bytes with the result of contains(FFFD). if(spanCondition) { do { if(!asciiBytes[b]) { return s; } else if(++s==limit) { return limit0; } b=*s; } while(b<0xc0); } else { do { if(asciiBytes[b]) { return s; } else if(++s==limit) { return limit0; } b=*s; } while(b<0xc0); } } ++s; // Advance past the lead byte. if(b>=0xe0) { if(b<0xf0) { if( /* handle U+0000..U+FFFF inline */ (t1=(uint8_t)(s[0]-0x80)) <= 0x3f && (t2=(uint8_t)(s[1]-0x80)) <= 0x3f ) { b&=0xf; uint32_t twoBits=(bmpBlockBits[t1]>>b)&0x10001; if(twoBits<=1) { // All 64 code points with this lead byte and middle trail byte // are either in the set or not. if(twoBits!=(uint32_t)spanCondition) { return s-1; } } else { // Look up the code point in its 4k block of code points. UChar32 c=(b<<12)|(t1<<6)|t2; if(containsSlow(c, list4kStarts[b], list4kStarts[b+1]) != spanCondition) { return s-1; } } s+=2; continue; } } else if( /* handle U+10000..U+10FFFF inline */ (t1=(uint8_t)(s[0]-0x80)) <= 0x3f && (t2=(uint8_t)(s[1]-0x80)) <= 0x3f && (t3=(uint8_t)(s[2]-0x80)) <= 0x3f ) { // Give an illegal sequence the same value as the result of contains(FFFD). UChar32 c=((UChar32)(b-0xf0)<<18)|((UChar32)t1<<12)|(t2<<6)|t3; if( ( (0x10000<=c && c<=0x10ffff) ? containsSlow(c, list4kStarts[0x10], list4kStarts[0x11]) : asciiBytes[0x80] ) != spanCondition ) { return s-1; } s+=3; continue; } } else /* 0xc0<=b<0xe0 */ { if( /* handle U+0000..U+07FF inline */ (t1=(uint8_t)(*s-0x80)) <= 0x3f ) { if(((table7FF[t1]&((uint32_t)1<<(b&0x1f)))!=0) != spanCondition) { return s-1; } ++s; continue; } } // Give an illegal sequence the same value as the result of contains(FFFD). // Handle each byte of an illegal sequence separately to simplify the code; // no need to optimize error handling. if(asciiBytes[0x80]!=spanCondition) { return s-1; } } return limit0; } /* * While going backwards through UTF-8 optimize only for ASCII. * Unlike UTF-16, UTF-8 is not forward-backward symmetrical, that is, it is not * possible to tell from the last byte in a multi-byte sequence how many * preceding bytes there should be. Therefore, going backwards through UTF-8 * is much harder than going forward. */ int32_t BMPSet::spanBackUTF8(const uint8_t *s, int32_t length, USetSpanCondition spanCondition) const { if(spanCondition!=USET_SPAN_NOT_CONTAINED) { spanCondition=USET_SPAN_CONTAINED; // Pin to 0/1 values. } uint8_t b; do { b=s[--length]; if((int8_t)b>=0) { // ASCII sub-span if(spanCondition) { do { if(!asciiBytes[b]) { return length+1; } else if(length==0) { return 0; } b=s[--length]; } while((int8_t)b>=0); } else { do { if(asciiBytes[b]) { return length+1; } else if(length==0) { return 0; } b=s[--length]; } while((int8_t)b>=0); } } int32_t prev=length; UChar32 c; if(b<0xc0) { // trail byte: collect a multi-byte character c=utf8_prevCharSafeBody(s, 0, &length, b, -1); if(c<0) { c=0xfffd; } } else { // lead byte in last-trail position c=0xfffd; } // c is a valid code point, not ASCII, not a surrogate if(c<=0x7ff) { if(((table7FF[c&0x3f]&((uint32_t)1<<(c>>6)))!=0) != spanCondition) { return prev+1; } } else if(c<=0xffff) { int lead=c>>12; uint32_t twoBits=(bmpBlockBits[(c>>6)&0x3f]>>lead)&0x10001; if(twoBits<=1) { // All 64 code points with the same bits 15..6 // are either in the set or not. if(twoBits!=(uint32_t)spanCondition) { return prev+1; } } else { // Look up the code point in its 4k block of code points. if(containsSlow(c, list4kStarts[lead], list4kStarts[lead+1]) != spanCondition) { return prev+1; } } } else { if(containsSlow(c, list4kStarts[0x10], list4kStarts[0x11]) != spanCondition) { return prev+1; } } } while(length>0); return 0; } U_NAMESPACE_END